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A B S T R A C T   

Surface fuel information is an essential input for models of fire behaviour and fire effects. However, spatially 
explicit, continuous information on surface fuel loads and fuelbed depth is scarce because the collection of field 
data is laborious, while suitable methods for deriving estimates from remote sensing data are still at an early 
stage of development. Fine-scale surface fuel mapping using both passive and active remote sensing has not yet 
been carried out in Central European forest types, and it remains unexplored how prediction uncertainties of 
different fuel components affect modelled fire behaviour. This study combines very detailed airborne lidar and 
multispectral satellite data to extract metrics describing forest structure and composition in two forested areas in 
southwestern Germany. These metrics were used to predict field-sampled surface fuel components using random 
forest regression. Accuracies of continuous fuel load predictions were compared to accuracies that could be 
achieved if only forest type-specific average fuels were assigned. Results revealed that models based on remotely 
sensed metrics explain part of the variance in litter and fine dead woody fuels (R2

=0.27-0.41), but not in coarser 
dead woody fuels. Estimates for herb and shrub fuels were fairly accurate (R2=0.55-0.64) but limited for the 
more fire-relevant fine fraction of shrub fuels (R2=0.39). Fuelbed depth was moderately well predicted based on 
remote sensing data (R2

=0.44). Lidar-derived metrics were particularly useful for predicting understory fuels and 
fuelbed depth. Litter and fine woody fuel predictions were linked to canopy characteristics captured with both 
lidar and multispectral data and similarly accurate estimates could be obtained using average values based on 
forest type. We used the fine-scale surface fuel maps derived from remote sensing to predict potential surface fire 
behaviour in the study area and analysed the sensitivity of modelled fire behaviour to errors in the predicted 
loads of different surface fuel components: fire behaviour was most sensitive to errors in litter and especially 
shrub fuel loads, hence estimates of these components need to be improved. Overall, this study showed that 
statistical relationships between remotely sensed metrics describing forest composition and structure and surface 
fuels have some potential for estimating fuel loads in Central European forest types and should be further 
developed to provide starting points for realistic fire behaviour models.   

1. Introduction 

Fire risk in temperate forests of Central Europe has long been of 
minor concern to many countries. However, recently the danger of 
catastrophic fire events in these formerly low-risk areas has risen as 
result of climate change (de Rigo et al., 2017). The year 2022 has shown 
that the trend of increased wildfire activity associated with prolonged 
droughts in Central Europe continues, with the number of fires and areas 

burned exceeding long-term averages (EFFIS, 2023a). Weather condi
tions favouring wildfire ignition and spread are projected to become 
more frequent (IPCC, 2021), making the occurrence of catastrophic fires 
worldwide 1.31 to 1.57 times more likely by the end of the century 
(UNEP, 2022). While fires are an integral part of the natural disturbance 
regime in some ecosystems (Battisti et al., 2016), uncontrolled wildfires 
can have serious social, economic and environmental impacts, such as 
loss of wildlife habitats, disease from toxic smoke, destruction of 
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infrastructure and property, and feedbacks to climate change through 
greenhouse gas emissions (UNEP, 2022). To mitigate adverse effects of 
wildfires under global warming, it is important to better understand fire 
behaviour especially in ecosystems where this has not been studied 
extensively. The latter include temperate forests of Central Europe. One 
important aspect to investigate is how fire behaviour and fire effects are 
related to forest stand properties such as the amount and distribution of 
combustible organic material, i.e. fuel. 

Spatially explicit fuel information is used for simulations of fire 
spread, intensity and severity (Finney, 2006; Tymstra et al., 2010), 
planning of management activities such as fuel reduction treatments 
(Moghaddas et al., 2010; Furlaud et al., 2018) and strategic planning of 
fire suppression efforts (Page et al., 2013; Plucinski, 2019). It is also 
needed to estimate emissions of greenhouse gases and particulate matter 
from burned areas (Ottmar, 2014; Weise and Wright, 2014). Several 
concepts have been developed to describe fuels and their characteristics, 
often with focus on specific applications like fire behaviour prediction 
(Burgan and Rothermel, 1984; Cruz and Fernandes, 2008) or fire effects 
and emission modelling (Reinhardt, 1997; Prichard et al., 2007). How
ever, one fuel variable that is used in almost all fire management ap
plications is fuel load, i.e. biomass per unit area (Keane, 2013). Fuel load 
is commonly specified for each fuel component of a fuelbed: surface 
fuelbeds (< 2 m) are composed of litter, shrubs and herbs as well as 
down woody material stratified into different particle diameter classes 
based on their rate of drying (Fosberg et al., 1970). Surface fuel loads 
vary at very fine spatial scales (metres to submetres) (Keane, 2015) and 
drive local fire behaviour: The heterogeneous distribution of dense 
woody fuels has for example been linked to variations in fire intensity 
(Loudermilk et al., 2012), which has implications for tree mortality, 
post-fire plant diversity and other long-term ecosystem effects (Mitchell 
et al., 2009; Dell et al., 2017). Understory vegetation such as grasses, 
forbs and shrubs form loosely packed fuelbeds and thus have a strong 
influence on fire dynamics (Keane, 2015), which can be important to 
consider when developing effective firefighting tactics. An important 
variable in this context is fuelbed depth (average height of the surface 
fuels), which together with fuel load determines the bulk density of the 
fuelbed. In forest stands without understory and without coarse dead
wood, the fuelbed depth is equal to the litter depth. Litter provides a 
continuous, easily ignitable fuel source in almost all forest stands, 
capable of supporting the contagious spread of surface fires. As most 
fires burn through surface fuels (Albini, 1984), fine-scale maps of surface 
fuel loads and fuelbed depth are useful for assessing spatial patterns in 
fire behaviour characteristics and fire effects. High-resolution surface 
fuel maps are particularly important when fires are generally small in 
size and crown fires do not play a major role, as is the case for most forest 
fires in Central Europe (San-Miguel-Ayanz et al., 2021). 

Remote sensing approaches offer the potential to efficiently create 
and update continuous fuel maps across large areas. However, as 
pointed out by Gale et al. (2021), the focus in current fuel remote 
sensing literature is on estimating overstory fuel variables (Riaño, 2003; 
Andersen et al., 2005; García et al., 2012; González-Ferreiro et al., 2017; 
Botequim et al., 2019), while studies on surface fuel variables are un
derrepresented. This may be due to the difficulty of estimating fuel 
properties beneath canopies using airborne or spaceborne sensors. Gale 
et al. (2021) also noticed a tendency towards discrete mapping of sur
face fuels as fuel types or fuel models instead of mapping continuous fuel 
variables (Seielstad and Queen, 2003; Mutlu et al., 2008; García et al., 
2011; Chirici et al., 2013; Marino et al., 2016; Domingo et al., 2020). 
Such classifications into fuel types or fuel models summarise the fuel 
information needed for specific modelling purposes in broad categories 
(Lutes et al., 2009), which are usually assigned to an entire stand, dis
regarding the more complex and fine-scale distribution of fuels in the 
forest (Loudermilk et al., 2022). Categorising fuel information, e.g. by 
averaging field-measured loads and associating them with a forest type, 
may be useful for rapid fuel assessments, but fuel loads and fuelbed 
depth are inherently continuous variables (Keane, 2015). Accurate 

quantification of continuous variables is challenging due to the high 
spatial and temporal variability of surface fuels, which can also differ for 
the individual fuel components (Keane, 2015). Studies predicting 
different components of surface fuels using passive and active remote 
sensing technologies report strongly varying model performances 
depending on study area, sensor used and scale of the investigation as 
well as the inclusion of auxiliary variables (Table 1). Hence, the utility of 
remote sensing for fine-scale mapping of surface fuel loads in previously 
unexplored ecosystems remains an open question. A comparison be
tween the accuracy of continuous fuel estimates and average values 
associated with forest types may be helpful in future decisions on how to 
efficiently map fuel components in these forest types. In addition, there 
are no studies that have investigated the extent to which errors in 
remotely sensed surface fuel estimates affect fire models based on them. 

Multispectral remote sensing data have been used to classify vege
tation types and extract stand characteristics, which are then used to 
estimate surface fuel loads with empirically derived relationships 
(Brandis and Jacobson, 2003; Jin and Chen, 2012). However, surface 
fuel loads are not always correlated with forest stand attributes (Keane 
et al., 2012) and can vary considerably within a vegetation type (Keane, 
2015). Other studies have integrated multispectral information with 
other remotely sensed biophysical variables and fire history data to 
explain surface fuel load variation (Reich et al., 2004; Duff et al., 2013; 
Peterson et al., 2013). Topography, climate variables and time since last 
fire were found to be important predictors of fuel load variation in these 
study areas encompassing rather complex terrain with multiple vege
tation types and/or frequent fire disturbance. Comparatively little 
variation in surface fuel load could be explained by spectral information 
and vegetation indices alone at more homogeneous sites (Arellano-Pérez 
et al., 2018), while satellite-derived fractions of vegetation cover were 
useful to explain surface fuel load variation across diverse Cerrado 
vegetation types (Franke et al., 2018). These results indicate that mul
tispectral remote sensing data from passive sensors such as Landsat and 
Sentinel-2 can explain a certain fraction of surface fuel load variability, 
as they carry information related to vegetation density and species 
composition, which are likely to drive understory presence and the type 
and amount of litter. However, fine-scale variation of surface fuel 
components is not adequately captured with these data; hence active 
remote sensing systems like airborne lidar (ALS), which are able to 
partly penetrate canopies and collect information about vertical forest 
structure and the forest floor, may be useful in the direct mapping of 
laying trunks, shrubs or even the presence of herbs and grasses. 
Accordingly, ALS has been used in several studies to estimate compo
nents of surface fuels based on statistical relationships with height, 
density and intensity metrics of the reflected laser pulses (Skowronski 
et al., 2007; Jakubowksi et al., 2013; Hudak et al., 2016); however, so 
far with only moderate reliability for predictions of ground-based fuels. 
One reason for this might have been limited point densities which lead 
to comparably sparse information on understory vegetation and forest 
floor roughness, particularly if rather dense overstory vegetation is 
present, which is the case in most Central European forests. As an 
alternative, terrestrial laser scanning (TLS) and photogrammetric ap
proaches allow to collect dense point clouds for more accurate surface 
fuel estimations (Chen et al., 2017; Wallace et al., 2017; Li et al., 2021). 
However, these techniques are less suitable for mapping fuels across 
large areas, although they provide detailed information about below- 
canopy structure that can support models based on ALS data (Alonso- 
Rego et al., 2021). Fusion of ALS with multispectral data can provide 
both direct and indirect measurements of surface fuels and may thus 
lead to more accurate mapping both within and across different forest 
types. Studies combining ALS with multispectral information have 
found moderate improvements in predicting surface fuel load variation 
in coniferous forests (Bright et al., 2017; Stefanidou et al., 2020). 
However, it remains unclear whether a combination of multispectral 
satellite and airborne lidar data is suitable to map surface fuel load and 
fuelbed depth variation in temperate mixed broadleaf and conifer forests 
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Table 1 
Overview of studies estimating surface fuel loads with remote sensing data.   

