
1.  Introduction
Based on decades of research, forest cover and streamflow are generally expected to vary inversely 
(Andréassian, 2004; Bosch & Hewlett, 1982; Hibbert, 1967; Troendle, 1983). Such research is based on a combi-
nation of paired watershed experiments (e.g., Brown et al., 2005; Moore et al., 2020), post-hoc analysis of stream-
flow data in unpaired watersheds where streamflow can be modeled as a function of climatic observations (e.g., 
Biederman et al., 2015; Zhao et al., 2010), and simulation modeling that encompasses various levels of complexity 
(e.g., Bennett et al., 2018; Buma & Livneh, 2015; Sun et al., 2018). The mechanism behind the inverse relation-
ship between forest cover and streamflow includes a combination of reduced evaporation of canopy-intercepted 
precipitation, and reduced canopy transpiration following forest cover loss (Adams et al., 2012; Hibbert, 1967; 
Pugh & Gordon, 2012). Conversely, forest recovery or afforestation are assumed to increase total transpiration 
and evaporative losses of canopy-intercepted precipitation, thus leading to decreased runoff (Andréassian, 2004; 
Hibbert, 1967).

Contrary to the hypothesis of an inverse relationship between forest cover and streamflow, observed streamflow 
changes following recent forest disturbances have been variable in magnitude and direction (Boisramé et al., 2017; 
Goeking & Tarboton, 2020; Ren et al., 2021; Slinski et al., 2016). Over the past two decades, widespread but 

Abstract  Forest cover and streamflow are generally expected to vary inversely because reduced forest 
cover typically leads to less transpiration and interception. However, recent studies in the western U.S. 
have found no change or even decreased streamflow following forest disturbance due to drought and insect 
epidemics. We investigated streamflow response to forest cover change using hydrologic, climatic, and forest 
data for 159 watersheds in the western U.S. from the CAMELS data set for the period 2000–2019. Forest 
change and disturbance were quantified in terms of net tree growth (total growth volume minus mortality 
volume) and mean annual mortality rates, respectively, from the U.S. Forest Service's Forest Inventory and 
Analysis database. Annual streamflow was analyzed using multiple methods: Mann-Kendall trend analysis, 
time trend analysis to quantify change not attributable to annual precipitation and temperature, and multiple 
regression to quantify contributions of climate, mortality, and aridity. Many watersheds exhibited decreased 
annual streamflow even as forest cover decreased. Time trend analysis identified decreased streamflow not 
attributable to precipitation and temperature changes in many disturbed watersheds, yet streamflow change was 
not consistently related to disturbance, suggesting drivers other than disturbance, precipitation, and temperature. 
Multiple regression analysis indicated that although change in streamflow is significantly related to tree 
mortality, the direction of this effect depends on aridity. Specifically, forest disturbances in wet, energy-limited 
watersheds (i.e., where annual potential evapotranspiration [PET] is less than annual precipitation) tended 
to increase streamflow, while post-disturbance streamflow more frequently decreased in dry water-limited 
watersheds (where the PET to precipitation ratio exceeds 2.35).

Plain Language Summary  Forest disturbance is typically expected to lead to increased runoff, 
and therefore more water available for aquatic ecosystems and people, because loss of forest vegetation results 
in less water being taken up and transpired by plants. We examined streamflow and forest change in 159 
watersheds in the western U.S. to test this expectation. We found that not all disturbed watersheds experienced 
increased streamflow. Very dry watersheds were more likely to produce less runoff following forest disturbance 
and were also more likely to experience forest disturbance.
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low- to moderate-severity forest disturbance has occurred as a result of drought stress, insect epidemics, and 
disease epidemics, as well as altered wildfire regimes (Adams et al., 2012; Williams et al., 2013), thus providing 
opportunities to identify circumstances leading to decreased post-disturbance streamflow. Most exceptions to the 
inverse relationship between forest cover and streamflow occurred as post-disturbance decreases in streamflow, 
typically at low latitudes and south-facing aspects with high aridity, high incoming solar radiation (SRAD), and/
or where tree canopies were replaced by rapid growth of dense grasses or shrubs (Bennett et al., 2018; Goeking 
& Tarboton, 2020; Guardiola-Claramonte et al., 2011; Morillas et al., 2017; Ren et al., 2021). Even in studies 
that found conforming streamflow increases following disturbance, the magnitude of streamflow increases was 
modulated by aridity (Saksa et al., 2019). Although such findings are anomalous in the larger context of decades 
of forest hydrology research, they highlight alternative hypotheses to the inverse relationship between forest cover 
and streamflow. One such alternative hypothesis is that although streamflow typically increases following forest 
disturbance, post-disturbance conditions that lead to increased evaporation (i.e., increased energy at snowpack 
or soil surface) or increased transpiration (i.e., replacement of sparse trees with dense shrubs) lead to a reduced 
streamflow response.

