
1. Paleofire and Ties to Climate
Wildfires occur across a vast range of terrain and ecosystems, from the tropics to high latitudes. Several of 
the papers featured in this Special Collection presented new data on fire effects across space and time, explor-
ing the connection between paleofire history and climate. Campbell et al. (2023) discussed the importance of 
understanding past fire activity for predicting future changes and improving data–model connections. Campbell 
et al. reviewed the emerging applications to paleofire in speleothem paleoenvironmental science, including an 
overview of fire regimes and paleofire proxies, laboratory and statistical analytical methods, and presented case 
studies from southwestern Australia. Ruan et al. (2020) studied a 22,000-year record of fire from a sediment core 
offshore of South Java, Indonesia. Using biomarkers and microcharcoal abundance, they developed a conceptual 
model of feedbacks among fire frequency and intensity, vegetation type, and regional climate. Ji et al. (2021) 
examined how climate and fire regimes are associated over millennial time scales in China. From a black-carbon 
record in a sediment core in northern China, they determined that wet climate increases biofuel abundance 
enough to promote greater wildfire activity, and that with strengthening of the Asian summer monsoon in a 
warmer climate, wildfires and associated carbon emissions could also increase. Huang et al. (2020) used paly-
nological and charcoal analyses from the Toushe Basin, Taiwan, to infer middle to late Holocene changes in fire 
frequency that likely reflected weakening of the East Asian summer monsoon. Evidence of fire is even preserved 
in sediments of the Ross Sea, Antarctica, from which Ren et al.  (2022) presented a pyrogenic carbon record 
that suggests frequent large fires in South America from late Pleistocene to mid-Holocene time. Li et al. (2022) 
presented a 100-year record of refractory black carbon (rBC) in an ice core from eastern Antarctica. This record 
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showed long-term changes that likely reflected biomass burning and anthropogenic biofuel use in South Amer-
ica and Australia, including an increase in rBC abundance between the 1990s and 2015. From peatland cores in 
Borneo, Yamamoto et al. (2021) inferred at least 12 major fires in the last 6,000 years and tied them to intervals 
of high solar activity thought to have been associated with drier climate. Finally, Ying et al. (2022) identified 
connections between wildfire occurrence in Yunnan, southwest China, and dynamics of the Western Pacific and 
Indian Ocean warm pools mediated by the regional monsoon climate.

2. Recent Past and Future Evolution of Fire Patterns
The impact of climate change on the incidence and severity of fires is a rapidly expanding area of research and 
the focus of many papers featured in this Special Collection. A synthesis by Jones et al. (2022) discussed current 
understanding of regional and global trends and drivers of fire. They provided evidence that (a) the frequency 
and severity of fire weather has increased over 1979–2019 and will continue to grow in a warming climate; (b) 
fire weather is a major control on fire activity and the dominant variable in burned area of many mesic forest 
ecosystems, including the Mediterranean, the western U.S., and high-latitude forests; (c) climate models show 
that prevalence and severity of fire weather now exceeds preindustrial variability in some regions; (d) burned 
area has increased by 50% since 2001 in some extratropical forested regions but decreased in African savannahs, 
driving a net decrease of 27% in burned area globally in the past two decades; and (e) human activities and other 
factors commonly modulate the importance of weather in determining fire activity (Jones et al., 2022).

Two commentaries provided context on the role of human influence in fire, with particular attention to the 
context of climate change altering the potential for wildfires: Stoof and Kettridge (2022) discussed the need for 
integrated fire management and cross-sector understanding of social diversity in order to live with enhanced fire 
regimes in a warming climate. Their commentary noted that fostering community resilience in an era of extreme 
fires requires better connecting knowledge and people across geographic boundaries, working on different risks, 
and working in science and practice with more diverse groups of people. Pyne (2020) reflected on the immensity 
of changes to the Earth system resulting from anthropogenic fire, commenting that the Pleistocene was effectively 
replaced by the Pyrocene era as humans intentionally burned living vegetation biomass for purposes of hunting 
and agriculture, used fire in all stages of industry and urbanization, and then began burning fossil fuels.