sensor (spatial resolution) fuel component study area explained 
variance 

method independent variables 

Brandis and 
Jacobson (2003) 

Landsat TM (30 m) litter and fine fuel load eucalypt forest, woodland, shrubland, 
Australia 

- classification techniques vegetation type, vegetation indices, fire 
history data, biomass turnover rates 

Jin and Chen 
(2012) 

Landsat, (30 m), QuickBird 
(2m) 

litter, 1 hr, 10 hr, 100 hr, 1000 hr 
loads 

larch-dominated boreal forest, China 5-57 % linear regression spectral bands, stand-characteristics 

Reich et al. (2004) Landsat TM (30 m) litter, duff, 1 hr, 10 hr, 100 hr, 1000 
hr 

Black Hills National Forest, South 
Dakota 

34-45 % 
55-72 % 

multiple regression analysis, 
binary regression trees 

spectral bands, topography, forest class 

Duff et al. (2013) Landsat 5, remotely sensed 
biophysical data (50 m) 

litter, elevated fuels (shrubs, herbs), 
bark fuel 

eucalyptus woodland, Australia 30-51% generalized additive models NDVI, topography, climate, soil properties, 
fire history 

Peterson et al. 
(2013) 

Landsat TM 1 hr live fuels, 1 hr, 10 hr, 100 hr 
fuels; discretized into three classes 

chaparral shrublands to subalpine 
forests, Yosemite National Park, 
California 

- random forest spectral bands, vegetation indices, 
topography, climate, soil properties, fire 
history 

Arellano-Pérez 
et al. (2018) 

Sentinel-2 (10-20m) total surface fuel load even-aged pine stands, North western 
Spain 

12 % random forest, multivariate 
adaptive regression splines 

spectral bands and vegetation indices 

Franke et al. 
(2018) 

Landsat 8, Sentinel-2 total surface fine fuel load Cerrado, Brazil 86 % mixture tuned matched 
filtering 

non-photosynthetic dry vegetation and soil 
fractions per pixel 

Skowronski et al. 
(2007) 

ALS (pulse spacing 0.125 m) presence of ladder fuels Pinelands, New Jersey - - vertical height bins of lidar returns 

Jakubowksi et al. 
(2013) 

ALS (9 pts/m2), multispectral 
imagery (1 m) 

total surface fuel load, 1000 hr load, 
understory shrub cover and height 

mixed-conifer forest,  
Nevada 

32-48 % 
59-62 % 

support vector machines, 
linear and additive regression 

spectral values, topography, lidar metrics 

Hudak et al. (2016) ALS (6.9 pts/m2) total surface fuel load longleaf pine forest, Florida 32-44 % multiple linear regression lidar metrics 
Wallace et al. 

(2017) 
TLS (0.018 ◦ between points), 
image derived point-clouds 

surface vegetation biomass up to 25 
cm 

eucalypt forest, Australia 74 % linear regression TLS derived and point-cloud derived 
vegetation volume 

Li et al. (2021) TLS (> 1 pt/cm3) herb and shrub layer biomass temperate forests, northeastern China 69-72 % linear and nonlinear regression TLS-derived understory height, cover and 
vegetation volume 

Chen et al. (2017) TLS, ALS (footprint: 0.26 m) total surface fuel load eucalypt forest, Australia 89 % multiple regression analysis terrain features, forest structural 
characteristics, fire disturbance, fuel and 
burn types 

Alonso-Rego et al. 
(2021) 

ALS (0.5 pts/m2), TLS (130 pts/ 
m2) 

litter and duff, understory load, 
down woody debris load 

even-aged pine stands, NW Spain 35-49 % multivariate adaptive 
regression splines 

TLS and ALS metrics 

Bright et al. (2017) ALS (2 pts/m2), Landsat time 
series (30 m) 

litter, duff, 1 hr, 10 hr, 100 hr, 1000 
hr loads 

coniferous montane forest, Colorado 24-32 % random forest lidar height and density metrics, LandTrendr 
variables, topography 

Stefanidou et al. 
(2020) 

multispectral ALS, (83 pts/m2) litter, grass and forbs, 1 hr, 10 hr, 
total surface fuel load 

Abies borisii, hybrid fir, dense 
coniferous forest, Greece 

59-71 % multiple linear regression 
analysis 

lidar height and intensity metrics  
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characterised by high structural heterogeneity at fine spatial scales. The 
focus of this study is on mixed stands of deciduous beech and oak as well 
as pine and Douglas fir in lowland to colline regions. The relationship 
between overstory composition and surface fuel loads needs to be better 
understood for these forests in order to assess whether simplistic asso
ciations of surface fuel loads with broader vegetation categories such as 
forest types are justified to predict variability in potential fire behaviour 
and can be used as an alternative to fine-scaled remote sensing maps. At 
last, given the frequently reported inaccuracies in surface fuel estima
tion, it is critical to understand the sensitivity of current fire behaviour 
models to such inaccuracies. Therefore, the aim of this work is to  

i) explore the ability to predict surface fuel loads and fuelbed depth 
in heterogeneous mixed forests of Central Europe using freely 
available high-resolution Sentinel-2 data (10-20 m) combined 
with high-density ALS data (> 72 points/m2)  

ii) improve our understanding of remote sensing-based predictions 
of surface fuels by analysing a large set of features as proxies for 
vegetation structure and composition across vertical forest strata 
and investigate whether average fuel loads based on forest types 
can be used in practice  

iii) assess the influence of errors in surface fuel load estimates on 
modelled fire behaviour by performing a sensitivity analysis. 

Fig. 1. Overview of the data used and analyses carried out in this study.  

Fig. 2. Overview of the two study areas ‘Hardtwald’ (left) and ‘Bretten’ (right). White crosses indicate the center locations of the field plots. Background image is a 
Sentinel-2 scene from May 2020 obtained from USGS Earth Explorer (U.S. Geological Survey, 2023). 
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2. Methods 

2.1. Overview 

The main steps of the analysis are summarised in Fig. 1. First, we 
preprocessed the field measurements of surface fuel loads as well as 
litter and fuelbed depth in our study area (sections 2.2 and 2.3). We 
obtained average surface fuel loads for the main four forest types of our 
study area. We then processed the high density lidar and multispectral 
datasets by using a combination of different techniques and obtained a 
large number of potential predictors of surface fuels (sections 2.4 and 
2.5). After feature selection (section 2.6), we trained random forest 
models to predict surface fuel loads based on the selected remotely 
sensed predictors (section 2.7) and compared the errors of the method 
with the errors of using average surface fuel loads per forest type (sec
tion 2.8). Furthermore, we investigated the importance of different 
predictors to better understand the relationship between surface fuels 
and forest composition and structure (section 2.9). Then, we predicted 
surface fuel maps for our study area (section 2.10) and modelled the 
potential fire behaviour (section 2.11). Finally, we performed a sensi
tivity analysis to assess the influence of the predicted fuel components 
on modelled fire behaviour (section 2.12). 

2.2. Study area 

Field data were collected in two study areas of temperate mixed 
forest in south-western Germany. The Hardtwald forest (19.6 km2) is 
located in the flat upper Rhine valley (49.037 N, 8.416 E) at 120 m a.s.l., 
and the Bretten municipal forest (10.5 km2) in the Kraichgau hills 
(49.006 N, 8.699 E) at 180 to 300 m a.s.l. (Fig. 2). The two study areas 
are characterised by temperate climate with mean annual temperatures 
of 11.4 ◦C (Hardtwald) and 10.2 ◦C (Bretten) in the reference period from 
1991 – 2020 (DWD Climate Data Center, 2023), with monthly mean 
temperatures varying between 1.1 and 21.5 ◦C at the Hardtwald site, and 
between 0.2 and 19.8 ◦C in Bretten. Mean annual precipitation amounts 
to 746 mm in Hardtwald and 792 mm in Bretten. 