While numerous studies of runoff response to forest change have focused on site-specific treatments (e.g., harvest, 
planting) or severe disturbance (e.g., stand-replacing wildfire, clearcuts) in one or two small watersheds, fewer 
studies have examined lower severity disturbances across broader geographic areas or across more gradual times-
cales than episodic timber harvesting or wildfire (Andréassian, 2004; Hallema et al., 2017; Wine et al., 2018). 
Response to low to moderate severity forest disturbances (generally defined as <70% tree mortality) may funda-
mentally differ from severe, stand-replacing disturbances due to their different effects on energy balances affect-
ing snowpack and soil moisture as well as different transpiration rates for pre-disturbance vs. post-disturbance 
vegetation (Adams et al., 2012; Pugh & Gordon, 2012; Reed et al., 2018). Recent tree die-off events spanning 
western North America have provided the opportunity to examine streamflow responses to disturbance that is 
less severe but more widespread than the forest changes considered in most previous forest hydrology studies 
(Adams et al., 2012; Hallema et al., 2017). Studies based on both observations (Biederman et al., 2014, 2015; 
Guardiola-Claramonte et al., 2011) and simulations (Bennett et al., 2018; Ren et al., 2021) have found unex-
pected post-disturbance decreases in streamflow. Streamflow response to disturbance at broader scales may not 
reflect hypotheses developed from study of small watersheds that are commonly the focus of paired watershed 
experiments (Andréassian, 2004), which underscores the value of broad-scale evaluation of hypotheses that were 
developed at fine scales.

A challenge in testing such hypotheses is the need to balance breadth with depth, that is, gathering fine-scale 
observations from individual watersheds vs. coarser observations from many watersheds (Gupta et al., 2014). 
Large-sample hydrology can complement fine-scale studies of individual small watersheds by identifying 
broad-scale patterns in streamflow response to forest disturbance. Fine-scale studies have produced useful infor-
mation about the response of streamflow (e.g., Biederman et al., 2015; Guardiola-Claramonte et al., 2011), snow-
pack (e.g., Broxton et al., 2016; Moeser et al., 2020), and individual ecohydrological processes to forest change 
(e.g., Biederman et al., 2014; Reed et al., 2018). In contrast, large-sample hydrology can evaluate hypotheses 
across many watersheds to identify circumstances that conform to or deviate from hypothesized relationships 
(Addor et al., 2019; Gupta et al., 2014; Newman et al., 2015). Another challenge is accounting for the effects of 
climate variability in streamflow assessments, such that the effects of vegetation change on streamflow are not 
confounded with climate effects. To address this challenge, quantitative models of streamflow response to vege-
tation change often include precipitation and temperature as explanatory variables (Zhao et al., 2010).