Many of the Special Collection papers focused on intensification of the fire regime in specific regions due to 
climate warming, anthropogenic influences, or a combination thereof. Melia et  al.  (2022) combined climate 
modeling with daily observations of weather and fire conditions to simulate 21st-century fire-weather conditions 
for Aotearoa (New Zealand). They concluded that more severe, even extreme, wildfire weather will become 
possible in regions previously unaffected by this type of fire weather, even matching conditions recorded during 
the “very extreme” fire-season length and intensity in Australia over the 2019–2020 austral summer. Melia 
et al. (2022) also discussed the implications of the increasing fire risk for financial investments in tree planta-
tions and governmental strategies for planting trees to reduce climate change. Kemter et al. (2021, also discussed 
below) emphasized that climate change is projected to increase the frequency of compounding events such as the 
extreme drought, fire, and intense rain that occurred in the cascade of hazards affecting Australia in 2019–2020. 
Park et al. (2021) examined how deforestation and vegetation degradation will affect future fire activity glob-
ally. Their modeling indicated that under Representative Concentration Pathways 2.6 and 6.0 burned area would 
decrease globally in the 2050s and 2090s due to socioeconomic factors such as economic and population growth 
reducing the use of anthropogenic fire for deforestation. However, Park et al. (2021) also predicted that South 
America, Indonesia, and Australia would continue to have a high risk of anthropogenic fires due to wood harvest 
and pastureland expansion. Rodrigues et al. (2021) examined climatic connections to fire frequency and magni-
tude in the western Mediterranean region between 1980 and 2015. Their study revealed that the North Atlantic 
Oscillation, Scandinavian pattern, and Western Mediterranean Oscillation had explicit spatial influences on the 
occurrence of fires. Wei et al. (2021) used Landsat data to measure the global burned area between 2015 and 
2019, focusing especially on the effects of unusually large fires in the Amazon basin and Australia in 2019. 
Using Sentinel-2 imagery to examine in detail the numerous fires in the Amazon region in 2019, Xu et al. (2021) 
found that 90% were associated with human clearing of deforested fields on the forest margins (i.e., these fires 
were not tied to drought) and that more fires occurred deeper in the forest than in the preceding 3 years, likely 
indicating further proliferation of anthropogenic burning. Jain et al. (2021) used MODIS satellite observations to 
characterize forest-fire activity over central India from 2001 to 2020, finding a substantially greater fire activity 
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since 2006. They found a significant increase in fire activity since 2006, attributed to rising temperatures and low 
precipitation, including extreme hot and dry conditions during winter and spring months that were previously not 
considered part of the fire season.

Eight papers discussed the changing fire regime in the western continental United States as climate warms and 
dries there. Goodwin et  al.  (2021) determined that greater tree mortality in western U.S. forests as a result 
of climate change (driven by drought and mountain pine-beetle infestations) is transitioning large amounts of 
biomass from living to dead, thereby supplying wildfires with more and drier fuels that increase fires' potential 
heat flux. Analyzing annual forest area burned in the western U.S., Juang et al. (2022) found an exponential rela-
tionship between increasing aridity and forest fires. Their study showed that two thirds of the increase in burned 
forest area over 1984–2019 was due to only the 10% largest fires of each year because individual fires with access 
to dry fuels grow at compounding rates. Abatzoglou, Juang et al. (2021) analyzed geographic synchronicity of 
fire danger (defined as a function of fire-weather index relative to forested area) across the western U.S. as a 
means to evaluate strain on fire-management resources; they identified a 25-day increase in synchronous fire 
danger over 1979–2020 and projected that such days would double over 2051–2080, straining fire-suppression 
capability. Brey et al. (2020) examined how future projected increases in vapor pressure deficit and other environ-
mental conditions (precipitation, evaporation, relative humidity, root-zone soil moisture, and wind speed) could 
affect the U.S. summertime wildfire burn area. A study by Ren et al. (2022) projected burned area in a semiarid 
watershed of Idaho, USA. Their model results indicated an increase in burned area by the 2040s followed by a 
decrease in the 2070s owing to fire-limiting thresholds of fuel and flammability that vary with complex vege-
tation responses to increasing CO2 and temperature in a warming climate. The Sierra Nevada region of Califor-
nia has experienced a major increase in wildfire activity since the 1980s, and modeling by Chen et al. (2021) 
determined that vapor-pressure deficit dominated spatial patterns of fire probability there, with fuel amount and 
human population density also being significant drivers in some subecoregions. Hernández Ayala et al. (2021) 
evaluated connections between antecedent rainfall, vegetation growth, and wildfire burned area in California, 
concluding that the largest wildfires in California's history were strongly correlated with above-average anteced-
ent rainfall and anomalous vegetation growth. Dong et al. (2021) evaluated meteorological conditions associated 
with California wildfires and found that most (60%) occurred on hot, dry days, with moisture anomaly explaining 
most of the variability in wildfire size; burned area increased by ∼3.6% per year (having doubled from 1984 to 
2017), dominated by summer hot-dry days.