The examined forest stands are diverse in age and structure (Table 2), 
encompassing dense, young planted stands of Scots pine (Pinus sylvestris 
L.) as well as older, pine-dominated stands with an understory of black 
cherry (Prunus serotina Ehrh.) or European beech (Fagus sylvatica L.). 
They further include mature beech stands with closed canopies and 

areas dominated by natural regeneration of beech. There are old, open 
stands of sessile oak (Quercus petraea Liebl.), as well as row-wise plan
tations of sessile oak and red oak (Quercus rubra L.), and finally young 
and mature stands of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco), 
the latter either pure or mixed with beech. Other, less frequently 
occurring species include hornbeam (Carpinus betulus L.), European 
larch (Larix decidua Mill.), Norway spruce (Picea abies (L.) H. Karst), 
pendunculate oak (Quercus robur L.), silver fir (Abies Alba Mill.) and 
poplar (Populus spp.). The area share of the main forest types is 69 % 
pine, 12 % oak, 7 % beech, 3 % Douglas fir and 9 % other in the 
Hardtwald (ForstBW, 2023), and 44 % beech, 27 % Douglas fir, 13 % 
pine, 9 % oak and 7 % other in the Bretten forest. (ForstBW, 2019). 

Although precipitation in the region is generally evenly distributed 
throughout the year, an increase in heat days and prolonged droughts 
during the summer months has been observed in recent years (DWD 
Climate Data Center, 2023), leading to increased drought stress and 
damage to various tree species, especially on the sandy soils of the Rhine 
valley. So far, there have been no major forest fires in the study area (and 
no recordings by EFFIS (2023b) between 2018 and 2023), but in the hot 
and dry August of 2022 there were several smaller fires (0.1 to 5 ha) in 
the Hardtwald, presumably caused by arson (ka-news, 2022). Given the 
expected increase in fire risk in the future, an understanding of the fuel 
situation in these forests and its relationship to fire behaviour is needed 
to better prepare for managing such fires. 

2.3. Field data 

Surface fuels were inventoried from May to September 2020 and 
2021 in 119 circular field plots (radius = 7.5 m, area = 176.6 m2) 
distributed in a stratified random sampling across the study areas. In
formation on dominating canopy tree species, as available from stand 
maps based on forest inventories that are part of the German For
steinrichtung (ForstBW, 2019, 2023), was used for stratification. The 
measured surface fuel components in each field plot include all dead and 
live fuels within 2 m above the ground: litter, dead woody fuels sepa
rated into 1 hr, 10 hr, 100 hr and 1000 hr fuels, live herbaceous fuels 
(hereafter referred to as herb fuels), mosses, and live woody fuels (young 
trees and shrubs, hereafter referred to as shrub fuels). Fuel loads were 
obtained for all surface fuel components following the protocol by 
Woodall and Monleon (2008). As most operational fire behaviour 
models are based on the Rothermel equation (Rothermel, 1972), which 

Table 2 
Area share of the four main forest types in each study area, as well as the area share of different age classes within each forest type. Data extracted from ForstBW (2019) 
and ForstBW (2023).  

forest type study area % study area occupied % forest type area occupied  

age <40 age 40-80 age 80-120 age >120 

pine Hardtwald 69 7 32 26 35  
Bretten 13 0 34 66 0 

beech Hardtwald 9 6 56 35 3  
Bretten 44 7 23 39 31 

oak Hardtwald 12 5 95 0 0  
Bretten 9 18 28 46 8 

Douglas fir Hardtwald 3 3 86 10 0  
Bretten 27 12 48 40 0  

Table 3 
Overview of the number of field plots in different forest types and per class of mean DBH and tree count.   

all DBH <= 20 cm 
(tree count > 15) 

20 cm < DBH <= 40 cm 
(5 < tree count <= 15) 

DBH > 40 cm 
(tree count <= 5) 

beech 25 5 (11) 14 (11) 6 (3) 
oak 25 10 (7) 11 (14) 4 (4) 
pine 29 6 (7) 19 (13) 4 (9) 
Douglas fir 29 3 (15) 8 (10) 18 (4) 
other 11 0 (5) 7 (6) 4 (0)  
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Table 4 
Overview of the predictors calculated from airborne lidar and Sentinel-2 data.  

source predictor 
type 

features aggregation on plot-level stand 
layer 

vertical strata (lower height - upper 
height in m) 

no. of 
features 

Lidar geometry anisotropy, eigenentropy, omnivariance, sum of eigenvalues, linearity, planarity, 
sphericity, verticality, surface variation for neighborhood radii 0.5 and 1 m 
(equations in Table S2 in Supplementary Material) 

mean herb 0.1-0.5, 0.25-0.5, 0.5-1 54 
shrub 1-2, 2-3, 3-4, 4-5, 0.5-2, 0.5-5 108 
canopy 5-10, 10-15, 15-20, 20-25, 25-30, 

30-max, (max-1)-max, (max-2)- 
max, (max-5)-max 

162 

density no. points in each stratum relative to no. points within and below the stratum, no. 
points in each stratum relative to no. points in vertical column 

- herb 0.1-0.5, 0.25-0.5, 0.5-1 6 
shrub 1-2, 2-3, 3-4, 4-5, 0.5-2, 0.5-5 12 
canopy 5-10, 10-15, 15-20, 20-25, 25-30, 

30-max, (max-1)-max, (max-2)- 
max, (max-5)-max, 5-max, mean- 
max 

16 

intensity return intensity mean, variation, standard deviation, coefficient 
of variation, skewness 

herb 0-0.5 5 
shrub 0.5-2, 0.5-5 10 
canopy (max-1)-max, (max-2)-max, (max- 

5)-max 
15 

voxel no. non-empty voxels per stratum, mean no. points per voxel per stratum, 
standard deviation of no. points per voxel per stratum, coefficient of variation of 
no. points per voxel per stratum, coefficient of variation of leaf area density per 
voxel per stratum, standard deviation of leaf area density per voxel per stratum 

mean herb 0-0.5, 0.5-1 12 
shrub 1-2, 2-3, 3-4, 4-5 24 
canopy 5-10, 10-15, 15-20, 20-25, 25-30, 

30-max 
36 

height return height maximum, quantiles (q99, q95, q90, q75, q50, 
q25, q10), mean, variance, standard deviation, 
coefficient of variation, skewness, kurtosis 

all 
layers 

- 15 

variance herb 0.1-0.5, 0.25-0.5 2 
canopy (max-1)-max, (max-2)-max, (max- 

5)-max 
3 

Sentinel-2 5 scenes bands B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12 reflectances area-weighted mean of plot-overlapping pixels all/ 
canopy 

- 50 

indices LAI, FCOVER, FAPAR, NDVI, EVI, NDMI, NDMI_2, SAVI, TCW, TCG area-weighted mean of plot-overlapping pixels all/ 
canopy 

- 50 

total      580  
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assumes that only the fine biomass of the shrubs (plant parts < 6 mm in 
diameter, i.e. foliage and fine twigs) within 2 m above the forest floor 
contributes to surface fire spread, we calculated both total shrub woody 
biomass and shrub fine biomass within this 2 m height-layer to describe 
the shrub fuels. Details of the field measurements and data preparation 
are given in the Supplementary Material (S1). In addition to the fuel 
loads, we measured litter depth and the height of herbaceous and shrub 
layers and calculated the depth of the fuelbed by weighting the different 
fuel heights based on their contribution to total surface fuel load (Bur
gan and Rothermel, 1984). Species and diameter at breast height (DBH) 
of all trees in the plots were recorded, and the dominant overstory tree 
species in each plot was determined from the basal areas of the occurring 
tree species. This information was used to define the forest type 
(Table 3). 

The field dataset was checked for outliers in the individual fuel 
components. In four fuel components, we removed 1-2 plots with loads 
far above the remaining data (> 5 times the standard deviation away 
from the mean of the data), which were not representative for the study 
area. 

2.4. Lidar data 

Lidar data of the study area were acquired in July 2019 using a Riegl 
LMS-VQ780i scanner on board a Cessna C207 aircraft. The flight was 
operated at an altitude of 650 m with a flight line overlap of 76 %. The 
lidar system acquired data at a pulse repetition rate of 1000 kHz with a 
scanning angle of ±30◦ from nadir. The signal was recorded as full 
waveforms with a footprint diameter of 0.16 m and then transformed 
into discrete points with an average spacing of 0.28 m, resulting in a 
point density of > 16 points/m2 in a single flight line and a point density 
of > 72 points/m2 with overlap in the final dataset. There was a time lag 
between the lidar acquisition (2019) and the field measurements (2020 
and 2021), but no major disturbances (fire, windthrow or disease) 
occurred in the study area in the meantime. 