In this study, we used a large sample of catchments to test hypotheses about the direction of runoff response 
following forest disturbance in semi-arid catchments. Observations consisted of streamflow, vegetation, and 
climate data, which allowed us to account for streamflow changes related to variability in precipitation and 
temperature and thus disentangle climate from vegetation effects. Based on previous studies finding exceptions 
to the inverse relationship between forest cover and streamflow, we developed two alternative hypotheses. First, 
post-disturbance runoff in catchments conforms with the commonly held paradigm that runoff increases with tree 
mortality or reductions in net growth. Second, an alternative hypothesis is that in watersheds with higher aridity 
and incoming SRAD, runoff is more likely to decrease or not change than in watersheds with lower aridity and 
SRAD. A corollary of this hypothesis is that a threshold of aridity index exists above which disturbance results in 
a decrease in runoff. Our results find this threshold to be an aridity index of 2.35.
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2.  Data and Methods
We combined data from the CAMELS large-sample hydrology data set (CAMELS; Addor et al., 2017) and the 
U.S. Forest Service's Forest Inventory and Analysis (FIA) forest monitoring data set (Bechtold & Patterson, 2005) 
to answer four questions (Table 1). The ability of each question's analytical framework to disentangle climatic 
from forest disturbance effects on streamflow successively increases from the first to the fourth question. For 
analyses that do not explicitly permit such disentangling, we interpret the results in the context of factors that 
were not included in the analysis.

2.1.  Data Sources

2.1.1.  Streamflow and Climate Data

Watersheds were selected from the CAMELS data set, which was compiled for watersheds that have little or 
no known land-use change and whose streamflow is relatively unimpacted by storage or diversions (Addor 
et al., 2017). However, watersheds in the CAMELS data set have been subject to disturbance from wildfire and 
other causes of tree mortality that have been quantified by FIA. From the entire CAMELS data set, we first 
constrained our analysis to watersheds in the western U.S. for which we could obtain estimates of forest char-
acteristics from the FIA data set. Then we removed watersheds where runoff ratio was calculated as larger than 
1.0 (runoff greater than precipitation) in any 1 yr, which indicates an impossible water budget and where data 
is presumed to be in error. Precipitation and streamflow data within the CAMELS data set were derived from 
Daymet climate data and USGS streamflow gages, respectively (Addor et  al., 2017), and these separate data 
sources do not impose constraints of water budget closure. While we recognize that some catchments may have 
runoff ratios greater than 1.0, for example, in volcanic or karst landscapes, and that runoff ratios near but less 
than 1.0 may be similarly implausible, we had no means of quantifying realistically vs. unrealistically high runoff 
ratios. These constraints yielded 159 watersheds, out of 211 candidate watersheds as 52 (25%) had runoff ratio 
greater than 1.0. The fact that 25% of watersheds had runoff ratios greater than 1.0 is indicative of the uncer-
tainty and difficulty in compiling quality controlled data over large samples, even for curated data sets such as 
CAMELS. The watersheds selected had a wide range of physical and land cover characteristics (Table 2), runoff 

Question Analytical framework Variables analyzed

1) To what extent and where is there a consistent 
trend in annual Q, Q/P, P, PET, and T, regardless 
of forest change effects?

Mann-Kendall trend tests (univariate) Annual Q, Q/P, P, PET, and T

2) To what extent and where do trends in runoff 
ratio and forest density demonstrate an inverse 
relationship?

Trend in Q/P vs. net tree growth Trend (Kendall's Tau) in annual Q/P; net tree growth

3) To what extent has streamflow changed in 
watersheds with substantial forest disturbance?

Time trend analysis (comparison of observed vs. 
predicted Q)

Annual Q, P, and T; disturbance (disturbed/not 
disturbed)

4) How well does the severity of forest disturbance, 
and the interaction of disturbance severity with 
aridity, predict change in streamflow?

Multiple regression Annual Q, P, T; tree mortality; aridity (PET/P)

Note. Q, streamflow; P, precipitation; PET, potential evapotranspiration; T, temperature.

Table 1 
The Four Questions Addressed in This Study, the Analytical Framework Used to Address Each Question, and the Variables Included in the Analysis

  Area (km 2) Mean slope (m/km) Mean elevation (m) Runoff ratio P (mm/yr) PET (mm/yr) Fraction forested

Median 238 92.8 1,613 0.419 822 1,084 0.76

Mean 649 92.0 1,650 0.409 1,062 1,088 0.64

Standard deviation 1,454 35.3 882 0.241 674 206 0.34

Note. Values are summarized from CAMELS attributes (Addor et al., 2017).

Table 2 
Characteristics of 159 Watersheds Used in This Study
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ratios, and humidity indices (Figure 1), giving the study a broad degree of generality. Given the criteria for inclu-
sion in the CAMELS data set (Addor et al., 2017), we assumed that stream gauges for each watershed quantify 
actual runoff, and that withdrawals, transfers, and changes in storage are negligible.

