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Abstract
Many nations administer national forest inventory programs for unbiased estimation of forest attributes over broad spatial

and temporal extents. However, management and conservation decisions often demand reliable estimates for finer spatiotem-
poral domains. In the western US, wildfire activity is expanding and postfire regeneration must contend with a warmer, drier
climate. We evaluate the potential of K nearest neighbor (KNN) strategies for estimation of stocking across postfire measure-
ments of Forest Inventory & Analysis plots in 11 western US states, and subsequently for model-assisted (MA) estimation of
stocking over domains defined by aggregations of burned areas within individual states and 4-year periods. In particular, we de-
velop and evaluate a form of constrained KNN that allows for unbiased MA domain estimation under simple random sampling
by drawing only on measurements external to a domain of interest. KNN strategies based on geographically, radiometrically,
and climatically proximate measurements are found to provide more accurate estimates of stocking at the plot level than
domain means. Applying the selected external KNN strategy also reduced standard errors of MA domain estimates by 16% over
direct domain estimators, but bias correction introduces substantial variability over synthetic estimates. Further applications
of the external constraint imposed on KNN are discussed.
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Introduction
The size, frequency, and severity of wildfires in the west-

ern United States increased dramatically in recent decades
under a warmer, drier climate (Parks and Abatzoglou 2020),
with many western forests burning more now than at any
other point in the past millennium (Higuera et al. 2021). Cli-
mate and other factors limiting seedling recruitment increas-
ingly lead to postfire regeneration failures and conversion of
previously forested areas to non-forest cover types (Stevens-
Rumann et al. 2017; Young et al. 2019), fueling broad concern
for the future of western forests. While a growing body of
literature documents changing fire regimes and assesses the
biophysical mechanisms governing postfire regeneration, a
need persists for precise, high-resolution estimates of post-
fire forest density in the western US.

Many nations maintain national forest inventory (NFI) pro-
grams that facilitate inference on forest traits over broad
spatial and temporal extents, yet precise estimates for spa-
tiotemporal subsets of forest populations, or domains, are
of increasing interest throughout the world. The US Forest
Service (USFS) Forest Inventory & Analysis (FIA) program ad-
ministers an NFI comprised of a ground plot network that
permits design-based inference on postfire forest conditions

(Bechtold and Patterson 2005). This NFI’s coverage in time
and space, however, is too coarse to deliver precise estimates
of postfire forest attributes in burned area domains of man-
agement interest using traditional estimation techniques
(Gaines and Affleck 2021). Small area estimation (SAE) tech-
niques, documented in detail by Rao and Molina (2015), of-
fer a possible solution. SAE techniques borrow extra-domain
sample information to increase effective sample sizes for do-
mains requiring more precise estimates. Such domains are
commonly referred to as “small areas” though they may ac-
tually extend over large spatiotemporal extents.

Multiple approaches to SAE have been developed for forest
inventory and monitoring applications. Gaines and Affleck
(2021) borrowed extra-domain sample data in time and space
for indirect domain estimation. However, most techniques
also leverage statistical relationships between ground obser-
vations of vegetation traits and auxiliary variables. Some re-
late ground observations of target forest attributes to auxil-
iary data at the observational unit (e.g., field plot) level (e.g.,
Breidenbach and Astrup 2012), while others exploit relation-
ships aggregated to the area (i.e., domain) level (e.g., Coulston
et al. 2021). Some specify a functional association between re-
sponse and explanatory variables via regression-based tech-

Can. J. For. Res. 00: 1–15 (2023) | dx.doi.org/10.1139/cjfr-2023-0007 1

https://orcid.org/0000-0002-4341-6802
mailto:george.gaines@usda.gov
http://dx.doi.org/10.1139/cjfr-2023-0007


Canadian Science Publishing

2 Can. J. For. Res. 00: 1–15 (2023) | dx.doi.org/10.1139/cjfr-2023-0007

niques (e.g. Hill et al. 2018). Others specify an explanatory
variable space from which to draw observations via K near-
est neighbors (KNN) techniques (e.g. Bell et al. 2022). Haakana
et al. (2020) explore poststratified estimation techniques in
an SAE context. Across these studies, inference on population
parameters proceed from design-based (e.g. Breidenbach and
Astrup 2012; Baffetta et al. 2009), model-based (Ver Planck
et al. 2018; Coulston et al. 2021), and hybrid (Magnussen et al.
2014) inferential paradigms.

Hill et al. (2018) compared regression estimators in a
design-based framework, while Breidenbach and Astrup
(2012) compared regression estimators in both design- and
model-based frameworks. In both cases, regression estima-
tors increased the precision of domain estimates relative to
simple or weighted sample means by wide margins. Coulston
et al. (2021) compared a poststratified domain estimator em-
ployed in a design-based inferential framework with empiri-
cal best linear unbiased predictor (EBLUP) estimators based
on area-level models, relating forest removal estimates to
sawmill survey and Landsat-based tree cover loss data.

Baffetta et al. (2009) compared direct expansion domain
estimators with model-assisted (MA) domain estimators em-
ploying linear or KNN models of timber volume. The mod-
els were specified at the unit level and drew on spectral data
from satellite images as auxiliary data. The MA estimators
consisted of domain sums of pixel-level estimates (i.e., syn-
thetic estimators) plus sample-based bias correction terms.
Estimators of this form will be more precise than domain
sample means provided that variability in the differences
between observed and estimated values is smaller than the
variability in the observed values themselves (Breidt and Op-
somer 2017). In other words, such estimators increase preci-
sion of domain estimates (or, indeed, of population-level esti-
mates) if the unit-level estimation approach closely approxi-
mates the actual values of the attribute of interest so that the
bias correction component is small. Asymptotically, these es-
timators are unbiased and amenable to variance approxima-
tion (Särndal et al. 2003, ch. 6; Breidt and Opsomer 2017).
McRoberts et al. (2022) trace the nomenclature and differen-
tiate among alternative forms of MA estimators; McConville
et al. (2020) provide an overview of MA estimation in the con-
text of forest inventory.

Assessing the accuracy of small area estimators can be
complex. Direct domain estimators, which only use domain
sample observations, are generally unbiased but often un-
stable. Indirect estimators that borrow extra-domain sample
data to increase precision incur bias. For design-based infer-
ence, estimators of the bias and mean squared error (MSE)
of indirect domain estimators must draw on the estimated
variance of the direct domain estimator (see González and
Waksberg 1973; Marker 1995; Rao and Molina 2015). This
estimated variance is, in turn, dependent on the domain
sample——the often insufficient size of which leads to high in-
stability. Gaines and Affleck (2021) implemented new and ex-
isting estimators of the design-MSE of indirect domain esti-
mators of postfire tree regeneration in the western US, but
found these to be unreliable (highly variable and frequently
negative). They concluded that only the variance of their indi-
rect estimators could be feasibly estimated, yielding incom-

plete accuracy assessments of inherently biased estimators.
This, in turn, motivated the development of unbiased domain
estimators.

McRoberts (2012) evaluated alternative KNN-based ap-
proaches to SAE of tree stem volume in a model-based in-
ferential framework. Under a model-based approach to small
area inference, domain differences are described with an ex-
plicit probabilistic model, and estimators are considered un-
biased if model diagnostics suggest the model to be correctly
specified. This not only highlights a need for approaches to
model validation (see, e.g., McRoberts 2012), but also provides
a means of derivation of model-based MSE estimators.

An advantage of the design-based inferential framework is
the potential to pursue inherently design-unbiased or approx-
imately design-unbiased MA small area estimators, preclud-
ing the need for bias estimation. Accuracy assessments are
then permitted to focus entirely on well-documented vari-
ance estimation techniques (e.g., Särndal et al. 2003; Baffetta
et al. 2009; Breidenbach and Astrup 2012; Hill et al. 2018).