A digital terrain model (DTM) at 0.5 m spatial resolution was 
calculated from the lidar point cloud using a surface estimation method 
based on active contours that matches an elastic surface to the assumed 
terrain points (lowest point in each cell of a raster area) by minimising 
an energy function (Elmqvist et al., 2001). The DTM was then subtracted 
from the raw point cloud to obtain a normalised point cloud. DTM 
calculation and subtraction were performed in TreesVis (Weinacker 
et al., 2004). From the normalised point cloud, all points falling into a 
field plot were extracted using FUSION (McGaughey, 2022). For each 
plot, a large number of metrics were calculated to comprehensively 
describe the arrangement of reflected pulses across vertical forest stand 
layers (herb layer from 0 to 0.5 m, shrub layer from 0.5 to 5 m and 
canopy from 5 m to top) and thus characterise vegetation structure at the 
plot-level (Table 4). In each stand layer, metrics computation was car
ried out separately for several vertical strata. Sometimes the upper and 
lower heights of the vertical stratum deviate from the definition of the 
stand layer, e.g. in case of the herb layer. For this layer we found that the 
height of grasses and forbs often exceeded 0.5 m. Thus, we attributed 
features up to 1 m to the herb group. Also, some features require a 
neighbourhood of points outside the stratum for their calculation, in 
which case the lower height does not start at 0 m. The lidar metrics were 
grouped into five predictor groups: 1) geometric features as proposed by 
Weinmann et al. (2015) were used to describe the local 3D shape of the 
point cloud within a neighbourhood radius of 0.5 and 1 m. We assumed 
that these features might help to distinguish for example vertically ori
ented objects like stems from more voluminous objects like shrubs. Nine 
geometric features based on the eigenvalues and eigenvectors of the 3D 
structure tensor were calculated. 2) density features such as the number 
of points in a vertical stratum, either normalised by the total number of 
points in the vertical column or the number of points within and below 
the stratum. Such features been used extensively to describe vegetation 
cover and density in a given layer (Ewald et al., 2014; Campbell et al., 

2018) and have been shown to correlate with fuel load (Skowronski 
et al., 2007; Bright et al., 2017). 3) intensity information of the lidar 
returns has been used successfully to filter live (higher intensity returns) 
and dead tree biomass (lower intensity returns) (Kim et al., 2009) or 
distinguish live understory components from coarse woody debris (Wing 
et al., 2012) and could therefore yield information about the presence of 
different surface fuel components. We did not apply intensity normal
isation to our data because elevation differences in our study area were 
small and only minor improvements were expected according to previ
ous studies (Korpela et al., 2010; You et al., 2017). 4) height metrics 
were computed to characterise the distribution of returns along the 
vertical profile of the forest, which has proven useful in previous fuel 
studies (Jakubowksi et al., 2013; Bright et al., 2017; Stefanidou et al., 
2020) and 5) voxel metrics derived from voxelisation of the point cloud 
into 0.5 m cubic voxels were used to capture horizontal variation of 
point densities within a vertical stratum (e.g. leaf area density as 
described in Carrasco et al., 2019) to account for potential effects of fuel 
continuity on fuel loads. Density, intensity, height and voxel metrics 
were computed in Python 3.8 (van Rossum and Drake, 2009), geometric 
features were calculated with the Python package ‘jakteristics’ (Caron 
and Messal, 2020). 

2.5. Multispectral satellite data 

We obtained five cloud-free (< 10 % cloud cover) Sentinel-2 scenes 
as surface reflectance products from five acquisition dates in 2020 
(2020-04-04, 2020-05-19, 2020-07-23, 2020-09-21, 2020-11-30). We 
extracted area-weighted means of the reflectance in the 10 and 20 m 
bands (bands 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12) from the pixels covering our 
field plots and additionally calculated a set of spectral indices and bio
physical canopy traits using ESA’s Sentinel-2 processing toolbox SNAP 
and Python 3.8 to enhance specific vegetation characteristics. These 
included leaf area index (LAI), fractional vegetation cover (FCOVER), 
fraction of absorbed photosynthetically active radiation (FAPAR) (Weiss 
and Baret, 2016), normalised difference vegetation index (NDVI) 
(Tucker, 1979), enhanced vegetation index (EVI) (Liu and Huete, 1995), 
normalised difference moisture index using both SWIR bands 11 and 12 
(NDMI, NDMI_2) (Hardisky et al., 1983), soil adjusted vegetation index 
(SAVI) (Huete, 1988), as well as tasseled cap wetness and greenness 
(TCW, TCG) (Kauth and Thomas, 1976). A total of 480 lidar metrics and 
100 features derived from Sentinel-2 data were calculated, resulting in 
580 potential predictors of surface fuel loads, litter and fuelbed depth 
(Table 4). 

2.6. Feature selection 

From the 580 calculated features, a pre-selection was made for 
modelling each surface fuel component. For this purpose, lidar and 
multispectral predictors were grouped according to their type (geome
try, density, intensity, height, voxel, spectral bands, indices) and the 
forest stand layer for which they were calculated (herb, shrub, canopy; 
or all stand layers together in the case of height metrics, spectral bands 
and indices). This resulted in 15 different groups of predictors, e.g. one 
group would contain only geometric predictors within the herb layer. A 
pre-selection of two features from each group was conducted to remove 
redundancy and multicollinearity among predictors by choosing the 
ones with the highest Spearman correlation with the modelled target 
and a correlation coefficient < 0.7 between the two features. The set of 
30 pre-selected features was further reduced by using the automated 
“Variable Selection Using Random Forests” (VSURF) algorithm (Genuer 
et al., 2015) in R (v4.2.2, R Core Team, 2022) to obtain a subset opti
mised for predicting the respective fuel component. 

2.7. Random forest modelling 

Random forest (RF) regression was chosen to explain the variability 
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in loads of different surface fuel components across the study area, as the 
method generally reaches good performance on datasets with a large 
number of predictors that may have non-linear relationships with the 
response variable (Breiman, 2001; Strobl et al., 2009). Furthermore, it 
does not make any formal distributional assumptions about the response 
variables, which is useful in case of the right-skewed fuel load data, and 
allows to estimate the importance of different predictor variables. For 
each fuel component, we trained an RF model on the predictor subset 
obtained from VSURF using all available samples, and performed a grid 
search on hyperparameters to optimise the out-of-bag (oob) score of the 
model and thus reduce overfitting. A new model was trained with the 
best-scoring hyperparameters and validated using leave-one-out cross- 
validation (LOOCV). Model performance was evaluated using the coef
ficient of determination (R2), root mean squared error (RMSE), relative 
RMSE (rRMSE) and RMSE normalised with the data range (nRMSE) 
between random forest predictions and observed fuel load values of the 
validation data. Our limited sample size of n = 117-118 (depending on 
the fuel component and outliers removed) did not allow an additional 
hold-out test set; however, RF oob score and cross-validation results 
showed high agreement and were thus considered reliable estimates of 
model performance. In addition to the RF model trained on the predictor 
subset obtained from all predictor types after applying VSURF, we 
modelled surface fuel loads based on individual predictor types to assess 
their respective predictive power. For this, we used the pre-selected 
features from each vertical forest stratum that belonged to the same 
predictor type, and repeated the VSURF and model training procedure 
on the new variable subset. 

2.8. Comparison of remote sensing-based estimates and average fuel loads 

We compared the errors of remote sensing-based continuous fuel 
load estimates with errors of average fuel loads for different forest types 
(defined by the dominant overstory tree species). In this approach, the 
fuel loads in a field plot were estimated based on the fuel loads in all 

other plots of the same forest type. The average of the other plots’ fuel 
loads was taken (separately for each fuel component) and assigned to the 
plot under consideration, similar to a leave-one-out procedure. RMSE 
between the forest type-based average values and the observed fuel 
loads was compared to the RMSE of the RF model based on remote 
sensing data. Furthermore, we tested for differences in surface fuel loads 
between forest types defined by dominant tree species using a non- 
parametric Kruskal-Wallis test (Kruskal and Wallis, 1952) followed by 
Dunn’s test (Dunn, 1964) as post hoc non-parametric test. 

2.9. Predictor importance and interpretation 

To assess the relevance of the selected variables for predicting the 
different fuel components, we calculated the permutation feature 
importance for each feature (Breiman, 2001). This importance metric 
reveals how much the model relies on a feature by breaking the rela
tionship between feature and target through random permutation of the 
feature (Molnar, 2022). Additionally, to better understand the re
lationships between features and modelled target, we computed the 
accumulated local effect (ALE) of each feature (Apley and Zhu, 2020). 
ALE gives the relative effect of changing the feature on the prediction 
within a small interval of the feature. ALE plots are better suited than 
partial dependence plots to assess the influence of a feature on the 
prediction when features are correlated (Molnar, 2022). The latter 
applied to some extent to our dataset even after removing highly 
correlated features. ALE plots were produced using the python package 
‘ALEpython’ (Jumelle et al., 2020), which allows to create many Monte 
Carlo replicas by randomly drawing samples from the data and 
computing ALE on them, thus reflecting its potential variability. 

2.10. Surface fuel maps 

To obtain fuel load maps at a spatial resolution reflecting the size of 
our field plots, we resampled the Sentinel-2 data to a pixel size of 14 m 

Fig. 3. Highest Spearman correlations of the predictors in each group (defined by forest stratum and predictor type) with the fuel components. Circles are scaled such 
that the diameters reflect the correlation coefficient, while the column width corresponds to a correlation coefficient of 1. 
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using bilinear interpolation, binned the lidar point cloud into 14 m grid 
cells, and calculated all features relevant for the predictions for each grid 
cell. We predicted fuel load maps for the entire study area using the RF 
models trained on all samples. Fuelbed depth was predicted using 
separate RF models to ensure meaningful values that matched the spatial 
patterns of predicted surface fuels. These models were trained based on 
field-measured loads of the different fuel components. Maps of fuelbed 
depth were then predicted with these models using the fuel loads from 
the prediction maps for the individual fuel components created in the 
preceding step. 