The CAMELS data set includes daily time series of climatic variables and streamflow as well as time-averaged 
catchment characteristics. We used temporally averaged variables representing basin characteristics such as mean 
incoming SRAD, and aridity, defined as the ratio of mean annual potential evapotranspiration (PET) to mean 
annual precipitation, all from the CAMELS data set (Addor et al., 2017). We summed CAMELS daily streamflow 
and precipitation values to get total annual water year streamflow and precipitation. Annual mean temperature 
was calculated by first averaging CAMELS minimum and maximum daily temperature to get daily mean temper-
ature and then averaging the daily mean temperature. Additionally, we estimated annual PET by first using the 
Hamon method (Hamon, 1963; Lu et al., 2005) to estimate daily PET based on precipitation, temperature, and 
day length from the CAMELS data set, and then aggregating daily values to annual PET.

Because the CAMELS data set extends only through water year 2014, while available forest data extend through 
2019, we used USGS streamflow data and Daymet gridded climate data for water years 2015–2019 to extend 
the record of our analysis through water year 2019. USGS streamflow data were obtained through the R pack-
age DataRetrieval (Hirsch & De Cicco, 2015). Daymet gridded precipitation, minimum temperature, and maxi-
mum temperature values were downloaded using the R package daymetr (Hufkens et al., 2018) and extracted as 
area-weighted averages within each CAMELS catchment boundary, following the methods used to construct the 
CAMELS time series (Newman et al., 2015). That extraction process yielded time series analogous to the time 
series within the CAMELS data set. We then aggregated daily values to annual values in the same manner as 
described above for the CAMELS time series. We cross checked our extended data set by ensuring that we could 
replicate water year 2014 in the CAMELS data, finding that the only differences were due to numerical rounding.

2.1.2.  Forest and Disturbance Data

Data on forest conditions and disturbances were obtained from the U.S. Forest Service's FIA program. The FIA 
program established plot locations using probabilistic sampling to obtain a representative sample with mean 
spacing of 5 km across all forest types and owner groups (Bechtold & Patterson, 2005). In the western U.S., 10% 
of plots are measured each year and each plot is therefore measured once every 10 yr. Each year's subsample of 
plots is spatially distributed such that the sample of forest conditions is both spatially and temporally balanced. 

Figure 1.  Watersheds from the CAMELS database used in our analyses (n = 159). Inset plot shows watersheds in nondimensional space based on long-term CAMELS 
attributes; the dashed curve represents energy limitation on streamflow, expressed as Q = P − PET framed in terms of the dimensionless axes as Q/P = 1 − 1/(P/PET), 
where Q = annual streamflow, P = annual precipitation, and PET = annual potential evapotranspiration.
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This sampling design was developed to produce unbiased estimates of forest attributes that represent discrete 
areas such as watersheds (Bechtold & Patterson, 2005).

Data collected from FIA plots include detailed tree measurements that permit calculation of plot-level volume of 
both live and dead trees, volume of net tree growth, volume of trees that recently died (i.e., “mortality trees”), and 
many other variables (USDA, 2010). Each plot is associated with an expansion factor that facilitates estimation 
of forest characteristics and their associated sampling errors for discrete areas, based on data from multiple plots 
over the same sampling period (Bechtold & Patterson, 2005; Burrill et al., 2018). FIA estimates are updated 
annually based on a 10 yr moving window such that the estimate in any 1 yr is based on data collected during the 
previous 10 yr (e.g., an estimate with a nominal date of 2019 is based on data collected during 2010–2019). FIA 
implemented this nationally consistent, probabilistic sample in 2000, although the onset of data collection varied 
among states, with Wyoming being the last state to fully implement this design in 2011.