Four papers in the Special Collection documented increased fire activity in high-latitude regions where fire was 
formerly rarer. Sierra-Hernández et al. (2022) analyzed ice cores from the Wrangell-St. Elias Mountain Range 
in Alaska and found an increase in fire-generated ammonium and black carbon since the 1980s. By comparing 
these wildfire records with climate history, they discovered that temperature has become a more dominant factor 
affecting Alaska's fire regime in the last four decades. Grzesik et al. (2022) examined plant traits and fuel loads 
in black-spruce forests of boreal Alaska, identifying particular vulnerability of certain woodland types (that cover 
27% of interior Alaska) to fire-induced vegetation shifts. Yanagiya and Furuya (2020) demonstrated the deforma-
tion of permafrost surfaces after a 2014 fire in Siberia, where more than 3 million m 3 of permafrost thawed, lead-
ing to irreversible subsidence. Yanagiya et al. (2023) built on those findings by studying additional geomorphic 
impacts of 2018 and 2019 fires in Siberia using field measurements and satellite Interferometric Synthetic Aper-
ture Radar (InSAR), finding transient and spatially heterogenous ground deformation in the permafrost terrain 
that they attributed to fire effects on the active-layer depth. They concluded that the permafrost depth before the 
fire plays a crucial role in controlling postfire subsidence and thermokarst evolution.

3. How Does Fire Work? Physical and Chemical Processes
The Special Collection includes new research into physical atmospheric processes of fire behavior and fire–
atmosphere interaction. Studying extreme pyroconvective behavior of the 2016 Pioneer megafire (Idaho, USA) 
using airborne radar and in situ aircraft sampling, Rodriguez et al. (2020) presented data that help explain how 
hot-moist updrafts trigger fire-generated thunderstorms (from pyrocumulonimbus clouds) that pose aviation 
hazards. Lareau et al. (2022) discussed the importance of long-range spotting in driving the rate of fire spread, 
inferred from new applications of weather radar data. Katurji et al. (2021) presented novel field measurements 
using turbulent thermal image velocimetry at the immediate fire–atmosphere interface, showing interactions 
between the flame zone and wind turbulence. Castellnou et al. (2022) developed a new four-part classification for 
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pyroconvection based on atmospheric vertical profiles and extreme fire spread observed during the 2021 summer 
fire season on the Iberian Peninsula. They distinguished moist and dry convection effects on the atmospheric 
boundary layer and noted the correlation between vertical updraft velocity and the rate of fire spread. A study 
by Aubry-Wake et al. (2022) measured the effects of upwind wildfire activity on the Athabasca Glacier in the 
Canadian Rockies. Aubry-Wake et al.  (2022) concluded that decreased albedo of the glacier surface resulting 
from the deposition of wildfire soot altered the radiation balance enough to increase ice melt by as much as 10%, 
even 2 years after fire.

Several papers presented results from the Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorp-
tion, and Nitrogen (WE-CAN) project, comprising airborne measurements from western U.S. wildfire smoke 
plumes. Barry et al. (2021) sampled smoke plumes and smoke-affected clouds to study wildfire generation of 
ice-nucleating particles that reach the troposphere and showed that the majority of such particles are organic. 
Papers by Juncosa Calahorrano, Lindaas et al. (2021) and Lindaas et al. (2020), also using data obtained through 
WE-CAN, quantified the reactive nitrogen emissions in smoke plumes during summer 2018 western U.S. fires 
and measured rapid chemical changes after emission. Permar et  al.  (2021) used WE-CAN measurements of 
trace organic gases to show that 76% of the volatile organic compound emissions were explained by combustion 
efficiency and found little chemical variation among fires in coniferous ecosystems. Lindaas et al. (2021) stud-
ied ammonia emissions from wildfire smoke, quantifying changes in ammonium nitrate formation with smoke 
altitude and temperature, which have consequences for Earth's radiation budget and reactive nitrogen availability 
to downwind ecosystems. Juncosa Calahorrano, Payne et al. (2021) collected satellite data on emissions of acyl 
peroxynitrates (PANs, nitrogen oxide compounds that form rapidly in smoke plumes) synchronously with the 
WE-CAN project, finding that the fires contributed 19%–56% of tropospheric PANs during the 2018 western 
U.S. wildfire season.

High-resolution satellite and in situ airborne observations from the 2019 Fire Influence on Regional to Global 
Environments and Air Quality (FIREX-AQ) research campaign were used by Wiggins et  al.  (2020) to show 
that changes in fire radiative power directly translated into changes in tracers of smoke (CO2, CO, and black 
carbon aerosol) in downwind smoke plumes from 13 fires. Subsequently, Wiggins et al. (2021) used FIREX-AQ 
data to reconcile top-down and bottom-up approaches for estimating wildfire aerosol emissions, identifying key 
uncertainties, and imperfect assumptions in each. Adachi et al. (2022) studied burned-biomass samples collected 
in flights for FIREX-AQ and earlier campaigns in Mexico and the northwestern US to determine that fine 
ash-bearing particles smaller than a few microns (small enough to be inhaled) represent 8.8–16.3 Tg yr −1 annually 
and can influence cloud condensation. Using airborne data from 12 wildfires and one prescribed fire through the 
Alpha Jet Atmospheric eXperiment, Iraci et al. (2022) presented calibrated measurements of methane, formalde-
hyde, ozone, CO2, water vapor, and wind conditions near the top of smoke plumes.