2.11. Modelling potential surface fire behaviour 

We used spatial predictions of surface fuel loads and fuelbed depth to 
estimate potential surface fire behaviour in the forest stands of our study 
area based on the quasi-empirical Rothermel model (Rothermel, 1972). 
In the underlying basic model, the rate of spread (R in m min-1) of a 
surface fire through a fuelbed (up to 2 m above the forest floor) is the 
ratio between the heat flux received (heat source) and the energy 
required to preheat and ignite the unburned fuel (heat sink) ahead of the 
fire (Andrews, 2018): 

R =
heat source

heat sink
=

IR ξ(1 + ϕw + ϕs)

ρbε Qig
(1) 

Eq. (1) accounts for the effects of wind and slope (ϕw,ϕs) on the 
proportion of heat transferred to the fuel (propagating flux ratio ξ) from 
the energy release at the fire front (reaction intensity IR in kJ m-2 s-1). 
The heat required to ignite the fuel depends on the bulk density of the 
fuel (ρbin kg m-3, calculated from load and depth), the proportion of fuel 
heated to ignition temperature before combustion starts (effective 
heating number ε) and the heat of preignition (Qig in kJ kg-1), which is a 
function of fuel moisture, specific heat of the fuel and assumed ignition 
temperature (Sandberg et al., 2007; Andrews, 2018). The basic model 
includes only a single size class of dead fuel, but since surface fuelbeds 
are a mixture of live and dead fuels of various size classes, the final 
model includes weighting factors based on the surface area of the fuel in 
each size class (giving more weight to the finer fuels). Other fire 
behaviour characteristics commonly modelled are fireline intensity (IB 

in kJ m-1 s-1, Eq. 2) as product of reaction intensity (IR), reaction time (tr 
in min) and rate of spread (R), and flame length (FBin m, Eq. 3) as a 
function of reaction intensity, both proposed by Byram (1959): 

IB = IRtr R/60 (2)  

Table 5 
VSURF-selected predictors for the different surface fuel components (omitting 10-1000 hr fuels due to the poor 
model performance), sorted by their permutation feature importance (first feature has highest importance).  

surface fuel component predictors 

litter load 10th percentile of lidar heights  
blue reflectance in summer  
NDVI in summer 

litter depth NDVI in early spring  
10th percentile of lidar heights  
FAPAR in autumn  
standard deviation of leaf area density between 1 and 2 m 

fuelbed depth mean omnivariance between 0.5 and 5 m (neighbourhood radius = 1 m)  
relative point density between 0.5 and 2 m  
mean return intensity in the herb layer  
relative point density between 0.5 and 1 m 

dead 1 hr load green reflectance in early spring  
NDWI in early spring  
SWIR reflectance (2190 nm) in autumn  
mean planarity between 10 and 15 m (neighbourhood radius = 0.5 m)  
number of returns in the uppermost meter of the canopy relative to vertical column  
number of returns in the 5 uppermost meter of the canopy relative to vertical column 

herb+moss load NIR reflectance (842 nm) in autumn  
EVI in autumn  
number of returns between 0.1 and 0.5 m relative to vertical column  
coefficient of variation of return intensity in the uppermost meter of the canopy  
mean linearity between 0.25 and 0.5 m (neighbourhood radius = 0.5 m)  
skewness of return intensity in the herb layer 

herb load coefficient of variation of return intensity in the uppermost meter of the canopy  
skewness of return intensity in the herb layer  
number of returns between 0.25 and 0.5 m relative to vertical column  
EVI in autumn  
NIR reflectance (842 nm) in autumn  
10th percentile of lidar heights 

shrub woody load relative point density between 0.5 and 5 m  
number of non-empty voxels between 2 and 3 m  
mean linearity between 4 and 5 m (neighbourhood radius = 1 m)  
mean anisotropy between 0.5 and 5 m (neighbourhood radius = 1 m)  
mean linearity between 10 and 15 m(neighbourhood radius = 0.5 m)  
skewness of return intensity between 0.5 and 5 m 

shrub fine load mean eigenentropy between 1 and 2 m (neighbourhood radius = 1 m)  
relative point density between 1 and 2 m  
mean linearity between 3 and 4 m (neighbourhood radius = 1 m)  
visible and NIR reflectance (783 nm) in winter  
mean omnivariance between 0.5 and 1 m (neighbourhood radius = 1 m)  
coefficient of variation of return intensity between 0.5 and 5 m  
mean return intensity in the herb layer  
skewness of lidar heights  
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Fig. 4. Scatterplots showing observed (y) and predicted (x) surface fuel loads, litter and fuelbed depth from random forest regression and the model evaluation 
scores. Blue solid lines show the estimated regression line between predicted and observed values together with the 95% confidence band, the red dashed line is the 
1:1 line. Plots h) and i) both show results for fuelbed depth, h) shows the predictions based on remote sensing metrics and i) the predictions based on fuel loads. 

Table 6 
R2 and RMSE of models based on predictors of different types. Modelling was omitted if the number of VSURF selected predictors was <2.The best metrics per fuel 
component are shown in bold.    

geometry density voxel intensity height all lidar spectral all predictor types 

litter load R2 0.12 0.12 0.03 0.03 - 0.13 0.15 0.27  
RMSE (t/ha) 2.84 2.82 3.06 3.03 - 2.87 2.80 2.57 

dead 1 hr R2 0.23 0.25 0.12 0.09 0.09 0.35 0.36 0.41 
load RMSE (t/ha) 0.49 0.48 0.52 0.53 0.54 0.44 0.44 0.42 
herb+moss R2 0.47 0.38 0.30 0.27 0.14 0.53 0.41 0.56 
load RMSE (t/ha) 0.39 0.43 0.45 0.47 0.50 0.38 0.42 0.36 
herb load R2 0.34 0.33 0.33 0.30 0.14 0.48 0.31 0.55  

RMSE (t/ha) 0.37 0.37 0.37 0.38 0.43 0.33 0.38 0.30 
shrub fine R2 0.32 0.25 0.25 0.18 - 0.33 0.13 0.39 
load RMSE (t/ha) 0.53 0.55 0.55 0.57 - 0.51 0.59 0.49 
shrub woody R2 0.53 0.54 0.36 0.33 0.01 0.64 0.13 0.64 
load RMSE (t/ha) 2.38 2.33 2.79 2.83 3.43 2.08 3.24 2.08 
litter depth R2 0.22 0.16 0.05 0.08 - 0.30 0.25 0.40  

RMSE (cm) 1.09 1.14 1.20 1.18 - 1.02 1.07 0.94 
fuelbed R2 0.42 0.34 0.31 0.26 0.20 0.45 0.07 0.44 
depth RMSE (m) 0.17 0.18 0.18 0.19 0.20 0.16 0.22 0.16  
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FB = 0.45 I0.46
B (3) 

We used an implementation of the Rothermel equation and related 
models in R (package ‘firebehavioR’, Ziegler et al., 2019). All required 
parameters except fuel loads and fuelbed depth were held constant 
across the study area and set to the values shown in Table S3 (Supple
mentary Material). Due to the low performance of our models for the 
prediction of coarser dead fuels, 10 hr and 100 hr loads were set to the 
median of all measured values (1.65 and 2.39 t/ha, respectively). Open 
wind speed was set to 15 km/h and fuel moisture values were based on 
Scott and Burgan’s (2005) very low fuel moisture scenario D1L1 to 
reflect severe drought conditions. Fire behaviour characteristics 
modelled were rate of spread, fireline intensity and flame length. 

2.12. Sensitivity analysis 

We analysed the sensitivity of the Rothermel model to variations in 
the different surface fuel components to assess the impact that inac
curacies in fuel load estimation can have on predicted fire behaviour. To 
this end, we trained a random forest model using the remotely sensed 
loads of the fine surface fuel components (litter, dead 1 hr, live herba
ceous and live fine shrub fuels) across the study area as predictors of the 

fire behaviour characteristics calculated with the Rothermel model, thus 
ensuring realistic combinations of the different fuel components for each 
instance. We treated each pixel in the study area as an individual sam
ple, since potential fire behaviour is modelled independently of the 
neighbouring cells. In this way, the random forest model learns the in
ternal relationships and the weighting of the individual fuel components 
in the Rothermel model and can provide information on which fuel 
component most strongly influences the predictions. The effect of fuel 
load variations on predicted fire behaviour characteristics as learned by 
the random forest model was assessed and visualised using ALE (see 
chapter 2.9). 

Fig. 5. ALE plots for the most important predictor of each surface fuel component. Effects are centered at zero, which means that an ALE of zero is simply the average 
prediction and deviations from zero indicate that the prediction is lower/higher than the average prediction by that value. Blue thin lines show the Monte Carlo 
replicas. Quantiles of the predictor are plotted on the upper axis (percentage values). 

Table 7 
Comparison of RMSE of fuel loads between random forest models based on 
remotely sensed metrics and predictions based on average values per forest type.   

RMSE of RF 
model (t/ha) 

RMSE of average 
fuel loads (t/ha) 

error reduction when 
using RF models (%) 

litter 2.57 2.83 9 
dead 1 hr 0.42 0.45 7 
herb+moss 0.36 0.50 28 
herb 0.30 0.44 32 
shrub fine 0.49 0.65 25 
shrub woody 2.08 3.49 40  

Fig. 6. Loads of surface fuels for the four main forest types. Three outlier points 
of litter loads are beyond the y-axis range shown. 

P. Labenski et al.                                                                                                                                                                                                                                



Remote Sensing of Environment 295 (2023) 113711

12

3. Results 

3.1. Feature selection 

Spearman correlations between field-measured surface fuel compo
nents and remotely sensed predictors (Fig. 3) revealed strongest corre
lations of lidar-derived metrics with understory fuels such as shrubs and 
herbs, and also fuelbed depth. The most useful lidar metrics for pre
dicting shrub loads were found among geometric, density and voxel 
features in the corresponding forest stratum. Herb load correlated most 
strongly with geometric, density and intensity features within the herb 
layer, but multispectral satellite data also provided information on loads 
of herbaceous vegetation and mosses. Among the dead woody fuels, only 
the smallest particle size class (1 hr fuels) showed a notable correlation 
with multispectral predictors. All coarser dead fuels were not signifi
cantly correlated with the predictors, making them difficult to predict 
using a regression approach. Correlations of litter load and litter depth 
with the predictors were similarly weak as for dead 1 hr fuels, but were 
more pronounced for multispectral predictors. After running VSURF on 
the correlation-based pre-selected feature set (see Table S4 in Supple
mentary Material), subsets with 3 to 8 variables were obtained for 
predicting the surface fuel components. 