Mandallaz et al. (2013) developed domain regression es-
timators with partially exhaustive auxiliary data. They in-
cluded an additional small area indicator variable in their
small area estimator to ensure a zero-mean residual prop-
erty, which simplified variance estimation. Pertinently to this
work, they describe a condition of externality, i.e. that the re-
gression coefficients used to obtain unit-level estimates for a
given domain were not estimated using the inventory data
from that domain (and instead, perhaps, using data from
a previous inventory). They further apply this condition to
derive tractable forms for the small area regression estima-
tor and its variance estimator. They cite empirical evidence
(Mandallaz 2012) that this condition can be relaxed for large
samples and thus fit their regression coefficients using obser-
vations from within and beyond the domain of interest.

When synthetic estimators draw on KNN rather than re-
gression strategies, it is unclear whether the size of the com-
plete sample will have a bearing on the dependence of unit-
level estimates on observations from within the same do-
main. However, externality can be achieved by formulating
synthetic domain estimates using only data from outside the
domain of interest. We apply this idea to develop a novel
KNN-based domain estimator. It can be viewed as a domain-
level difference estimator (Särndal et al. 2003, p. 221) con-
structed from proxy values for the attribute of interest that
draw only on sample observations in other domains. We show
this estimator to be unbiased under simple random sampling
(SRS), given a nonzero domain sample size and the availabil-
ity of extra-domain data. The desirability of design-unbiased
estimators is especially high for official governmental statis-
tical programs driven by probabilistic sample data, including
many NFI programs.

One objective of this research was to determine the ac-
curacy with which postfire stocking in forested plots across
the western US could be estimated using KNN methods with
mapped topographic, climatic, and radiometric data prod-
ucts. The second objective was to evaluate whether precise
MA estimators of stocking proportions for spatiotemporal do-
mains within the western US could be developed using KNN-
based assisting models. Of particular interest was whether
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Fig. 1. Study area spanning the contiguous western USA (US
Census Bureau 2023). Areas identified as burned by MTBS be-
tween 1984 and 2018 (MTBS 2023) are shown in red where
they overlap USFS NFS lands and in orange on all other own-
erships; unburned NFS lands (USFS 2023) are shown in gray.

domain estimators drawing only on extra-domain data for
KNN estimation could be used without appreciable loss of
precision. The spatiotemporal scope of the study, KNN esti-
mation strategies, and domain estimators are described be-
low. Results concerning the application of these estimators
to burned area domains are then discussed, along with their
advantages and limitations relative to synthetic and model-
based estimators.

Methodology

Application scope
Our focus is on forested areas within the 11 contiguous

western US states (Fig. 1) that burned within the period 2001–
2018. This is a diverse landscape largely dominated by conif-
erous species but comprising subalpine forests along coastal
and interior cordillera, as well as temperate rainforests and
dry, woodland ecosystems (Perry et al. 2022). Forests are main-
tained under diverse ownerships across this region but, as de-
scribed further below, the National Forest System (NFS; Fig. 1)
lands managed by the USFS define the domains of interest
in this study given the imperative to maintain forest cover
across these areas. Both wildfire and managed fire are im-
portant disturbance agents and forest management tools in
this region, although the extent, frequency, and severity of
fire has varied over time and across the landscape. Historic
fire perimeters (see Fig. 1) were obtained from the Monitor-
ing Trends in Burn Severity (MTBS; Eidenshink et al. 2007)
program, which maps all fires greater than 404 ha occurring
across western states dating back to 1984.

The USFS FIA program provides repeat field measures of
vegetation condition across all lands in the western US states.
Since 2001, this program has been implemented as an un-
aligned equal-probability sample. Plots are located at random
across a hexagonal tessellation with a density of approxi-
mately 1 location per 2400 ha, but hexagonal cells (and thus
plots) are divided into 10 interpenetrating panels remeasured
on decadal intervals (Bechtold and Patterson 2005). This an-
nualized FIA program was implemented first in Arizona, Cal-
ifornia, and Oregon, but by 2011 was active in all 11 west-
ern states (albeit with interruptions in some years; see Burrill
et al. 2021, Appendix J). On an FIA plot, trees above 12.7 cm
diameter at breast height (dbh; 1.37 m) are tallied within
four spatially disjoint subplots (7.32 m radius), each of which
contains one 2.07 m radius microplot that is searched for
saplings and seedlings below 12.7 cm dbh (Bechtold and Pat-
terson 2005). Plots are located on all lands, but here we focus
on those containing at least one forested condition (Burrill
et al. 2021, p. 2–38). Additionally, we focus on subplot mea-
surements lying within MTBS fire perimeters, taken at least 2
years postfire, and made between the years 2001 and 2018. In
total, this amounted to to 5660 measurements at 4297 unique
FIA non-intensified plot locations (1355 locations were mea-
sured twice; four were measured 3 times).

The attribute of central interest for estimation was post-
fire tree stocking, defined here as a binary variable taking
the value 1 where density exceeded 740 trees ha−1 and 0 oth-
erwise. The threshold of 740 trees ha−1 corresponds to the
presence of at least one seedling per FIA microplot. How-
ever, determination of stocking was made at the plot level
using counts of live trees of all sizes (weighted according to
their appropriate expansion factors) identified on all burned
subplots. Averaging observed stocking over subplots, let yi =
y(wi, ti) represent the stocking for the ith plot measurement,
obtained in year ti at a plot centered at coordinate location
wi. Actual tree density was also considered, but was highly
skewed and very frequently 0, complicating inference on this
scale (see Gaines and Affleck 2021).

True geographic coordinates were provided by the USFS for
burned FIA plots and used to obtain climatic and radiomet-
ric attributes available through Google Earth Engine (Table 1;
Gorelick et al. 2017). Monthly climatic attributes with a spa-
tial resolution of approximately 4.6 km were drawn from the
TerraClimate dataset (Abatzoglou et al. 2018) and averaged
over 1984–2019. Annual means of these attributes used all
monthly data; summer means used June-August data. Vege-
tation cover metrics for each year were obtained at a spa-
tial resolution of 30 m from the Rangeland Analysis Plat-
form (RAP) dataset (Allred et al. 2021). Based on initial anal-
yses of the relationships between FIA plot tree density and
RAP-estimated tree cover, the tree cover variable was square-
root transformed (see Gaines 2022). In each case, burned sub-
plots were intersected with source raster data and extracted
attributes then averaged to the FIA plot level. Plot eastings
and northings were obtained after projecting coordinates to
an equidistant conic basis (standard parallels 33◦N and 45◦N;
datum NAD83).

As detailed below, KNN estimation was evaluated as a tool
to leverage the predictor variables of Table 1 for estimation
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Table 1. Candidate predictor variables, sources, and units.

Predictor Units Definition

EAST m Location easting in equidistant conic projection

NRTH m Location northing in equidistant conic projection

MLAG1 yr Time interval between fire and measurement

TREE2 %
1
2 Percent tree cover (square-root transformed)

FOGR2 % Percent cover of forbs and grasses

SHRB2 % Percent shrub cover

TMXY3 ◦C Mean annual maximum temperature

TMXS3 ◦C Mean summer maximum temperature

AETY3 mm Annual actual evapotranspiration

AETS3 mm Summer actual evapotranspiration

DEFY3 mm Annual water deficit

DEFS3 mm Summer water deficit

1 From MTBS (Eidenshink et al. 2007).
2 From the RAP (Allred et al. 2021).
3 From TerraClimate (Abatzoglou et al. 2018).

Table 2. Characteristics of burned area domains by time period; summaries are for domains with at least one plot
measurement.