Experimental and field observations in other papers generated additional new understanding of wildfire 
emissions. In chamber burn experiments, Pokhrel et  al.  (2021) evaluated the relationships between types of 
sub-Saharan African vegetation used as fuel and emissions of CO, NO, and PM2.5; they concluded that fuel 
nitrogen content has a substantial role in NO emissions. An air-quality study by Selimovic et al. (2020) based 
in Missoula, Montana, presented detailed measurements of wildfire smoke content using 1,000 hr of particulate 
matter (PM), ozone, and NOx measurements. C.-S. Zhu et al. (2022) and J. Zhu et al. (2002) estimated the wild-
fire component of PM2.5 over the Yungui Plateau, China, and its meteorological contributors, concluding that 
fires (including long-range smoke transport from eastern Myanmar, northern Laos, and Vietnam) contributed 
approximately half of the vertical PM2.5 at a height of 3–4 km. Loría-Salazar et al. (2021) analyzed smoke height 
boundary-layer effects using NASA MODIS and VIIRS aerosol products, using these to document the influence 
of mountainous terrain on vertical aerosol profiles during extreme smoke events. A study by Lee et al. (2022) 
investigated cloud water samples over eight summers at Whiteface Mountain, New York. These authors found 
that nearly half of the summertime cloud water samples were influenced by wildfire smoke, which contributed to 
the addition of sulfate, ammonium, potassium, and total organic carbon. During 2017 fires in British Columbia, 
Canada, Mao et al. (2021) used airborne lidar (laser backscatter profiles) to measure CO2 emissions and improve 
estimates of associated carbon fluxes.

Modeling by Daniels et al. (2022) explored the relationship between fire-season intensity in maritime Southeast 
Asia and atmospheric carbon monoxide variability. These authors identified lead times for five climate mode 
indices at weekly time scales that increase the robustness of interpretations of carbon monoxide variability.
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During the two and a half years that this Special Collection was open to manuscript submissions, some major wild-
fires and extreme fire seasons occurred that formed the basis for several papers. Abatzoglou, Rupp et al. (2021) 
studied conditions that led to large, high-impact fires burning 4,000 km 2 of forests in Oregon in September 2020, 
attributing the fires to compound extreme events: unusually warm temperatures with little precipitation drying 
fuels for 2  months prefire, combined with exceptionally strong downslope offshore winds driving rapid fire 
spread. Kemter et al. (2021) studied the cascading hazards contributing to severe ecosystem and human impacts 
of the 2019–2020 “Black Summer” wildfires in Australia. This fire season followed an unprecedented drought 
and was succeeded by heavy precipitation, leading to flooding and runoff that brought large quantities of ash and 
eroded soil from the burned areas into rivers, reducing water quality. Kemter et al. (2021) provided a comprehen-
sive look at this three-part hazard of drought, fire, and flooding/erosion, highlighting the amplifying effects of 
individual impacts within hazard cascades and emphasizing the role of ongoing climate change in this series of 
disasters. Deb et al. (2020) studied the causes of the Black Summer 2019–2020 fire season in New South Wales, 
Australia, using empirically based statistical models. These authors found that drought, surface soil moisture, 
wind speed, relative humidity, heat waves, dead and live fuel moisture, and certain land-cover types combined 
to allow fire propagation, and they discussed applications for better fire-protection planning and management. 
Kumar et al. (2021) used remotely sensed vegetation optical depth data from the NASA Soil Moisture Active 
Passive mission to determine that the 2019–2020 Australian drought and bushfires significantly altered the parti-
tioning of evaporative and runoff fluxes, leading to increased bare soil evaporation, decreased transpiration, and 
greater water runoff. Fasullo et al. (2021) modeled coupled climate responses to changes in emissions from the 
Australian wildfires of 2019 and the early part of the COVID-19 pandemic. Their simulations with the Commu-
nity Earth System Model (CESM)-2 showed globally modest responses to reduced aerosol emissions associated 
with the pandemic, whereas the Australian fires were found to have cooled the globe by 0.95 ± 0.15 W m −2 in 
December 2019 and 0.06 ± 0.04 K by mid-2020, as well as having displaced tropical convection northward. 
Di Giuseppe (2022) used an unusual series of lightning-ignited major California wildfires in summer 2020 to 
test the efficacy of probabilistic and deterministic forecasting, concluding that a proposed probabilistic fore-
cast approach could provide great value to users, particularly where economic costs of missed (false negative) 
lightning-strike forecasts are high.