The VSURF-selected features for each surface fuel component are 
listed in order of their permutation feature importance in Table 5. 

3.2. Random forest modelling 

Random forest models best explained variation in shrub woody load 
(R2 = 0.64, Fig. 4 e), while explained variation in shrub fine load was 
notably lower (R2 = 0.39, Fig. 4 f). Herb load variation was moderately 
well explained (R2 = 0.55-0.56, Fig. 4 c-d), while model performance for 
litter and dead 1 hr loads was rather low (R2 = 0.27 and R2 = 0.41, Fig. 4 

a-b). RMSE was highest for litter loads (2.57 t/ha), followed by shrub 
woody loads (2.08 t/ha), while the other fuel components had errors 
between 0.30 and 0.49 t/ha. The nRMSE was around 15 % for all fuel 
components, but rRMSE was highest for shrub and herb loads (84.2 % to 
126.7 %) due to the many plots with very small fuel loads in these 
components (Fig. 4 c-f). As expected from the weak correlations between 
the remotely sensed predictors and the coarser dead fuel loads (10, 100 
and 1000 hr fuels, Fig. 3), the RF models explained very little variation 
(R2 = 0.02-0.12) and are not shown here. These fuel components are not 
included in the further analysis (the 1000 hr fuels are also not consid
ered in Rothermel’s fire spread model). Litter and fuelbed depth were 
modelled with rather low accuracies based on remotely sensed pre
dictors (R2=0.40-0.44, Fig. 4 g-h), but fuelbed depth was reasonably 
well modelled using loads of the different fuel components (R2=0.72, 
Fig. 4 i). 

We tested mixed effect random forests and included forest type as a 
random effect in the model; however, this did not improve the overall 
results. We also tested a multi-output regression with random forest to 
predict all surface fuels using a single model, as dependencies between 
the fuel components are present, albeit weak, but this approach did not 
improve the results either. 

3.3. Results for individual predictor types 

Model performance based on individual predictor types (Table 6) 
reflected the observed patterns of correlation strength (Fig. 3). Results 
show that modelling surface fuel components benefits from the syner
getic use of different predictor types, as models based on variables from 
all predictor types (described in Table 4) consistently performed best. 
Results also reveal that stand attributes such as height are insufficient for 
modelling surface fuel loads and that all other lidar-derived features are 
mostly relevant for predicting understory fuels rather than litter fuels. 

Fig. 7. Predicted fuel load maps on hillshades of the study areas ’Hardtwald’ (upper panels) and ‘Bretten’ (lower panels).  
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Litter loads are generally the most difficult to model, while models for 
litter depth are slightly better. Both litter and dead 1 hr fuels benefit 
from combining lidar and spectral predictors, whereas shrub loads and 
fuelbed depth are not well predicted from spectral features and rely 
more on lidar features alone. Herb biomass is slightly better predicted 
from all lidar features than from spectral predictors, but estimates are 
improved by combining both. Interestingly, previously unexplored 
variables such as geometric features have the potential to adequately 
describe point clouds for fuel mapping, as models based on them 
sometimes even outperform models based on density features. 

3.4. Predictor importance and interpretation 

ALE plots are presented and explained for the feature with highest 
permutation importance (Table 5). Litter loads are predicted using 
spectral features and the 10th percentile of lidar heights (Fig. 5 a), which 
describes the height below which 10 % of returns fall: the higher it is, the 
more returns are found in elevated stand layers, i.e. the canopy, and the 
lower this value is, the more returns are found near the ground. In the 
latter case, returns are most likely produced by understory, the presence 
of which indicates more light penetration and thus a less dense canopy 
that produces less litter. Litter depth is predicted using similar features 
and decreases most with higher NDVI in early spring (Fig. 5 b): NDVI at 

Fig. 8. Potential surface fire behaviour in the study areas as characterised by fireline intensity (left), flame length (middle) and rate of spread (right), and violinplots 
for the three characteristics per study area. Fire behaviour was calculated assuming 15 km/h open wind speed and extremely low fuel moisture (scenario D1L1, see 
Scott and Burgan, 2005). 

Fig. 9. ALE of surface fuel loads on the fire behaviour characteristics in the study area.  
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this time of the year is higher in the younger pine and in the Douglas fir 
stands of our study area, where understory herbs are developing, and 
lower in the deciduous beech stands, where highest litter layers accu
mulate. Fuelbed depth is predicted using lidar features only and in
creases most with the mean local omnivariance in the shrub layer (0.5 to 
5 m) (Fig. 5 c): higher omnivariance corresponds to a more inhomoge
neous spread of points over a 3D volume (Waldhauser et al., 2014), 
indicating the presence of objects with high roughness, such as shrubs or 
small trees with voluminous structure. Dead 1 hr loads are predicted by 
spectral rather than lidar features: Reflectance in the green band in early 
spring is negatively related to predicted loads of dead 1 hr fuels (Fig. 5 d) 
and lowest reflectance is found in Douglas fir stands, which, due to their 
crown structure with a high proportion of fine twigs, produce the largest 
amount of fine dead fuel. The most important features for predicting 
herb load including mosses are also spectral ones: Predicted loads are 
higher when reflectance in the NIR band (842 nm) in autumn is lower 
(Fig. 5 e), which is the case for the coniferous species in the study area. 
When mosses are excluded from herb biomass, lidar features become 
more important, but the model still relies on a canopy trait as most 
important predictor: as the coefficient of variation of lidar return in
tensity in the uppermost canopy layer increases, modelled herb loads 
increase (Fig. 5 f). Higher variation in intensity values could be related 
to the more discontinuous canopy of coniferous trees and less dense 
canopies in general (e.g. oaks compared to beech), favouring the inter
action of the laser beam with different types of surfaces (leaves, exposed 
branches) of different reflectivity (Kim et al., 2009; Fassnacht et al., 
2016). Shrub loads are modelled using lidar features only: While shrub 
woody loads increase with mean point density in the layer between 0.5 
and 5 m (Fig. 5 g), the model for fire-relevant shrub fine load is more 
sensitive to returns between 1 and 2 m (Fig. 5 h), which corresponds to 
the requirement to stay within 2 m above the forest floor. The higher the 
eigenentropy of the point cloud in this layer, i.e. the higher the disorder 
of points, the more fine shrub material is predicted. 

3.5. Comparison of remote sensing-based estimates and average fuel loads 

Comparison between errors of the remote sensing-based fuel load 
estimates and errors of the average fuel load estimates based on the four 
main forest types (Table 7) shows that canopy-related fuels such as litter 
and dead 1 hr fuels can be predicted with comparable accuracy by forest 
type alone. In our study area, litter loads were significantly higher in 
beech stands than oak, Douglas fir and pine stands, while dead 1 hr loads 
were significantly higher in Douglas fir stands compared to pine, beech 
and oak stands (Fig. 6). Understory vegetation was predicted with lower 
RMSE using the remote sensing-based models compared to forest type- 
based predictions. Maximum error reduction (40 %) using the RF 
model based on remote sensing data was achieved for shrub woody load 
(Table 7). In our study area, differences in herb load (both with and 
without moss) and shrub load between forest types were small. Signif
icant differences were only found in herb load between Douglas fir and 
beech stands and in shrub woody load between Douglas fir and beech or 
pine stands. Shrub fine biomass was significantly higher only in pine 
stands compared to Douglas fir stands (Fig. 6). 

3.6. Surface fuel maps 

Maps are shown for fuel components that have the greatest influence 
on surface fire behaviour, i.e., the fine dead and live fuels (Fig. 7). Litter 
load ranges from 2.8 to 9.9 t/ha in the study areas, with higher mean and 
variance (6.4 ± 1.3 t/ha) in Bretten compared to Hardtwald (5.2 ± 0.9 t/ 
ha). Dead 1 hr load varies between 0.5 and 2.0 t/ha and is again slightly 
higher and more variable in Bretten (1.0 ± 0.3 t/ha) than in Hardtwald 
(0.9 ± 0.2 t/ha). Herb load ranges from 0 to 1.8 t/ha with similar mean 
and variance (0.4 ± 0.3 t/ha) in both study areas. Fine shrub load ranges 
between 0 and 2.0 t/ha and is lower on average in Bretten (0.4 t/ha) than 
in Hardtwald (0.5 t/ha), but equally variable (± 0.3 t/ha). 

3.7. Potential surface fire behaviour 

Surface fires are predicted to have low intensity in large parts of the 
study area (mean fireline intensity: 228 kW/m) under the given para
metrisation of physical fuel properties, moisture and wind speed ( 

Fig. 8). The highest fireline intensity (1269 kW/m) can be found in a 
part of the eastern Bretten forest, where predicted flame length and 
spread rate also show maximum values (2.1 m and 5.4 m/min, respec
tively). Mean potential flame length for the study areas is 0.9 m, and 
mean rate of spread is 1.6 m/min. All three fire behaviour characteristics 
show similar patterns across the study areas and suggest a high corre
lation with the underlying fuel load patterns. 