Burn period Number of domains

Postfire lag (yr) Area (ha) nd

min max min median max min median max

1984–1987 57 17 31 518 44 551 379 919 1 2.0 16

1988–1991 83 13 27 4317 73 020 197 744 1 2.0 12

1992–1995 80 9 23 9916 65 531 324 020 1 2.0 11

1996–1999 85 5 19 3857 53 407 331 863 1 2.0 10

2000–2003 125 2 15 29 115 172 507 431 524 1 6.0 24

2004–2007 87 2 11 8763 148 643 699 877 1 5.0 33

2008–2011 48 2 7 11 415 64 141 556 363 1 3.5 25

2012–2015 22 2 3 46 131 221 478 705 360 1 6.0 30

All 587 2 31 518 89 095 705 360 1 3.0 33

of mean stocking at a domain level. The domains Dd (d = 1,
2, …) of interest here are spatiotemporal in nature, defined
both by the spatial extent of fires occurring in the western
US states in specific years and by a particular length of time
over which this extent has been allowed to develop with-
out subsequent fire. For specificity, consider first a base do-
main M (2000, 10) corresponding to the 2010 condition of
all NFS lands in Montana that burned in 2000, less any ar-
eas that reburned between 2001 and 2010. Note that this
base domain is defined by two temporal parameters: the
burn year (2000) and the lag-to-assessment-year (10 years).
The domains of interest Dd consist of aggregations of base
domains like M (2000, 10), such as all Montana NFS lands
that burned in the 4-year span 2000–2003 and that expe-
rienced 10 years of regrowth without subsequent fire (e.g.,
{M (2000, 10) ,M (2001, 10) ,M (2002, 10) ,M (2003, 10)}. All
the domains we consider below take such a form and so
can be referenced by a state, a 4-year span of burn years,
and a postfire measurement lag. The domains are confined
to NFS lands and to MTBS-mapped fires. Characteristics of
collections of such domains as grouped by burn period are
summarized in Table 2. We emphasize that all lands con-
stitute the focal population for FIA and that the number
of measurements taken within any subsequently delineated

spatiotemporal domain is a random variable with respect to
the sampling design.

KNN model development
Domain estimation is supported by KNN-estimated stock-

ing surfaces formulated from the attributes summarized in
Table 1. To identify the best subsets of those attributes and
the number of neighbors (K) to draw on, KNN was first imple-
mented at the plot level. Adapting the notation of Baffetta
et al. (2009), a corresponding KNN estimate of tree stocking
ŷi (s) = ŷ (wi, ti, s) for plot measurement i is

ŷi (s) = 1
K

K∑
k=1

yH(i,k,s)(1)

where H(i, k, s) is a random variable returning the label of the
kth-nearest measurement of tree stocking within sample set
s to measurement i. As described further below, the sample
set s may include all available measurements or only mea-
surements from beyond a domain of interest. In the former
case, referred to below as unconstrained KNN, we will de-
note estimates as ŷi (sa ), indicating that all measurements in
dataset——including any internal to the domain in which yi
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was observed——were considered as potential neighbors. In the
latter case, subsequently referred to as external KNN, we will
denote estimates as ŷi (s−d ) to reinforce that only measure-
ments external to the domain d of the focal location were
considered as potential neighbors.

Proximity for the purposes of KNN estimation was defined
over spaces spanned by subsets of the predictors given in
Table 1. With xi = x(wi, ti) being the vector of selected pre-
dictor values for plot measurement i, the squared distance to
measurement j was defined as

dx (i, j) = (
xi − x j

)T
�−1

sa

(
xi − x j

)
(2)

where �sa is a diagonal matrix containing the variances of
the x-attributes as obtained over the complete sample of FIA
measurements sa.

The KNN estimator (1) is a simple average of KNNs. The
value for K, as well as the number and identities of predic-
tors, were selected using a cross-validation approach. Specif-
ically, the set of measurements sa was randomly divided into
10 folds and KNN estimates produced for each plot measure-
ment using only data from the other 9 folds (necessarily pre-
cluding a measurement from being one of its own neighbors).
This was carried out for all combinations of predictors (from
p = 1 predictor to p = 12 predictors) and for values of K rang-
ing from 1 to 50. It was also carried out separately for uncon-
strained and external KNN, with the latter implemented such
that only measurements from beyond the domain of the fo-
cal measurement (s-d) were allowed as candidate neighbors.
More specifically, in this case proximity was assessed only
for measurements outside of the domain of the focal mea-
surement and outside of the cross-validation fold of the focal
measurement; measurements within the same fold or within
the same domain as the focal measurement (or even within
the spatial extent of that domain) were assigned arbitrarily
large distances.

An overall MSE was obtained for each predictor combina-
tion and value of K, as well as a corresponding standard error
(SE) from the variation across folds. MSE was calculated only
using observations within domains, i.e.,

MSE =
∑

d

∑
i∈sd

[yi − ŷi (s)]2∑
dnd

(3)

where sd is the subset of measurements falling within domain
Dd and nd is the size of that subsample. MSE was restricted
to domain data even though measurements not belonging to
any domains (i.e., falling within burned areas off of NFS lands)
were considered as potential neighbors. The strategy (predic-
tor combination and value for K) with the lowest MSE was
then identified, as well as the simplest strategy (fewest pre-
dictors and lowest value of K) with MSE lying within one SE of
the lowest MSE. The latter was selected as the KNN strategy
for domain estimation.

The selected KNN strategy yielded stocking estimates in the
unit interval. Rounding these allowed for estimation of clas-
sification (stocked vs. non-stocked) accuracies, both overall
and by condition. Again, only observations within domains

contributed to accuracy estimates:

CA =
∑

d

∑
i∈sd

C (yi, ŷi (s))∑
dnd

(4)

where C (yi, ŷi (s)) is an indicator variable taking the value 1 if
the rounded value of ŷi (s) equals yi and 0 otherwise.

Domain estimation
Mean stocking of a domain is defined as

μy,d = 1
Ad

∫
Dd

y (w, td ) dw(5)

where Ad is the area of Dd and y(w, td) is stocking at location
w in the postfire assessment year td associated with that loca-
tion in Dd. Since stocking requires an explicit spatial support,
we take the continuous variable y(w, td) to have the same sup-
port as an FIA plot. That is, an FIA plot centered at w will yield
an observation of y(w, td) whether w is in the interior or near
the edge of a burned area domain.

While the number of FIA plots distributed across the west-
ern US is large, the number of plots lying within any area
burned in a particular interval and measured at a specific
time-since-fire is generally small. This follows from the fact
that the nominal spatiotemporal frequency of the FIA net-
work is approximately one plot measurement per 24000
ha·yr, which we assume uniform across the western states. As
a result, direct estimates (sensu Rao and Molina 2015) of do-
main means that rely only on measurements taken over the
domain spatial extent and at the appropriate time-since-fire
(i.e., the domain sample sd) are expected to be insufficiently
precise. That is, for an equal-intensity design like FIA, the di-
rect estimator of the Hájek form

ȳd = 1
nd

∑
i∈sd

yi(6)

will have high variance owing to small and variable do-
main sample sizes (nd). Provided nd > 0, it will be unbiased
under SRS (Särndal et al. 2003, p. 396) but only approxi-
mately unbiased for other equal intensity designs (like the
FIA design) and then only where the expected value of nd

is large. Thus, we turn to MA estimators that use data from
beyond the domain of interest to support inferences about
the μy, d. To do so, define the synthetic domain estimator
as

μỹ,d (s) = 1
Ad

∫
Dd

ỹ (w, td, s) dw(7)

where ỹ (w, td, s) is a KNN-estimated surface spanning Dd. This
surface is estimated in accordance with eqs. 1 and 2, using
the selected K and predictor vector. Though continuous, in
practice this surface is pixel-wise constant since all predic-
tor variables share the same value within a given pixel. As a
mean of KNN estimates spanning Dd, μỹ,d (s) is a function of
the plot-level values of stocking, including some potentially
lying outside of Dd. As it does not depend in any way on nd, it
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may be quite precise but is generally design-biased. However,
it is possible to estimate its bias from the domain sample sd

as

ēd = 1
nd

∑
i∈sd

ei (s) = 1
nd

∑
i∈sd

[yi − ỹi (s)](8)

where the ei(s) correspond to discrepancies between ob-
served stocking and the synthetic KNN surface, with ỹi (s) =
ỹ (wi, ti, s) obtained by intersecting the footprint of plot i with
this surface.