A study by Wagman et al. (2020) modeled global climate forcing and response that could result from a regional 
nuclear-weapons exchange causing large urban fires. They concluded that fire plumes and their associated aerosol 
and black-carbon emissions resulting from 100 simultaneous fire storms after nuclear-weapon use would cause 
global cooling of shorter duration than previously assessed, likely lasting four years rather than 8–15  years. 
Wagman et al. (2020) inferred a broad range of climate impacts depending on fuel availability and consumption 
at the detonation sites.

4. Fire Effects on Biogeochemical Cycles and Ecosystems
Many papers in the Special Collection elucidated the importance of fire in biogeochemical cycles and ecological 
processes. Zubkova et al. (2022) presented a new conceptual framework for defining potential “fire regions” in 
Africa and Australia, which are regions with distinct fire potential based on environmental gradients and human 
activities. They found that a single biome can host several fire regions due to highly variable fire frequency, 
size, and intensity. Madani et al. (2021) used satellite vegetation observations and environmental data coupled 
with a modeling approach to investigate climate and wildfire effects on ecosystem gross primary productiv-
ity in Alaska; they concluded that warmer temperatures increase plant productivity and wildfire risk, and that 
although productivity recovers rapidly from less severe fires, thawing and increased fire activity in permafrost 
terrain will release long-stored carbon. Santin et al. (2020) conducted chamber burns of various North Ameri-
can vegetation types during the FIREX FireLab experiment to show that pyrogenic carbon not emitted into the 
atmosphere can constitute a significant carbon sink due to its long environmental recalcitrance, and that failing 
to account for this effect of incompletely consumed fuels may overestimate wildfire carbon emissions substan-
tially. Desservettaz et al. (2022) used model simulations to constrain Australia's biomass burning inventory and 
carbon-monoxide emissions to better situate Australian fires in regional and global carbon budgets. Work by 
Corona-Núñez et al. (2020) using GOES and MODIS satellite data determined that tropical forest fires produce 
19% of Mexico's CO2 emissions, equivalent to 4 to 11 times more than national emissions from deforestation. 
Heindel et al. (2022) measured nitrogen deposition along a transect spanning a range of elevation and land use 
in the fire-prone Colorado Front Range. They found elevated nitrogen deposition from urban and agricultural 
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sources at much higher levels than previously modeled, indicating the need for more intensive nitrogen moni-
toring in the wildland-urban interface because nitrogen and wildfire can combine to degrade water quality and 
fire-prone ecosystems substantially. Working at high-altitude sites on the Tibetan Plateau, C.-S. Zhu et al. (2022) 
and J. Zhu et  al.  (2002) found elevated abundance of biomass-burning tracers (levoglucosan, mannosan, and 
galactosan) that suggested long-range atmospheric effects of fires. Studying legacy effects of fires associated with 
deforestation in the Amazon region, de Oliveira et al. (2021) found that during a 3-year period after fire, burned 
areas experienced higher air and land-surface temperatures, but water and carbon-dioxide fluxes showed signs 
of recovery toward their original states. In contrast, Rhea et al. (2021) found that burned catchments in Colorado 
showed increased in-stream nitrogen concentrations and more biofilm productivity than unburned streams even 
15 years after fire, with nitrate supply from burned hillslopes exceeding the demand by stream biota. McGuire, 
Rasmussen, et al. (2021) measured the spatial distribution of near-surface pyrogenic carbon on hillslopes after a 
2018 fire in New Mexico, USA, and used hydrologic monitoring, terrain analysis, and a rainfall-runoff model to 
explain hydrogeomorphic, burn-severity, and canopy-cover controls on pyrogenic-carbon redistribution. Natali 
et al. (2021) evaluated carbon loss and mobility of metals resulting from burning of peat soils in Italy, inferring 
that 580 kg of CO2 were released per cubic meter of burned soil, negatively affecting agricultural activities as well 
as contributing to greenhouse gas in the atmosphere.

The downstream fates of wildfire-generated carbon and other pyrogenic compounds were discussed by four 
Special Collection papers. Sampling paleolimnological records from subarctic lakes of northern Canada, Pelletier 
et  al.  (2020) demonstrated significant increases in trace metals, metalloids, and major ions after wildfires, 
although wildfire delivered lower fluxes of metal contaminants than did anthropogenic pollution. After the large 
Thomas Fire in southern California in winter 2017–2018, Kelly et al. (2021) measured black carbon and metals 
in aerosol, river, and seawater samples, finding that rapid aerosol delivery during the fire accounted for more 
metal transport to the coastal ocean than did postfire flooding of the nearby Ventura River. Kelly et al. (2021) 
also determined that seawater chemistry and phytoplankton biomass did not show significant responses. Also 
studying the Thomas Fire, Wagner et al. (2021) determined that large amounts of dissolved black carbon were 
present in coastal waters directly beneath the smoke plume, although these ash-derived concentrations were not 
high enough to shift the carbon isotope signature offshore in the Santa Barbara Channel. Häggi et al.  (2021) 
compared levoglucosan abundance (as a proxy of low-temperature pyrogenic carbon) in the Amazon River to 
its abundance in marine sediments near the river mouth and found that it occurred only in negligible quantities. 
This result suggests that, in a large subtropical river system, river-derived levoglucosan and low-temperature 
pyrogenic carbon degrade almost completely before reaching the ocean.