3.8. Sensitivity analysis 

Examining the effects of individual fuel components on modelled fire 
behaviour characteristics using a random forest model (R2=0.92-0.96 
on independent test set, Figure S5 in Supplementary Material) reveals 
that shrub load has by far the highest influence on the modelled output, 
despite the small range of values in the study area, as indicated by the 
steepness of the ALE curve (Fig. 9). All fire behaviour characteristics 
become more severe with increasing shrub load, while dead 1 hr fuels 
and herb fuels seem to have a negligible effect. Increasing litter load also 
leads to higher modelled intensities and flame lengths, while the effect 
on spread rate is minor. Errors in shrub and litter load predictions thus 
have the greatest impact on modelled potential fire behaviour and 
underestimated loads in particular can lead to severly underestimated 
fire behaviour. Figure S6 (Supplementary Material) shows how modelled 
fire behaviour in the study areas changes when loads of fine shrub and 
litter fuels are both increased by their model RMSE (0.49 t/ha and 2.57 
t/ha, respectively, and fuelbed depth adjusted accordingly). 

4. Discussion 

4.1. Potential and limitation of surface fuel load predictions using remote 
sensing 

Our results show that random forest regression models based on lidar 
and multispectral variables describing forest composition and structure 
are able to predict loads of surface fuel components in heterogenous 
mixed forests of Central Europe with moderate to low accuracy. 

4.2. Litter and fine woody fuels 

Consistent with previous studies from different ecosystems (e.g. 
Jakubowksi et al., 2013; Bright et al., 2017; Alonso-Rego et al., 2021), 
ground-based fuels such as litter and deadwood were the most difficult 
to estimate accurately from remote sensing data. We found that the 
variability in litter and dead 1 hr loads was mostly explained by 
remotely sensed predictors capturing canopy properties, rather than by 
lidar reflections near the ground itself, and that the accuracy of the 
predictions was generally low. A possible reason for this is that litter and 
fine woody fuels (dead 1 hr) can vary at centimeter scales depending on 
the micro-topography of the forest floor, the presence of herbaceous 
plants and mosses, or fallen branches under which especially dead 
needles and fine twigs accumulate. This heterogeneity may not be 
adequately represented in the field data, and additionally airborne lidar 
data were probably not fully capable of capturing this variation, both of 
which add uncertainty. Previous studies have shown that even with 
terrestrial laser scanning it is not possible to obtain information on litter 
or 1 hr fuel loads with sufficient accuracy (Arkin et al., 2023). Our re
sults indicate that the captured variability in litter and fine woody fuels 
is mostly explained by differences in litter and fine fuel production be
tween different tree species and canopy densities, which are reflected in 
the multispectral data. However, the low observed accuracies suggest 
that litter and 1 hr fuel loads are determined by additional factors that 
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cannot be captured with the remote sensing data used. For example, 
litter loads are closely linked to decomposition rates, which depend not 
only on litter chemistry but also on temperature and humidity, soil 
conditions and microbial activity (Krishna and Mohan, 2017) and are 
therefore related to the general site conditions. As fuel sampling was 
performed from May to October in two consecutive years, different 
stages of litter decomposition may have added further variability to the 
data. We also sometimes found leaf litter from neighbouring trees blown 
into our field plots. The comparable error when using average fuel loads 
based on forest types suggests that detailed remote sensing data provide 
only little added value in predicting litter and 1 hr fuel loads. This is in 
line with the finding of Alonso-Rego et al. (2021), who report as little as 
10 % variance explained in litter and duff loads of pure even-aged pine 
stands based on ALS metrics, and those of Bright et al. (2017), who 
explain 16 % (24 %) of variation in litter and duff loads using ALS only 
(in combination with disturbance-related metrics derived from Landsat 
time series), and 21 % (28 %) in 1–100 hr fuels in a study area with 
multiple coniferous species. However, it is contrasting the findings of 
Stefanidou et al. (2020), who explain 69 % of variation in litter loads 
and 59 % in dead 1 hr loads using multispectral lidar in a study area with 
pure fir overstory and suggest that lidar is interacting with the litter fuels 
in a direct manner. One reason for the rather low accuracies in our study 
may be the structurally and compositionally complex forest stands, 
making it difficult to disentangle the different drivers (e.g. tree species, 
age and stand or canopy density) of measured fine fuel loads at the forest 
floor, unless these relationships are studied based on a substantially 
larger dataset. Our study suggests that in such cases, multispectral 
remote sensing data that allow reliable classification of forest types can 
be considered the most efficient option for predicting litter and fine 
woody fuel components through association with average loads that 
need to be determined for a forest type and site, even though this method 
has limited accuracy. The forest type-specific fuel loads could be refined 
by either coupling them with a biophysical model predicting rates of fine 
fuel accumulation and decomposition throughout the year (e.g., Hanan 
et al., 2022), or an empirically derived model that links seasonal vari
ations in fine fuel loads to remotely sensed phenological variations in 
trees (e.g., Zeilhofer et al., 2012). 

4.2.1. Coarse woody fuels 
For the coarser dead fuels, we could not develop a model that was 

able to explain the variation in loads. While Jakubowksi et al. (2013) 
similarly reported little correlation between ALS metrics and 1000 hr 
fuels, Bright et al. (2017) explained 30 % variance in 1000 hr loads 
based on ALS metrics only and 32 % in combination with Landsat- 
derived disturbance metrics, and Alonso-Rego et al. (2021) reported 
41 % variance explained in combined woody debris load using ALS. 
Combined estimates were not made in our study, and the weak results 
for the individual woody fuel components can be explained by the 
variability and many zeros in the observed loads in our study area, 
especially for the coarsest particle size class of the 1000 hr fuels, for 
which the calculated loads depend strongly on the geometry of the lying 
stems (diameter and length). Furthermore, the occurrence of these fuel 
particles is highly heterogeneous both within a field plot and in the 
entire forest stand. The field plot size thus influences the fuel variability 
captured, and additionally determines the sensitivity to registration 
errors between field plots and lidar or satellite data (especially when 
only few pixels overlap with the field plots, as in our case). Due to the 
heterogeneous distribution of downed wood, detecting logs in high- 
resolution optical imagery (preferably acquired from below canopies) 
or lidar point clouds and then determining the volume of the individual 
logs, as has been done successfully by e.g. Lopes Queiroz et al. (2020) 
and Jarron et al. (2021), would be better suited to approximate loads. 
Accurate localisations of lying logs may actually be more useful for fine- 
scale fire behaviour analyses and for assessing the accessibility of forest 
areas for firefighting, but fuel models for spatial fire applications still 
include area-based loads for coarse fuels. However, a manual 

examination of our lidar point cloud suggested that in heterogeneous 
stands with understory presence, even large logs are difficult to resolve 
and lidar penetration to the ground is sometimes significantly reduced 
depending on canopy density. Also 10 hr (0.63-2.54 cm diameter) and 
100 hr (2.55-7.62cm diameter) fuel loads are difficult to map, which is 
not surprising given the relatively large footprint of several centimeters 
in airborne lidar acquisitions. But even with terrestrial lidar, it is diffi
cult to quantify loads of 10 hr and 100 hr fuels (Arkin et al., 2023). 
Lastly, the amount of coarse dead fuels is less predictable by tree species 
composition than litter and dead 1 hr fuels: their occurrence is more 
random as it depends on forest management activities such as logging 
and pruning or natural disturbance such as windthrow and falling 
branches after strong winds or heavy snowfall. Mortality can also be 
influenced by different soil conditions, which affect a tree’s suscepti
bility to drought. In our case, the time lag between lidar acquisition and 
field measurements might have further affected the prediction, as in
terventions such as removal of deadwood or accumulation of branches 
after strong winds might not have been recorded in one of the datasets. 
Remote sensing can help identify major disturbance events and detect 
trees that may become deadwood sources after insect infestation or 
drought (Brodrick and Asner, 2017; Kislov et al., 2021), but accurate 
quantification of accumulating woody debris at the forest floor remains 
challenging and especially management effects will be difficult to ac
count for as long as no direct and timely detection of deadwood is 
possible. 

4.2.2. Herb and moss fuels 
Understory fuel load in the herb layer was moderately well predicted 

using our RF models. Prediction of moss and herb fuels relied mostly on 
multispectral features (Table 5), as their occurrence in our study area is 
strongly biased towards conifer stands, which contrast strongly with 
broadleaved stands in the spectral domain. As expected, information on 
canopy characteristics was helpful in predicting herbaceous fuel loads, 
because canopy composition and density control the amount of light 
reaching the forest floor. Tree cover alone, as reflected in the lidar 
metrics and also estimated in the field, was not as strongly correlated 
with herbaceous fuel loads as the multispectral features. However, 
structural information from below the canopy obtained from lidar data 
was also useful and gained importance when herbaceous biomass was 
predicted independently of mosses. The variance explained with our 
herb load model was similar to what is reported in a study predicting 
herbaceous cover from airborne lidar in temperate forests (Latifi et al., 
2017), but despite the high point density of our dataset, we could not 
reach the performance of models based on TLS-derived metrics (Wallace 
et al., 2017; Li et al., 2021). As biomass does not only depend on cover, 
but also on plant height and bulk density and thus on the type of un
derstory vegetation or more specifically the species present (Bolte, 
2006), these metrics need to be estimated precisely, which is unlikely to 
be achieved based on ALS. But even if the vegetation volume of the herb 
layer cannot be derived as accurately as from TLS point clouds, ALS- 
derived cover (and height) estimates may still allow to approximate 
biomass if species information is available. Such information could be 
derived from existing knowledge of herbaceous plant communities that 
develop under specific site conditions, and should take into account 
seasonal variations in their composition and condition (e.g., spring 
flowering and senescence). Our data showed that there was a slightly 
decreasing trend in measured herbaceous biomass over the year 
(Spearman r = -0.42), which is important to consider for dynamic fuel 
estimates. Despite limitations, models based on remotely sensed struc
tural and spectral metrics can improve the prediction of herbaceous 
loads compared to predictions based on forest types alone. 