The bias correction term (8) suggests augmenting the syn-
thetic estimator (7) to obtain

μ̂y,d = μỹ,d (s) + ēd(9)

and below we distinguish between two cases. In the first,
unconstrained KNN is applied using the complete set of FIA
plot measurements (sa). Thus, the selection of plot locations
within the domain determines the point set over which the
bias correction term is calculated and affects the probabilistic
properties of the KNN surface for Dd. In this case, with out-
comes internal to the domain of interest being available for
KNN estimation, we refer to the two-part estimator (9) as an
unconstrained domain-level MA estimator. The second case
obtains where external KNN is applied using only measure-
ments external to the domain of interest (s-d). This provides a
bias correction term where the ỹi (s−d ) are independent of sd,
leading to a form of (9) that we refer to as an external domain
MA estimator. As developed in the Appendix, this external
MA estimation strategy is motivated by its unbiasedness for
μy, d under SRS. We note, however, that like direct estimator
(6) unbiasedness does not necessarily carry over to spatially
structured sampling designs (such as the FIA design) owing
to the randomness of nd.

Variance expressions for MA estimators of the form μ̂y,d

generally rely on approximations, improving for large nd,
that reduce to functions of the expected values of the dis-
crepancies ei (see e.g., Baffetta et al. 2009). However, we show
in the Appendix that under SRS the variance of the external
MA estimator of μ̂y,d can be written as

V
[
μ̂y,d

] = E [V [ēd|nd, s−d]](10)

provided only that nd > 0. That is, the variance of the
external MA estimator is the conditional variance of the
bias correction term, averaged over possible domain sam-
ple sizes (nd) and sample selections external to the do-
main of interest (s-d). This then suggests the simple variance
estimator

V̂
[
μ̂y,d

] = 1
nd (nd − 1)

∑
i∈sd

[ei − ēd]2(11)

with ei = ei(s-d) and ēd = 1
nd

∑
iei. Under SRS, this unbiasedly

estimates the conditional variance of the external MA esti-
mator (see Appendix). The same result does not obtain for
the unconstrained MA estimator owing to dependence of the

ỹi (sa ) on sd. Nonetheless, this variance estimator has been ap-
plied in this context (Baffetta et al. 2009; Bell et al. 2022) and
is used for the unconstrained MA estimator below (with ei =
ei(sa)).

The variance of the direct domain estimator (6) can be writ-
ten as

V [ȳd] = E

[
σ 2

y,d

nd

]
(12)

for nd > 0, where σ 2
y,d is the variance of y within do-

main Dd. Based on eq. 12, the SE of ȳd can be estimated
from

V̂ [ȳd] = 1
nd (nd − 1)

∑
i∈sd

(yi − ȳd )2 = 1
nd

σ̂ 2
y,d

provided nd > 1. Given this form for the estimated vari-
ance of ȳd, we can interpret the efficiency of an alterna-
tive estimator of the domain mean in terms of a propor-
tionate increase or decrease to the domain sample size used
for direct estimation. Specifically, if an alternative estima-
tor has SE equal to b × σ̂y,d√

nd
= σ̂y,d√

b−2 nd
, then its use can be in-

terpreted as equivalent to a b−2 factor increase or decrease
in nd.

Finally, we note that Särndal et al. (2003, p. 224) estab-
lish conditions under which the variance of a difference es-
timator of a population mean will be smaller than that of
an expansion estimator. Under SRS, this results when the
correlation rŷ,y between MA estimates and actual values of y
exceeds half the ratio of their standard deviations——that is,
when rŷ,y > 0.5 σŷ

σy
. Below, we evaluate this inequality using

sample-based estimates of the correlation and standard de-
viations.

Results

Plot-level KNN estimation
Extreme variability was observed in densities of seedlings,

saplings, and mature trees across the 5660 postfire FIA
measurements, but the binary stocking variable used here
averaged 0.49 (or 49%) and varied over a relatively nar-
row range across US states (0.46–0.61). Nevada, where
mean stocking was only 0.12, provided an exception. With
respect to the auxiliary variables of Table 1, key pat-
terns included increasing stocking rates with time-since-
fire (MLAG) and RAP-estimated tree cover (TREE), as well
as decreased stocking with increased mean annual temper-
ature (TMXY; Fig. 2). For geographic reference, measure-
ments with the highest values of TMXY were found in south-
ern New Mexico and Arizona, and in the central valley of
California.

All 12 predictors in Table 1 were made available for KNN
estimation, but lowest MSEs were achieved using only 9 (un-
constrained KNN) or 10 (external KNN; Fig. 3). Furthermore,
MSEs within one cross-validated SE of the minimum could be
achieved using only five (external KNN) or six (unconstrained
KNN) predictors. The left panel of Fig. 3 shows the best com-
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Fig. 2. Conditional density of stocking relative to time-since-fire (MLAG; left); estimated tree cover on square-root scale (TREE;
center); and mean summer maximum temperature (TMXS; right).

Fig. 3. Best predictor sets (left) and corresponding MSE (±1 SE; right) for KNN estimation as a function of the number of
predictors considered; results for unconstrained KNN are shown in green, those for external KNN in blue. In the left panel, the
selected predictors (and p) are identified with white dots; in the right panel, MSEs within one SE of the lowest MSE (dashed
lines) are drawn with filled symbols.

binations of predictors for each KNN strategy and number of
predictors considered. For both KNN strategies, the best sin-
gle predictor variable was TREE and the best combination of
two predictors was TREE and TMXY. However, when consid-
ering only combinations with MSE within one SE of the min-
imum, the geographic coordinates (EAST, NRTH) were con-
sistently among the selected predictor set, as was TREE and
one of the maximum temperature variables (TMXY or TMXS).
Figure 3 does not show the values of K minimizing the MSEs
of the various KNN strategies, but these ranged from 18 to 45
with larger values generally associated with smaller number
of predictors. For both the selected p = 5 external KNN and
p = 6 unconstrained KNN strategies, the smallest value of K
maintaining an MSE within one SE of the minimum was 29.
However, in all cases the best unconstrained KNN strategies
achieved lower MSE than the best external KNN strategies
(Fig. 3 right panel). For reference, the MSE associated with
the use of the simple domain means (6) was 0.280 (±0.003
SE), substantially larger than any of those for KNN.

Figure 4 shows the classification accuracies of the se-
lected KNN strategies and of the direct domain estima-
tors. Classification accuracies of the two KNN strategies
consistently fell within ±2 SEs of one another, but both
were generally much higher than those of the direct do-
main estimators. The exception to this was for measure-
ments falling in the earliest (1984–1987) and most re-
cent (2012–2015) burn periods, which were also associated
with the longest and shortest post-fire measurement lags,
respectively.

Simple linear correlations between stocking and KNN-
estimated stocking were 0.51 and 0.49 for the unconstrained
and external strategies, respectively. At the same time, the
ratios of standard deviations of estimated-to-observed stock-
ing (σ̂ŷ/σ̂y) were approximately 0.5 in both cases. Thus, r̂y,̂y �
0.5σ̂ŷ/σ̂y for both unconstrained and external KNN, suggest-
ing that difference estimation based on KNN-derived surfaces
would yield improved estimates of stocking at the population
level.
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Fig. 4. Classification accuracies (±2 SEs) of selected KNN strategies across US states (left) and burn periods (right). Results for
unconstrained KNN are shown in green, for external KNN in blue, and for direct estimation in orange.

Domain-level estimation
Despite differences in MSEs and predictor variables, uncon-

strained and external MA estimates of domain means were
highly correlated (Pearson correlation 0.96), as were their es-
timated SEs (correlation 0.93). As such, below we focus pri-
marily on external MA domain estimates. These were linearly
related to the direct domain estimates (Fig. 5; correlation
0.90), with greatest differentiation at the extremes (ȳd = 0 or
1). The latter resulted when domain plot measurements were
all 0 or all 1, and occurred primarily when domain sample
sizes were small (nd = 1 or 2). In such instances, the external
MA estimator frequently resulted in domain estimates out-
side the unit interval.

The distribution of bias correction terms (8) for the exter-
nal MA domain estimators are shown in Fig. 6. These bias
correction terms are highly variable for small domain sample
sizes (esp. for nd ≤ 5). However, as nd increases beyond approx-
imately 10 measurements, the distribution shows diminish-
ing variability around a value close to 0. This suggests that
the external KNN synthetic estimator is approximately unbi-
ased at the domain level, despite drawing on K = 29 neighbors
across the five-predictor design space. Examining these bias
correction terms for domains within states (not shown), the
distributions were again approximately symmetric around 0.
The exception was for burned-area domains in UT, where the
distribution was shifted to positive values, indicating that the
selected KNN strategy underestimated stocking in these do-
mains. These results were also observed for MA domain esti-
mators based on unconstrained KNN (not shown).