We characterized forest disturbance using FIA's estimates of net tree growth and tree mortality and their associated 
standard errors, for the period 2010–2019, from the publicly accessible EVALIDator tool (USDA, 2020). Each 
estimate was constrained to a watershed represented by an 8-digit Hydrologic Unit Code (HUC8) that contains 
a CAMELS catchment. Although ideally, we would have produced FIA estimates at the scale of CAMELS 
watersheds, these smaller watersheds contained small sample sizes of FIA plots and thus were associated with 
high uncertainty at the CAMELS scale. The forested portions of most HUC8 catchments exist at relatively high 
elevations that tend to be less impacted by water transfers and human activities (i.e., nonforest land uses), which 
is also where CAMELS watersheds occur (Addor et al., 2017). To test whether forest conditions in CAMELS 
vs. HUC8 watersheds were similar, we computed the percentage of area at each scale that experienced forest 
change between 2001 and 2019 as determined from the National Land Cover Database change product (Homer 
et al., 2020). We found that the distributions of forest change at the two scales were not significantly different 
based on p = 0.51 from the Kolmogorov-Smirnov test for equal distributions. This result supports the use of FIA 
data at the HUC8 scale as representative of CAMELS watersheds.

Mean annual net growth and mortality rates are expressed as volume per year (Burrill et al., 2018) rather than 
numbers of trees because under normal conditions with no disturbance, small trees typically die at higher rates than 
larger or older trees due to self-thinning that occurs naturally as forest stands develop over time (Reineke, 1933; 
Yoda et al., 1963). Net growth is defined as volumetric growth of all live trees minus the total volume of trees that 
died in the previous 10 yr (i.e., mortality volume). Values of net growth greater than zero indicate that tree growth 
has outpaced mortality, while negative net growth is indicative of mortality that occurred faster than growth of 
live trees. To assess the severity of forest disturbance, we estimated each watershed's mean annual mortality 
rate and standardized that rate by the total of live volume plus mortality volume. Note that watersheds with high 
mean annual mortality can also have positive net growth if post-disturbance recovery and live tree growth occurs 
more rapidly than mortality. A strength of using net growth and mortality estimates is that it permits assessment 
of quantitative relationships between forest conditions and hydrologic variables, as opposed to being limited 
by categorical mapping of disturbance or rules-of-thumb such as having >20% of area affected (Goeking & 
Tarboton, 2020).

2.2.  Methods

We used multiple analytical methods to address our objectives. First, we used trend analysis to identify monotonic 
trends in individual water budget components and drivers. Second, we qualitatively related trends in runoff ratio 
to forest change across gradients of latitude and aridity. Third, we used time trend analysis (Zhao et al., 2010) to 
quantify the magnitude of streamflow change that cannot be attributed to precipitation and temperature drivers, 
and then correlated the magnitude of unattributed streamflow change with forest disturbance, latitude, SRAD, 
and aridity. Fourth, we evaluated the relative importance of several factors—including temperature, precipita-
tion,  and the interaction of forest disturbance and aridity—for predicting change in streamflow across decades 
using a multiple regression model.

2.2.1.  Trends in Water Budget Components and Drivers

Our first question was whether runoff ratio has changed over time, that is, whether there is any monotonic 
trend, regardless of climate or forest disturbance effects. We answered this question using the nonparametric 
Mann-Kendall trend test, which determines whether the central tendency of a variable changes solely as a function 
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of time (Helsel et al., 2020). We tested for trends in annual runoff ratio (Q/P) as well as water budget components 
and drivers, including annual streamflow (Q), annual total precipitation (P), annual mean temperature (T), and 
annual PET. Each variable was tested independently of vegetation effects. Each test evaluated two time periods: 
first, the period 2000–2019, which was the basis for our subsequent analyses of streamflow response to forest 
disturbance, and second, 1980–2019, for the purpose of determining whether any other long-term trends exist that 
extend prior to the period covered in our analysis.

Watersheds with significant trends in Q, P, Q/P, T, and PET were identified based on two-sided p-values asso-
ciated with Kendall's tau (Helsel et al., 2020) evaluated with the MannKendall function in the Kendall package 
(McLeod, 2011) for R statistical analysis software (R Core Team, 2020). Two-sided p-values <0.1, which corre-
spond to one-side p-values <0.05, were considered statistically significant.