4.2.3. Shrub fuels 
Shrub fuel load predictions relied almost exclusively on lidar metrics 

and provided reasonable accuracy for shrub woody loads, but poorer 
results for the more fire model-relevant fine biomass. Shrub load is 
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species-dependent like herb load and additionally determined by wood 
density (Annighöfer et al., 2016), and therefore not perfectly correlated 
with cover and/or height extracted at plot-level. While shrub cover has 
been well predicted from airborne lidar point clouds (Wing et al., 2012), 
difficulties in estimating shrub height from lidar have been reported 
when different shrub species are present (Alonso-Rego et al., 2021). 
Having included geometric features as descriptors of point cloud shape 
in our study may not have been sufficient to account for the effects of 
different growth forms on biomass. However, these features may still 
offer potential for improving approaches to understory species seg
mentation (e.g., Wang, 2020) as basis for developing species-specific 
biomass models from point cloud data. Additionally, geometric fea
tures have been successfully applied in leaf-wood classifications of forest 
point clouds (Krishna Moorthy et al., 2020) and could serve to separate 
the fire model-relevant fine shrub load in this way. We also acknowledge 
that our reference shrub load data are subject to considerable uncer
tainty: their accuracy is limited by the availability of accurate allometric 
equations for calculating biomass from diameter at stem base (DAB), 
and by the accuracy of the biomass partitioning into different plant 
compartments used to estimate fine biomass in our study (see Supple
mentary Material S1). It is also well known that growth morphology of 
understory trees and shrubs, even of the same species, changes with light 
conditions: In our study area, despite having the same DAB, young beech 
trees in particular either had long stems with branches and leaves 
located further from the ground or remained rather small depending on 
light availability. This has an important impact on the biomass available 
near the ground that can burn in a surface fire. In addition, in a few cases 
there were still branches of mature trees in the surface fuel layer, but 
these were not included in the measurement of shrub fuels. The only way 
to avoid this uncertainty is to collect all the shrub material within the 
fire relevant layer and sort it by particle size, which is often not feasible 
due to time and personnel constraints. Alternatively, existing ap
proaches to characterise shrubs from dense point clouds acquired with 
terrestrial laser scanning (e.g. Hudak et al., 2020; Li et al., 2021) could 
be used to calibrate better models for shrub woody and fine biomass. 
Overall, the inclusion of detailed structural information derived from 
airborne lidar was more relevant for the prediction of shrub fuel loads 
than for any other fuel component, and this approach should be fav
oured over assigning average fuel loads based on forest types. The same 
is true for the closely related fuelbed depth if it is not estimated from the 
fuel loads themselves. 

4.3. Surface fuel maps and potential surface fire behaviour 

Despite the limited performance of the remote sensing-based models, 
the generated fuel load maps show clear patterns that match field ob
servations of the respective fuel components and can thus inform forest 
managers and firefighters about the fuel situation at a fine scale. 
Modelled potential fire behaviour remains unvalidated due to lack of 
reference data from real fires in the study area. However, our results 
were broadly consistent with the findings of Heisig et al. (2022), who 
reported similar surface fuel load ranges in a study area dominated by 
Scots pine, European beech and red oak in northwestern Germany, and 
modelled fire behaviour under different environmental conditions. They 
used constant fuel loads depending on forest type and found the spatial 
patterns of fire behaviour to be closely linked to those of the surface fuel 
models. Under the same moisture scenario and a wind speed half of ours, 
they simulated a mean spread rate of 2.6 m/min and flame length of 2.5 
m, which is about twice as high as our values. Considering the known 
difficulty of predicting realistic fire behaviour based on actual fuel loads 
(Burgan, 1987), we conclude that the absolute values should be treated 
with caution. Nevertheless, we assessed how errors in fuel load estimates 
affect predicted fire behaviour through the mechanistic relationships in 
the Rothermel model and found that errors in shrub load have the 
strongest effect, followed by litter load. This is most likely due to the 
effect of the presence of shrubs on fuelbed depth, which strongly impacts 

bulk density of the fuelbed and thus changes the estimated rate of spread 
and associated fire characteristics. We also noted that the assumption of 
the Rothermel model that fuel particles are homogeneously distributed 
over the fuelbed was not fulfilled in our study: bulk density decreased 
from the bottom of the litter layer to the top of the fuelbed, but this was 
not reflected in the averaged fuelbed depth and bulk density, which 
probably led to underestimated fire spread rates (Cruz and Fernandes, 
2008). The remarkable effect of litter load on fireline intensity and flame 
length is due to its influence on reaction intensity, which is a function of 
net fuel load (Andrews, 2018), of which litter is the largest component in 
this study. As the two most influential fuel components were at the same 
time associated with the highest prediction error in our models, we 
recommend that future research on surface fuels in temperate forests 
should focus on improving estimates of litter and shrub fuel loads, as 
well as fuelbed depth. 

5. Conclusion 

Statistical relationships between remotely sensed metrics describing 
forest composition and structure and surface fuels have some potential 
for estimating fuel loads in Central European forest types. Still, we 
confirm previous studies in other ecosystems that establishing robust 
relationships is challenging. Random forest regression based on multiple 
spectral and structural characteristics derived from airborne lidar and 
multispectral satellite data showed that a combination of different 
metric types is most useful for fuel load estimation. It also revealed that 
previously unexplored metrics such as geometric features calculated 
from lidar point clouds may be an interesting alternative to the more 
commonly used density-related metrics. Multispectral information is 
most useful for estimating canopy-related fuels such as litter and dead 1 
hr fuels, but can also be linked to other relevant stand properties, such as 
the presence of mosses under certain tree species. Multispectral infor
mation in combination with lidar helps to estimate herb fuels, while 
shrub fuels can be estimated with lidar alone, and results can probably 
be improved by developing adequate biomass models from selected 
metrics. Dead woody fuels are difficult to relate to metrics aggregated at 
field plot level and may be better captured with object-based approaches 
on TLS or photogrammetric data. The data-driven regression approach 
and feature-selection process employed in this study are efficient; 
however, the application of more sophisticated (point cloud) processing 
methods targeting the individual fuel components and their spatial scale 
of variation may help to improve the estimates. For dynamic fuel load 
estimates, ecological processes and knowledge of management and 
disturbance events must also be included. Extending the method to 
larger areas is limited by the availability of high-resolution airborne 
lidar data, but spaceborne lidar data from instruments such as GEDI and 
spaceborne radar data could be a possible substitute that needs further 
research. In general, remote sensing-based fuel load predictions were 
more accurate than average fuel loads based on forest type. However, 
the latter can be sufficient for fuel components that are relatively con
stant underneath a certain tree species at a certain site, e.g. litter and 
dead 1 hr fuels. Understory fuels and fuelbed depth, in contrast, should 
be estimated at finer scales, preferably using structural information 
derived from lidar. This is important given their strong influence on fire 
dynamics, which is also reflected in the high sensitivity of fire behaviour 
models to variations in understory, particularly shrub fuel loads. 
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Schröder, J., Seele, C., Weidig, J., Wirth, C., Wolf, H., Wollmerstädt, J., Mund, M., 
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classification using airborne LiDAR – effects of stand and tree parameters, 
downsizing of training set, intensity normalization, and sensor type. Silva Fenn. 44 
(2). 

Krishna, M.P., Mohan, M., 2017. Litter decomposition in forest ecosystems: a review. 
Energ. Ecol. Environ. 2 (4), 236–249. 

Krishna Moorthy, S.M., Calders, K., Vicari, M.B., Verbeeck, H., 2020. Improved 
supervised learning-based approach for leaf and wood classification from LiDAR 
point clouds of forests. IEEE Trans. Geosci. Remote Sens. 58 (5), 3057–3070. 

Kruskal, W.H., Wallis, W.A., 1952. Use of ranks in one-criterion variance analysis. J. Am. 
Stat. Assoc. 47 (260), 583–621. 

Latifi, H., Hill, S., Schumann, B., Heurich, M., Dech, S., 2017. Multi-model estimation of 
understorey shrub, herb and moss cover in temperate forest stands by laser scanner 
data. Forestry 90 (4), 496–514. 

Li, S., Wang, T., Hou, Z., Gong, Y., Feng, L., Ge, J., 2021. Harnessing terrestrial laser 
scanning to predict understory biomass in temperate mixed forests. Ecol. Indic. 121, 
107011. 

Liu, H.Q., Huete, A., 1995. A feedback based modification of the NDVI to minimize 
canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 33 (2), 
457–465. 

Lopes Queiroz, G., McDermid, G., Linke, J., Hopkinson, C., Kariyeva, J., 2020. Estimating 
coarse woody debris volume using image analysis and multispectral LiDAR. Forests 
11 (2), 141. 

Loudermilk, E.L., O’Brien, J.J., Mitchell, R.J., Cropper, W.P., Hiers, J.K., Grunwald, S., 
Grego, J., Fernandez-Diaz, J.C., 2012. Linking complex forest fuel structure and fire 
behaviour at fine scales. Int. J. Wildland Fire 21 (7), 882. 

Loudermilk, E.L., O’Brien, J.J., Goodrick, S.L., Linn, R.R., Skowronski, N.S., Hiers, J.K., 
2022. Vegetation’s influence on fire behavior goes beyond just being fuel. Fire Ecol. 
18 (1), 1–10. 

Lutes, D.C., Keane, R.E., Caratti, J.F., 2009. A surface fuel classification for estimating 
fire effects. Int. J. Wildland Fire 18 (7), 802. 
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