Estimated SEs of the MA and direct domain estimates
are plotted in Fig. 7. Differences were slight for domains
with samples sizes larger than approximately 20, but are
more apparent for more sparsely sampled domains. Fitting
a weighted (by nd) linear regression yielded a slope of 0.84
(SE 0.023), indicating the estimated SEs of the external MA

estimator were on average 16% smaller than those of the di-
rect estimates. Alternatively, this apparent increase in preci-
sion of the external MA estimates over the direct estimates
is equivalent to a 42% (i.e., b−2 = 0.84−2 = 1.42) increase in
domain sample size.

A subset of domain-level estimates are shown in Fig. 8.
Specifically, this figure shows estimates of mean stocking 3–
15 years after fire on NFS lands that burned between 2000
and 2003 in MT. Direct estimates vary considerably year-over-
year, owing in part to the fact that measurements from dis-
tinct locations are used. That is, the 17 sample locations used
to estimate stocking 12 years postfire are distinct from the
17 locations used to estimate stocking 13 years postfire. The
synthetic estimator based on external KNN is much smoother
and suggests increased stocking over time. The external MA
domain estimates build on the smooth synthetic estimates
but take on additional variability owing to the bias correc-
tion terms. The ±2 SE intervals drawn around the domain
estimates generally widen as sample size decreases. Intervals
for the external MA estimates are not uniformly narrower
than for the direct estimates, but are narrower on average
and more so for smaller nd.

Discussion
Across the FIA measurement data, KNN yielded favorable

estimation results from intuitively defined neighborhoods.
Both the unconstrained and external KNN strategies achieved
MSEs that were appreciably lower than using direct domain
estimates, and classification accuracies that were appreciably
higher (Fig. 4). The neighborhood dimensions also spanned a
rational basis for estimation (Fig. 3 left), defining nearest mea-
surements to be close geographically (EAST, NRTH), radiomet-
rically (TREE, and FOGR or SHRB), and climatically (TMXY or
TMXS, and/or AETY). Put differently, a geographically proxi-
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Fig. 5. Model assisted (MA) versus direct estimates of domain means with symbol scales according to domain sample size; MA
estimates are based on the selected external KNN strategy.

mate measurement may not rank highly as a neighbor if it
has a very different inferred tree cover (e.g., perhaps due to a
different time-since-fire) or a very different climatic regime
(e.g., owing to complex terrain). These outcomes notwith-
standing, no claim is made that these are the best combina-
tions of predictors for estimating postfire stocking. Indeed,
our use and selection of geographic position variables is per-
haps an indication of the importance of spatially varying pro-
cesses that could be described by other attributes. In particu-
lar, the harmonic predictors derived from Landsat time series
and used by Bell et al. (2022) could be useful in this postdis-
turbance context. However, the determination of a best set
of predictors was not a central focus of this study, and our
methods could readily be extended to other predictor sets.

With the number of potential predictors limited to 12
(Table 1), a full search over the space of predictor combina-
tions and a wide range of K was feasible. McRoberts (2012)
emphasized the importance of predictor variable selection
in KNN, owing in part to the fact that MSE can increase
as the number of predictors (and the dimensionality of the
neighborhood) increases. This was observed in our analyses
(Fig. 3 right), where cross-validated MSEs were lowest when
the numbers of predictors were 9 or 10 (depending on the
KNN strategy). Using cross-validation, our selected predictors
sets were reduced further down to five or six (Fig. 3 left).
This process also resulted in selection of K = 29 neighbors for
both KNN strategies. Such a large value for K can be expected
to yield precise but biased estimates: precise owing to the

large number of neighbors being averaged over and biased
owing to the larger distances/conditions from which neigh-
bors are drawn (Hastie et al., 2009, §13.3). Using a canonical
correlation-based distance metric, Bell et al. (2022) arrived at
a value of K of similar magnitude (K = 28), though their ap-
plication involved estimation of aggregate tree biomass by
species. Given our focus on a single forest attribute, we did
not consider using canonical correlation for neighborhood
determination. Also, for computational reasons, we opted for
a variance-weighted Euclidean distance function (2) (similar
to a Mahalanobis distance but with diagonal variance matrix)
and a simple unweighted average of the KNNs. McRoberts
(2012) reviews and evaluates other KNN distance functions
and neighbor-weighting strategies.

Modifying the KNN procedure to draw only from an ex-
ternal sample proved computationally (and algorithmically)
simple. The idea is similar to cross-validation in that data
from each domain of interest are withheld and an assist-
ing model (KNN-based) is then developed from the remain-
ing data. Unlike cross-validation, however, there is no sub-
sequent aggregation of results across withheld partitions be-
cause each domain is an entity of interest.

The external KNN procedure resulted in neighborhoods of
reduced dimension and slightly increased MSE (Fig. 3). The
latter was not surprising given that observations from within
the same domain as a focal measurement can generally be ex-
pected to have experienced the most similar disturbance con-
ditions (and pre- and postdisturbance conditions). However,
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Fig. 6. Bias correction terms (8) used in the external KNN MA estimator versus domain sample size.

with typically small domain samples from which to draw
(Table 2), the unconstrained KNN strategy was nearly always
forced to draw on data from beyond the domain of the focal
measurement. Thus, the impacts of the neighborhood con-
straint on the nature and performance of the KNN strategies
was relatively small (Fig. 4).

In this study, domains were tessellated with approxi-
mately 30 m × 30 m pixels, derived from projection of the
RAP rasters (themselves based on Landsat sensor resolution;
Allred et al. 2021). In contrast, an FIA plot is a dispersed clus-
ter of four circular subplots (each with nested microplots)
covering a combined area of 673 m2. For KNN model develop-
ment and subsequently for KNN surface bias estimation, we
assigned values to plot measurements through spatial over-
lays of burned subplots and weighted averages of intersected
pixel values. Other studies have approached the problem dif-
ferently. For example, McRoberts (2012) and Bell et al. (2022)
used only central FIA subplot observations and indexed these
against spatial layers using only that subplot’s coordinate
location. Yet short of squaring plot dimensions with pixel
dimensions——infeasible in practice——there is no clear method
of reconciling differences in spatial scales. A consequence of
this is that we cannot conclude that the KNN strategy (predic-
tor set and K) selected at the plot-scale exhibits similar perfor-
mance when applied in domain estimation. However, at the
domain estimation stage we use KNN only for synthetic esti-

mation, and differences in scale do not impact our ability to
evaluate the performance of external MA domain estimates
via the bias correction term (8).

The spatial and temporal structure of the FIA design also af-
fects the properties of our domain estimators. In particular,
owing to the spatial dispersion of plot locations across hexag-
onal cells and to the temporal dispersion of measurements
over interpenetrating panels (Bechtold and Patterson 2005),
the joint inclusion density (sensu Cordy 1993) of any two
points on the landscape is not strictly positive. Ignoring this
and applying variance estimators derived for SRS likely leads
to variance overestimation (Gregoire and Valentine 2007, p.
55) even as the dispersion could be quite advantageous from a
variance reduction standpoint——it precludes measurement of
spatiotemporally proximate locations where the resources of
interest are likely more similar (see Stevens 1997). The same
design structures also barred us from generalizing the unbi-
asedness of our external MA estimator. Specifically, our ap-
proach of conditioning on the observed domain sample size
breaks down with the FIA design because juxtaposition of
hexagonal cells and domain boundaries can then be infor-
mative with regards to conditional sampling intensity (see
Appendix). Simulated sampling can be used to evaluating
the magnitude of bias (if any) in our external MA estima-
tor when applied in a stratified design like that used by the
FIA and is the subject of an ongoing research. We further
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Fig. 7. Estimated SEs of the direct and external KNN MA domain estimates with symbols scaled according to domain sample
size; trend (black line) is the nd-weighted linear regression. Only shown are results for domains with nd > 1.

conjecture that modifying the bias correction term (8) to a
Horvitz–Thompson form (i.e., A−1

d

∑
i

ei (s−d )
πi

with π i being the
inclusion density) would yield an unbiased estimator. As dis-
cussed by Särndal et al. (2003, pp. 391–393), however, this
can be expected to increase estimator variance and thus we
did not pursue the approach here. Finally, the FIA design ele-
ments also impacted how we implemented our external KNN
approach. Specifically, the external sample s-d was made up
of measurements from outside the spatial footprint of the
domain of interest d and did not include measurements ly-
ing within that footprint but obtained outside the temporal
scope of the domain. For example, a 2005 measurement lying
within an area burned in 2000 could not contribute to a direct
estimate of 2010 stocking, but neither was it allowed to be a
neighbor for external KNN estimation of 2010 stocking. This
was done because the inclusion of such a measurement in
the sample——n for an off-year——is informative about the con-
ditional inclusion density of measurements in the year of in-
terest.