Several papers quantified the effects of fire on forest and soil carbon stocks. Palviainen et al. (2020) synthesized 
the effects of fire on carbon stocks in boreal forests using 368 field plots and 16 long-term fire chronosequences; 
they found that fires caused an average initial decrease of 60% in carbon stocks, described recovery trajectories 
quantitatively, and discussed the climate-mediated role of potential evapotranspiration in the rate of carbon-stock 
recovery. Eckdahl et al. (2022) sampled organic and mineral soils at 50 burned sites in boreal forests of Sweden 
and found that 1 year postfire, a large fraction of the pyrogenic carbon had moved downward in the soil profile 
to be stored in the mineral soil rather than in the organic layers. Based on 18 years of vegetation data from North 
America's grassland biome, Donovan et al. (2020) concluded that large wildfires did not drive persistent vegeta-
tion declines, but that (with the exception of trees in one ecoregion) vegetation recovered relatively rapidly after 
fire. Wilson et al. (2021) determined that while summer precipitation is consistently an important factor driving 
postfire forest recovery in mountainous terrain of the U.S. Pacific Northwest, snow cover also exerts significant 
influence. Considering trends toward increasing fire activity, reduced snowpack, and earlier snowmelt, these 
authors expect that, in the future, Pacific Northwest forests will experience more frequent drought conditions that 
slow postfire revegetation. Cooperdock et al. (2020) sampled soils burned by wildfire in central Texas and, by 
comparing them to unburned soils, concluded that in a hot, dry climate, soil disturbances persist for years after 
fire, resulting in elevated temperatures (from excess solar-radiation absorption) and reduced microbial activity.

5. Postfire Landscape Processes and Physical Hazards
Fire can alter soil properties and processes of hillslope erosion greatly, so that even modest postfire rainfall 
can cause destructive flooding and debris flows in some settings. The characteristics of terrain, soil properties, 
fire history, and rainfall that generate postfire debris flows are subjects of rapidly growing research. Kean and 
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Staley (2021) generated maps of postfire debris-flow probability and magnitude (volume) for southern Califor-
nia that can be used to prioritize watersheds for emergency preparedness and potential mitigation. They found 
that small debris flows can be expected almost every year and debris flows large enough to damage 40 or more 
structures have a recurrence interval between 10 and 13 years, comparable to a magnitude 6.7 earthquake in 
the same region; Kean and Staley  (2021) noted that rainfall intensification in a warmer climate will increase 
the probability of major debris flows. Simulating changes in hydrologic and soil conditions that cause postfire 
debris flows, Thomas et al. (2021) defined threshold conditions for runoff- and infiltration-generated debris flows 
over 3 years postfire for the San Gabriel Mountains, southern California. Rengers et al. (2021), also working in 
the San Gabriel Mountains, used airborne and terrestrial lidar to determine that only 7% of postfire sediment 
erosion originated from channels, whereas 93% was derived from hillslopes; postfire erosion rates were of the 
same magnitude as millennial-scale bedrock erosion rates, suggesting that fires account for a majority of long-
term erosion in that region. Flume experiments by Ng et al.  (2022) investigated the effects of soil hydropho-
bicity (water repellency) on debris-flow entrainment and momentum growth. Their study demonstrated unique 
erosion patterns and showed that the erosion depth of a debris flow can be six times greater when occurring in a 
hydrophobic bed similar to one that would be present after a wildfire. Ouyang et al. (2023) investigated a series 
of  postfire debris flows in a watershed in southern China in 2021 and conducted laboratory tests on soils from 
the burned catchment. Ouyang et al. then developed a numerical model based on rainfall interception (a function 
of leaf area index), infiltration, erosion, and runoff that could reproduce the characteristics of the debris  flows 
observed in the field. Guilinger et al. (2020) used repeat change detection to characterize the evolution of sedi-
ment sources in debris flows after the 2018 Holy Fire in the Santa Ana Mountains (southern California) and 
found that storm rainfall evacuated dry ravel sediment from channels relatively early, increasing the importance 
of hillslope sources in later-season storms. Hoch et al. (2021) studied hydrogeomorphic recovery after three fires 
in the U.S. Southwest, using field and remotely sensed measurements of soil properties, vegetation cover, rainfall 
runoff, and debris-flow activity to constrain a hydrologic model of how rainfall intensity-duration thresholds for 
debris-flow initiation change with time. Hoch et al. (2021) found that whereas a 1-year recurrence-interval storm 
can cause debris flows in the first year postfire, a 10- to 25-year storm may be needed to cause debris flows after 
2 years of soil and vegetation recovery. Studying a 2019 fire and postfire monsoon storms in central Arizona, 
McGuire, Youberg et al. (2021) showed that in desert terrain even low soil burn severity can increase debris-flow 
likelihood and volume.