Aggregating KNN estimates to the domain level, the un-
constrained and external MA estimates were very similar.
As noted above, this is likely attributable to the fact that
both KNN strategies drew heavily on extra-domain measure-
ments (K = 29 neighbors while the median domain sample

size was only 3; Table 2). Estimated SEs were slightly smaller
for the unconstrained MA estimator, though it also carried a
design bias. That bias is likely small but is difficult to estimate
(Gaines and Affleck 2021). Indeed, that difficulty is what mo-
tivated the development and evaluation of the external KNN
approach. Under SRS and if nd > 0, it provides unbiased esti-
mates of domain means and a variance estimator that does
not rely on linear approximation (see Appendix).

External MA estimates were similar also to the direct esti-
mates for many of the domains studied here. The exception
was where the domain sample size dropped (toward 1), the
direct estimate took a value of 0 or 1, and the observed vari-
ability in stocking collapsed to 0 (Fig. 5). Where that occurred,
the external MA estimator sometimes departed substantially
from the direct estimate and could take values less than 0
or greater than 1. The latter is not a result of the external
KNN strategy——it occurred also with the unconstrained KNN
domain estimates and, in general, will be possible for any MA
estimator employing an additive bias correction term (9).

The external MA estimator did yield apparent reductions in
SEs of 16% over direct estimates (Fig. 7). As noted, this can be
interpreted as equivalent to a 42% increase in nd. Nonetheless,
as illustrated in Fig. 8, substantial uncertainty remains. This
is in part owing to high variability in the bias correction el-
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Fig. 8. Estimated stocking in domains defined by different
postfire assessment lags over NFS lands that burned between
2000 and 2003 in MT. Synthetic estimates from external KNN
estimates shown in gray, MA estimates in blue, and direct
estimates in gold. Intervals span ±2 SE; domain sample sizes
(nd) are printed above the x-axis.

ement for small nd, particularly nd < 10 (Fig. 6). As suggested
by Bell et al. (2022), it may be beneficial to rely entirely on
synthetic estimation where nd falls below a certain threshold.
Doing so incurs a design bias of a magnitude difficult to esti-
mate, but which is likely smaller than the gains in precision
obtained by dropping ēd. In fact, that the mean bias correc-
tion tends to 0 as nd increases (Fig. 6) suggests that the bias of
the external KNN synthetic estimator is low. Of course, rely-
ing entirely on synthetic estimation is also necessary where
nd = 0. Bell et al. (2022) and McRoberts (2012) describe a
model-based inferential approach for KNN domain estima-
tion and evaluate methods for estimating (model-based) vari-
ance. The latter can be computationally demanding but likely
feasible for domains of the size considered here (Table 2).

For design-based inference, the KNN synthetic estimator
contributes to the uncertainty of the external MA estima-
tor (9) in a quite different way. The synthetic estimator effec-
tively establishes a new baseline (departing from ȳd) around
which variability is reckoned. Here, as in difference estima-
tion, we have conditioned on the synthetic estimation surface
and focused entirely on the within-domain dispersion around
it (cf. eqs. (10) and (11)). The cross-validation techniques for
MA variance estimation discussed by McConville et al. (2020)
could potentially capture variation induced by the inherent
randomness of s-d. However, with the external MA domain
estimator it is reasonable to condition on the synthetic esti-
mator because the factors affecting its variation are largely
distinct from (external to) the design-induced sampling vari-
ability within the domain of interest.

Finally, the external KNN approach developed here can be
extended to other forms of synthetic estimation. In particu-
lar, it can be applied with regression to provide an external
generalized regression estimator (Gaines 2022). Like the ap-
proach developed by Mandallaz (2013), this would necessitate
estimation of distinct regression coefficients for each domain
of interest. However, it would depart from their strategy by
excluding the data from the domain of interest (thus ensur-
ing externality) rather than by allowing for domain-specific
coefficients. Also, while Baffetta et al. (2009) adopt the term
"empirical difference estimator" for what is equivalent to our
unconstrained MA estimator, we would argue that this term
is better applied to the external MA estimator. This is be-
cause it is only in the latter case that the proxy function
is derived from sources outside the domain of interest. Of
course, when considering simultaneous inference for multi-
ple domains there may be a need to account for cross-domain
dependence in synthetic estimation surfaces. However, this
is not central to our interest as the method was developed
primarily for unbiased estimation of stocking within specific
(and possibly singular) domains. Whereas many model-based
approaches to SAE require a collection of domains to be de-
fined in order to estimate the mean of any single domain,
the approaches studied here are applicable where there ex-
ists only a single domain of interest, provided a sample of
larger scope exists.

Acknowledgements
This research was supported by funding from the USDA For-
est Service (20-JV-11221636-110; 22-JV-11221638-186) and the
Inland Northwest Growth & Yield Cooperative. It would not
have been possible without a data sharing agreement with
the USDA Forest Service (19-MU-11261979-002). The findings
and conclusions in this publication are those of the author(s)
and should not be construed to represent any official US De-
partment of Agriculture or US Government determination or
policy.

Article information

History dates
Received: 13 January 2023
Accepted: 31 May 2023
Version of record online: 30 June 2023

Copyright
© 2023 This material was prepared in part by a federal govern-
ment employee as part of their official duties and therefore
is in the public domain and can be reproduced at will. Inclu-
sion in a private publication that is itself copyrighted does
not nullify the public domain designation of this material.

Data availability
MTBS wildfire perimeter vectors are available for download at
https://mtbs.gov/. FIA tabular data are available for download
at https://apps.fs.usda.gov/f ia/datamart/datamart.html. Con-
tact USFS FIA for information regarding FIA sample location
coordinates.

http://dx.doi.org/10.1139/cjfr-2023-0007
https://mtbs.gov/
https://apps.fs.usda.gov/fia/datamart/datamart.html


Canadian Science Publishing

Can. J. For. Res. 00: 1–15 (2023) | dx.doi.org/10.1139/cjfr-2023-0007 13

Author information

Author ORCIDs
George C. Gaines, III https://orcid.org/0000-0002-4341-6802

Author contributions
Conceptualization: DA, GG
Data curation: DA, GG
Formal analysis: DA, GG
Funding acquisition: DA
Investigation: DA, GG
Methodology: DA, GG
Project administration: DA, GG
Resources: DA
Supervision: DA
Validation: DA, GG
Visualization: DA, GG
Writing – original draft: DA, GG
Writing – review & editing: DA, GG

Competing interests
There are no competing interests that bias or might be seen
to bias this work.

References
Abatzoglou, J.T., Dobrowski, S.Z., Parks, S.A., and Hegewisch, K.C. 2018.

Terraclimate, a high-resolution global dataset of monthly climate and
climatic water balance from 1958–2015. Sci. Data. 5: 170191. doi:10.
1038/sdata.2017.191.

Allred, B.W., Bestelmeyer, B.T., Boyd, C.S., Brown, C., Davies, K.W., Duni-
way, M.C., et al. 2021. Improving Landsat predictions of rangeland
fractional cover with multitask learning and uncertainty. Meth. Ecol.
Evol. 12: 841–849. doi:10.1111/2041-210X.13564.

Baffetta, F., Fattorini, L., Franceschi, S., and Corona, P. 2009. Design-based
approach to k-nearest neighbours technique for coupling field and
remotely sensed data in forest surveys. Remote Sens. Environ. 113:
463–475. doi:10.1016/j.rse.2008.06.014.

Bechtold, W.A., and Patterson, P.L. 2005. The enhanced forest inventory
and analysis program-national sampling design and estimation pro-
cedures. Gen. Tech. Rep. SRS-80, USDA Forest Service, Southern Re-
search Station, Asheville, NC.

Bell, D.M., Wilson, B.T., Werstak, C.E., Jr., Oswalt, C.M., and Perry, C.H.
2022. Examining k-nearest neighbor small area estimation across
scales using national forest inventory data. Front. Forests Glob.
Change 5: 763422. doi:10.3389/ffgc.2022.763422.

Breidenbach, J., and Astrup, R. 2012. Small area estimation of forest at-
tributes in the Norwegian national forest inventory. Eur. J. Forest Res.
131: 1255–1267. doi:10.1007/s10342-012-0596-7.

Breidt, F.J., and Opsomer, J.D. 2017. Model-assisted survey estimation
with modern prediction techniques. Stat. Sci. 32: 190–205. doi:10.
1214/16-STS589.

Burrill, E.A., DiTommaso, A.M., Turner, J.A., Pugh, S.A., Christiansen,
G., Perry, C.J., and Conkling, B.L. 2021. The forest inventory
and analysis database: database description and user guide ver-
sion 9.0 for phase 2. USDA forest service manual. Available
from https://www.fia.fs.usda.gov/library/database-documentation/cu
rrent/ver90/FIADB%20User%20Guide%20P2-_9-0-_final.pdf [accessed
February 2022].

Cordy, C.B., 1993. An extension of the Horvitz-Thompson theorem to
point sampling from a continuous universe. Stat. Prob. Lett. 18: 353–
362. doi:10.1016/0167-7152(93)90028-H.

Coulston, J.W., Green, P.C., Radtke, P.J., Prisley, S.P., Brooks, E.B., Thomas,
V.A., et al. 2021. Enhancing the precision of broad-scale forestland
removals estimates with small area estimation techniques. Forestry:
An Int. J. Forest Res. 94: 427–441. doi:10.1093/forestry/cpaa045.

Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z., Quayle, B., and Howard,
S. 2007. A project for monitoring trends in burn severity. Fire Ecol. 3:
3–21. doi:10.4996/fireecology.0301003.

Gaines, G.C., III, 2022. Small area estimation of postfire tree density in
the western united states using an annualized forest inventory. Ph.D.
dissertation, University of Montana, Missoula, MT.

Gaines, G.C., III, and Affleck, D.L.R., 2021. Small area estima-
tion of postfire tree density using continuous forest inventory
data. Front. Forests Glob. Change 4: 761509. doi:10.3389/ffgc.2021.
761509.

González, M.E., and Waksberg, J. 1973. Estimation of the error of syn-
thetic estimates. Paper presented at First Meeting of the International
Association of Survey Statisticians, Vienna, Austria, 18-25 August,
1973.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and
Moore, R. 2017. Google Earth Engine: planetary-scale geospatial anal-
ysis for everyone. Remote Sen. Environ. 202: 18–27. doi:10.1016/j.rse.
2017.06.031.

Gregoire, T.G., and Valentine, H.T. 2007. Sampling strategies for natural
resources and the environment. Chapman and Hall/CRC, Boca Raton,
FL. doi:10.1201/9780203498880.

Haakana, H., Heikkinen, J., Katila, M., and Kangas, A. 2020. Precision
of exogenous post-stratification in small-area estimation based on a
continuous national forest inventory. Can. J. Forest Res. 50: 359–370.
doi:10.1139/cjfr-2019-0139.

Hastie, T., Tibshirani, R., and Friedman, J. 2009. The elements of statis-
tical learning: Data mining, inference, and prediction. Springer Sci-
ence & Business Media, Berlin.

Higuera, P.E., Shuman, B.N., and Wolf, K.D. 2021. Rocky Mountain
subalpine forests now burning more than any time in recent
millennia. Proc. Natl. Acad. Sci. U. S. A. 118: 1–5. doi:10.1073/pnas.
2103135118.

Hill, A., Mandallaz, D., and Langshausen, J. 2018. A double-sampling ex-
tension of the German national forest inventory for design-based
small area estimation on forest district levels. Remote Sen. 10: 1052.
doi:10.3390/rs10071052.

Magnussen, S., Næsset, E., and Gobakken, T. 2014. An estimator of vari-
ance for two-stage ratio regression estimators. Forest Sci. 60: 663–676.
doi:10.5849/forsci.12-163.

Mandallaz, D. 2012. Design-based properties of small-area estimators in
forest inventory with two-phase sampling. ETH Zurich, Department
of Environmental Systems Science, Technical Report. Available from
e-collection.library.ethz.ch [accessed June 2021].

Mandallaz, D. 2013. Design-based properties of some small-area estima-
tors in forest inventory with two-phase sampling. Can. J. Forest Res.
43: 441–449. doi:10.1139/cjfr-2012-0381.

Mandallaz, D., Breschan, J., and Hill, A. 2013. New regression estimators
in forest inventories with two-phase sampling and partially exhaus-
tive information: a design-based Monte Carlo approach with appli-
cations to small-area estimation. Can. J. Forest Res. 43: 1023–1031.
doi:10.1139/cjfr-2013-0181.

Marker, D.A. 1995. Small area estimation: a Bayesian perspective. Ph.D.
dissertation, University of Michigan, Ann Arbor, MI.

McConville, K.S., Moisen, G.G., and Frescino, T.S. 2020. A tutorial
on model-assisted estimation with application to forest inventory.
Forests, 11: 244. doi:10.3390/f11020244.

McRoberts, R.E. 2012. Estimating forest attribute parameters for small
areas using nearest neighbors techniques. Forest Ecol. Manag. 272:
3–12. doi:10.1016/j.foreco.2011.06.039.

McRoberts, R.E., Næsset, E., Heikkinen, J., Chen, Q., Strimbu, V., Este-
ban, J., et al. 2022. On the model-assisted regression estimators using
remotely sensed auxiliary data. Remote Sen. Environ. 281: 113168.
doi:10.1016/j.rse.2022.113168.

MTBS. 2023. Monitoring Trends in Burn Severity (MTBS) burned areas
boundaries for 1984-2021. MTBS Project, USDA Forest Service and US
Geological Survey. doi:10.5066/P9IED7RZ.

Parks, S.A., and Abatzoglou, J.T. 2020. Warmer and drier fire seasons con-
tribute to increases in area burned at high severity in western US
forests from 1985 to 2017. Geophys. Res. Lett. 47: e2020GL089858.
doi:10.1029/2020GL089858.

Perry, C.H., Finco, M.V., and Wilson, B.T. 2022. Forest Atlas of
the United States. FS-1172. USDA Forest Service, Washington,
DC.

http://dx.doi.org/10.1139/cjfr-2023-0007
https://orcid.org/0000-0002-4341-6802
http://dx.doi.org/10.1038/sdata.2017.191
http://dx.doi.org/10.1111/2041-210X.13564
http://dx.doi.org/10.1016/j.rse.2008.06.014
http://dx.doi.org/10.3389/ffgc.2022.763422
http://dx.doi.org/10.1007/s10342-012-0596-7
http://dx.doi.org/10.1214/16-STS589
https://www.fia.fs.usda.gov/library/database-documentation/current/ver90/FIADB%20User%20Guide%20P2-_9-0-_final.pdf
http://dx.doi.org/10.1016/0167-7152(93)90028-H
http://dx.doi.org/10.1093/forestry/cpaa045
http://dx.doi.org/10.4996/fireecology.0301003
http://dx.doi.org/10.3389/ffgc.2021.761509
http://dx.doi.org/10.1016/j.rse.2017.06.031
http://dx.doi.org/10.1201/9780203498880
http://dx.doi.org/10.1139/cjfr-2019-0139
http://dx.doi.org/10.1073/pnas.2103135118
http://dx.doi.org/10.3390/rs10071052
http://dx.doi.org/10.5849/forsci.12-163
https://www.research-collection.ethz.ch/
http://dx.doi.org/10.1139/cjfr-2012-0381
http://dx.doi.org/10.1139/cjfr-2013-0181
http://dx.doi.org/10.3390/f11020244
http://dx.doi.org/10.1016/j.foreco.2011.06.039
http://dx.doi.org/10.1016/j.rse.2022.113168
http://dx.doi.org/10.5066/P9IED7RZ
http://dx.doi.org/10.1029/2020GL089858


Canadian Science Publishing

14 Can. J. For. Res. 00: 1–15 (2023) | dx.doi.org/10.1139/cjfr-2023-0007

Rao, J.N.K., and Molina, I. 2015. Small area estimation, 2nd ed. Wiley,
New York.