In the aftermath of destructive, fatal, and costly postfire debris flows of January 2018 in Montecito, California, 
Alessio et  al.  (2021) investigated how rilling erosion had developed into debris-flow slurries; they identified 
contributing properties of lithology (particularly shale bedrock) and hillslope geometry that promoted debris-
flow formation from rills. Barnhart et al. (2021) simulated the 2018 Montecito disaster with three debris-flow 
inundation models (RAMMS, FLO2D, and D-Claw) and found that model performance was more sensitive to 
flow volume and site morphology than to flow properties; estimated postfire debris-flow volumes were lower 
than rainfall-based predictions and observed inundation areas were larger than the volume-based model predicted.

Burned terrain experiences enhanced erosion even in the absence of debris flows, as two other studies reported. 
East et al. (2021) used Structure-from-Motion photogrammetry and sonar mapping of a lake bed to quantify sedi-
ment export from three watersheds burned by the 2018 Carr Fire, northern California, finding that basin-scale 
sediment yields were 5–64 times greater than before the fire despite a lack of debris flows. Perkins et al. (2022) 
evaluated hydraulic recovery in soils after the 2017 Nuns and Tubbs Fires, northern California. They determined 
that substantial recovery occurred in the predominantly grassland and chaparral study sites after just one rainy 
season following the fire, and that (unlike in well studied southern California watersheds) dry ravel erosion was 
minor, reducing the potential for within-channel postfire debris flows.

6. Impacts of Fire on Water Quality, Air Quality, and Public Health
Several papers in the Special Collection provided new insights into the effects of wildfires on water and air 
quality. A review by Paul et  al.  (2022) examined wildfire-induced impacts on waterborne pollutants, includ-
ing increases in nutrients, ions, metals, certain organic compounds, and sediment, all of which are commonly 
elevated after fire, as are water temperature and streamflow. These authors also reviewed studies of fire effects 
on aquatic ecosystems and found that postfire water-quality changes last less than 5 years in most instances but in 
some cases persist more than 15 years. Using an 18-year record of water quality from an unburned watershed in 
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Alberta, Canada, Evans et al. (2021) detected elevated potassium in rainwater and river water that they traced to 
smoke plumes from distant wildfires, evidence that water quality can be impaired even long distances downwind 
of fires. A study by Xing et al. (2021) detected far-field effects of wildfire on air quality, concluding that biomass 
burning in peninsular southeast Asia significantly increased near-surface PM2.5 concentrations, increased NH3, 
and, through aerosol-radiation effects, decreased O3 concentrations in southern China. Xie et al.  (2020) used 
observations and modeling to evaluate PM2.5 pollution caused by western U.S. fires over 20 years, finding that 
the 2017 and 2018 fire seasons there caused especially large PM2.5 values that were greatly underestimated by the 
Global Fire Emissions Database. Lassman et al. (2023) retrospectively analyzed the effects of the extreme 2020 
California wildfire season on regional air quality, comparing two approaches to modeling smoke emissions (one 
based on biomass-burning emissions and another based on remotely sensed fire-arrival timing) and discussing 
the performance of each method.