Särndal, C.E., Swensson, B., and Wretman, J. 2003. Model as-
sisted survey sampling. Springer Science & Business Media,
Berlin.

Stevens, D.L., Jr. 1997. Variable density grid-based sampling de-
signs for continuous spatial populations. Environmetrics, 8:
167–195. doi:10.1002/(SICI)1099-095X(199705)8:3〈167::AID-ENV239〉
3.0.CO;2-D.

Stevens-Rumann, C.S., Kemp, K.B., Higuera, P.E., Harvey, B.J., Rother,
M.T., Donato, D.C., et al. 2017. Evidence for declining for-
est resilience to wildfires under climate change. Ecol. Lett. 21:
243–252.

US Census Bureau. 2023. Cartographic boundary files——States. Census
Bureau, US Department of Commerce. Available from https://www2
.census.gov/geo/tiger/GENZ2018/shp/cb_2018_us_state_500k.zip [ac-
cessed January 2023].

USFS. 2023. National Forest System land units. Geospatial Technol-
ogy and Applications Center, USDA Forest Service (USFS). Available
from https://data.fs.usda.gov/geodata/edw/edw_resources/shp/S_USA
.NFSLandUnit.zip/ [accessed January 2023].

Ver Planck, N.R., Finley, A.O., Kershaw, J.A., Jr, Weiskittel, A.R., and Kress,
M.C. 2018. Hierarchical Bayesian models for small area estimation
of forest variables using lidar. Remote Sen. Environ. 204: 287–295.
doi:10.1016/j.rse.2017.10.024.

Young, D.J.N., Werner, C.M., Welch, K.R., Young, T.P., Safford, H.D., and La-
timer, A.M. 2019. Post-fire forest regeneration shows limited climate
tracking and potential for drought-induced type conversion. Ecology,
100: e02571. doi:10.1002/ecy.2571.

Appendix A
Results concerning the mean and variance of the MA do-

main estimator given by (9) can be derived under SRS, but
consider first the wider class of equal probability sampling
designs and the condition nd > 0. The latter is a precondition
for the application of the MA domain estimator (9) under any
form of KNN (or regression) estimation. Under these condi-
tions

E (ēd ) = E [E (ēd | nd )] ,

= E

[
E

(
1
nd

nd∑
i=1

yi | nd

)]
− E

[
E

(
1
nd

nd∑
i=1

ỹi (s) | nd

)]

= E

[
1
nd

nd∑
i=1

E (yi | nd )

]
− E

[
1
nd

nd∑
i=1

E (ỹi (s) | nd )

]
(A1)

Suppressing the temporal dependence of yi and ỹi (s) for ease
of exposition, the first of the inner expectations of (A1) can
be written as

E (yi | nd ) = E (y (wi ) | nd )

=
∫
Dd

y (w) f (w|nd ) dw

(A2)

where f(w|nd) is the conditional probability density func-
tion for location w. In general, f(w|nd) can vary with w.
In particular, under the FIA design the dispersion of sam-
ple points effected by the hexagonal tessellation means
that a realized domain sample size can reduce f(w|nd) to 0
for points in hexagons intersected by the domain bound-

aries. Yet under SRS, f (w|nd ) = f (w) = 1
Ad

and thus (A2)
simplifies to

E (yi | nd ) = 1
Ad

∫
Dd

y (w) dw = μy,d(A3)

The second inner expectation of (A1), E (ỹi (s) | nd ) =
E (ỹ (wi, s) | nd ) is not analytically tractable for s = sa. The rea-
son is that ỹ (wi, sa ) is a random function not only of the
evaluation location wi, but also of all other sample locations
through the nonlinear random function H(i, k, sa) of eq. (1).
However, if s = s-d then

E (ỹ (wi, s−d ) | nd ) = E [E (ỹ (wi, s−d ) | nd, s−d ) | nd]

= E
[∫

Dd

ỹ (w, s−d ) f (w|nd, s−d ) dw | nd

](A4)

In general, f(w|nd, s-d) can again vary with w but under SRS
f (w|nd, s−d ) = f (w) = 1

Ad
such that

E (ỹ (wi, s−d ) | nd ) = E
[

1
Ad

∫
Dd

ỹ (w, s−d ) dw | nd

]
= E

[
μỹ,d (s−d ) | nd

](A5)

Substituting (A3) and (A5) into (A1) allow for the result

E (ēd ) = E

[
1
nd

nd∑
i=1

μy,d

]
− E

[
1
nd

nd∑
i=1

E
[
μỹ,d (s−d ) | nd

]]
= μy,d − E

[
μỹ,d (s−d )

](A6)

As such, under SRS the external KNN MA estimator (9) has
expectation

E
(
μ̂y,d

) = E
[
μỹ,d (s−d ) + ēd

]
= E

[
μỹ,d (s−d )

] + μy,d − E
[
μỹ,d (s−d )

]
= μy,d

(A7)

That is, the external KNN MA domain estimator is design-
unbiased under SRS given nd > 0. Unfortunately, this re-
sult does not generalize to the wider class of equal prob-
ability designs. In particular, it does not carry over to the
FIA design where conditional (on nd) spatial sampling in-
tensities are not necessarily equal across arbitrary domains
owing to the design’s underlying hexagonal spatial struc-
ture. More importantly in the context of this research, re-
sult (A7) does not generalize to the unconstrained KNN ap-
proach that draws on the complete sample (sa). Where KNN
uses the full sample or any subsample that includes elements
of sd, ỹi (s) is a random nonlinear function of the sample lo-
cations (cf. Baffetta et al. 2009) and we cannot solve (A3)
analytically.

Carrying forward the above noted conditions, the vari-
ance of the external KNN MA estimator can be written
as

V
(
μ̂y,d

) = E
[
V

(
μ̂y,d | nd, s−d

)] + V
[
E

(
μ̂y,d | nd, s−d

)]
(A8)
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Focusing on the inner expectation of (A8) and using the above
results (A3) and (A5)

E
(
μ̂y,d | nd, s−d

) = E
(
μỹ,d (s−d ) | nd, s−d

) + E

(
1
nd

nd∑
i=1

yi | nd, s−d

)
− E

(
1
nd

nd∑
i=1

ỹi (s−d ) | nd, s−d

)

= μỹ,d (s−d ) + 1
nd

nd∑
i=1

E (yi | nd ) − 1
nd

nd∑
i=1

E (ỹi (s−d ) | nd, s−d )

= μỹ,d (s−d ) + 1
nd

nd∑
i=1

μy,d − 1
nd

nd∑
i=1

μỹ,d (s−d ) = μy,d

(A9)

Therefore the full variances reduces to

V
(
μ̂y,d

) = E
[
V

(
μỹ,d (s−d ) + ēd | nd, s−d

)] + V
[
μy,d

]
= E [V (ēd | nd, s−d )]

(A10)

That is, the design variance of the external KNN MA domain
estimator is simply the conditional variance of the bias cor-
rection term, averaged over all possible partitions of the pop-

ulation/domain sample (nd and s-d). We can estimate V
(
μ̂y,d

)
as

V̂
(
μ̂y,d

) = 1
nd (nd − 1)

∑
i∈sd

[ei (s−d ) − ēd]2(A11)

though this does not recognize the additional variation in-
duced by variability in nd and s-d, nor that from development
of the KNN model.
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