Many papers identified associations between wildfire smoke exposure and the occurrence of related human 
diseases and deaths. Nawaz and Henze (2020) found that biomass burning from deforestation in the Amazon 
region increased PM2.5 exposure, with the result that during the 2019 fire season, approximately 5,000 prema-
ture deaths in Brazil were attributable to fire emissions, constituting 10% of all PM2.5-related premature deaths 
in Brazil. The authors indicated a public-health-focused need for increased protection of Amazon forests. 
Magzamen et al. (2021) estimated cardiopulmonary morbidity and mortality related to wildfire smoke partic-
ulate matter (PM2.5) in Colorado over 2010–2015. They found increased wildfire smoke PM2.5 to be associated 
with increased hospitalizations for a suite of cardiopulmonary diseases, and with deaths from asthma and heart 
attacks. Magzamen et  al.  (2021) also identified apparent differences in health effects of local smoke plumes 
compared to long-range, downwind smoke exposure. Liu et al. (2021) determined that exposure to wildfire smoke 
PM2.5 in the summer of 2020 in Washington, USA (from local fires as well as long-distance smoke from fires in 
Oregon and California) led to higher mortality rates from all causes and especially from respiratory illnesses. Liu 
et al. (2021) concluded that reducing PM2.5 exposure for people living below the poverty level would especially 
reduce smoke-associated deaths. O’Dell et al.  (2021) determined that although most large U.S. fires occur in 
the western U.S., most deaths (74%) and asthma emergency-department visits and hospital admissions attrib-
utable to smoke occur in the eastern U.S. (75% between 2006 and 2018), implying that mitigation and aware-
ness of smoke exposure are important well beyond the immediate fire-affected region. Studying nationwide 
U.S. records of intensive-care hospitalizations, Sorensen et al. (2021) identified significant associations between 
locally detected wildfire smoke PM2.5 and intensive-care admissions 5 days later. They then modeled the effects 
on intensive care unit (ICU) resources of a simulated severe smoke event and predicted that ICU bed utilization 
could exceed 130%, indicating the need for hospitals to prepare additional critical-care resources when major 
wildfire smoke is forecast. However, estimating or projecting health impacts (e.g., respiratory-illness hospitali-
zations, premature deaths, and lost days of work) based on smoke PM2.5 has substantial uncertainties, as Johnson 
and Garcia-Menendez (2022) showed for 2016 Southern Appalachian fires: uncertainty in impact estimates due 
to wildfire smoke spatial fields can be as high as 40%–50%, and greater for some morbidity outcomes (such 
as asthma hospitalizations). As part of the 2019 FIREX-AQ campaign, Dickinson et al. (2022) studied human 
health-risk implications from more than 100 volatile organic compounds in the smoke of three different wildfires 
in Idaho and Washington. They found that the associated benzene exposure could have increased human cancer 
incidence by as many as 19 cases per million people.

7. New Methods and Technologies in Fire Research
The value of new and emerging technologies in fire science is evident in the Special Collection papers, whether 
as the primary focus of the paper or as the means to answer specific research questions. For example, as summa-
rized by Jones et al. (2022), remote-sensing technological advances over the past 30 years have been critically 
important to the proliferation of fire research across spatial scales and subdisciplines. Recent examples in this 
Special Collection include the work of Yanagiya and Furuya (2020), who used L-band ALOS2 data and C-band 
InSAR data from Sentinel-1 to map thermokarst from postfire permafrost thaw in Siberia, and Loría-Salazar 
et al. (2021), whose MODIS and VIIRS data were compared against ground-based observations, allowing them 
to summarize the scope, limitations, and opportunities for new applications of surface-level aerosol concentra-
tions generated from wildfires. Lareau et al. (2022) showed the utility of Next Generation Weather Radar data 
for tracking wildfires, as fire perimeters estimated using radar were found to be consistent with satellite infrared 
measurements. Airborne radar measurements of a pyrocumulonimbus cloud by Rodriguez et al. (2020) were the 
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first of their kind. Di Giuseppe et al. (2021) employed a new approach to estimate fuel consumed by fires at a 
global scale by using above-ground biomass inferred from L-band optical observations by the AERONET global 
satellite network. Improved accuracy from these methods removes the need for factoring-up assumptions that 
could cause large underestimations of wildfire emissions.

Machine-learning algorithms are being increasingly used to understand wildfire susceptibility. Wang et al. (2021) 
developed a machine-learning and game-theory model that identified physical relationships between wildfire 
burned area in the continental U.S. and vapor pressure deficit, relative humidity, and an energy release component 
(a function of fuel dryness), thus improving predictive capability for future fires. Tang et al. (2022) used machine 
learning to evaluate seasonal wildfire susceptibility and economic consequences of fire, focusing on the forested 
Daxinganling region of China. Horton et al. (2021) employed a fire-susceptibility model using machine learn-
ing to evaluate the primary driving factors of peatland fires in Kalimantan, Borneo, Indonesia. Although they 
obtained encouraging accuracy and precision from this approach, the model's predictive capability was found to 
be limited by the influence of human activity on fire ignitions. Kondylatos et al. (2022) applied machine-learning 
methods to predict next-day wildfire danger based on vegetation, meteorological, and soil-moisture data; when 
applied to two fire seasons in the Eastern Mediterranean region, this deep-learning approach evidently outper-
formed the more commonly used Fire Weather Index.

8. Concluding Remarks
The broad disciplinary scope reflected in the Fire in the Earth System Special Collection reflects the wide-
spread importance of fire to ecosystems and human societies. Understanding the interactions of fire, humans, 
and climate is fundamental to prepare for the future ahead, but also extremely challenging as these interactions 
are many and intricate, particularly as climate change is altering fire regimes and as the human footprint on land-
scapes continues to grow. The Editors are grateful to all of the authors who have advanced the rapidly expanding 
field of wildfire science through the research they contributed to this Special Collection. We hope that these 
articles motivate more research and investments into fire science and technology in view of the growing exposure 
to wildfires and projected future climatic change.

Data Availability Statement
Data were not used, nor created for this research.
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