2.2.2.  Runoff Ratio and Forest Density Change

Our second question was whether there is general support for the hypothesis that forest cover is inversely related 
to annual runoff, across a large sample of watersheds spanning a range of aridity, incoming SRAD, and lati-
tude. Under this hypothesis, we expected that most watersheds that experienced forest cover loss (i.e., distur-
bance) exhibited increases in runoff ratio, and that watersheds that experienced forest cover gain (i.e., increased 
tree density in the absence of disturbance) exhibited decreases in runoff ratio. An alternative hypothesis, 
based on recent observations of decreased streamflow following forest disturbance as summarized by Goeking 
and  Tarboton (2020), is that post-disturbance runoff sometimes decreases in more arid, low-latitude watersheds 
with higher incoming SRAD.

To characterize watersheds as disturbed vs. undisturbed and as having increased vs. decreased runoff ratio, we 
determined whether net growth and trend in runoff ratio (Q/P) were each positive or negative for each watershed. 
Watersheds were characterized as having increased vs. decreased runoff ratio on the basis of Kendall's tau, which 
allows dimensionless comparison of trends in runoff ratio across watersheds whose runoff ratios may vary widely 
(Helsel et al., 2020), again using R package Kendall (McLeod, 2011).

Net tree growth estimates for 2010–2019 encompass a temporal averaging period beginning in 2000 for plots 
measured in 2010, and in 2009 for plots measured in 2019, because growth is calculated from individual tree 
growth representing the 10 yr prior to plot measurement (USDA, 2010). Therefore, we conducted trend analysis 
for the period 2000–2019, which encompasses the averaging period for FIA plot measurements.

We categorized watersheds into two groups: those that met the expectation that the change in runoff ratio is 
inversely related to forest cover change (conforming watersheds), and those that did not meet this expectation 
(nonconforming watersheds). Conforming watersheds included watersheds where tree volume increased (i.e., 
positive tree growth) and Q/P decreased, as well as those where tree volume decreased (i.e., negative tree growth) 
and Q/P increased. Similarly, nonconforming watersheds consisted of those where both tree volume and Q/P 
increased and where both tree volume and Q/P decreased. This categorization resulted in four combinations of 
change in tree volume and trend in Q/P.

We assessed differences in aridity, SRAD, and latitude among the four categories of conforming and noncon-
forming watersheds. Aridity was compared among watersheds in the context of evaporative index and aridity 
index, as defined by Budyko (Budyko & Miller, 1974), to assess whether nonconforming watersheds (i.e., those 
with forest disturbance and decreased streamflow) were more likely to occur in water-limited watersheds than 
in energy-limited ones. Evaporative index represents the proportion of precipitation that evaporates, on a mean 
annual basis, and is equal to the quantity 1 − Q/P. Aridity index is the ratio of mean annual PET to mean annual 
P. Long-term values of mean annual Q, mean annual P, aridity, and incoming SRAD for each watershed were 
obtained from the CAMELS data set (Addor et al., 2017). We also tested for significant differences in latitude, 
aridity, and SRAD among conforming vs. nonconforming watersheds using the nonparametric Kruskal-Wallis 
test for multiple comparisons, which was conducted using the function Kruskal in R package agricolae (de 
Mendiburu, 2020).

2.2.3.  Expected Streamflow Change in Watersheds With and Without Forest Disturbance

To address the question of whether streamflow has changed as a result of forest disturbance over discrete time 
periods, we used time trend analysis, which is an analytical framework used to quantify streamflow change result-
ing from vegetation change (Zhao et al., 2010). The premise of time trend analysis is that expected streamflow 
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can be predicted from a small number of predictor variables for a calibration period, and then applied to a later 
time period to compare predicted to observed runoff for that time period. Computationally, a linear regression 
model is calibrated on an initial time period, applied to a second time period, and the residuals (i.e., the differ-
ence between the observed and predicted values in the second time period) are assumed to be due to factors not 
included in the model. Although previous applications of time trend analysis have used a linear regression model, 
we initially attempted to conduct this analysis using a machine learning model structure, specifically random 
forests (Breiman, 2001), but found that random forests performed similarly to linear regression but presented the 
disadvantage of not producing easily interpretable coefficients.

For the purposes of time trend analysis, we split our period of record into two time periods: 2000–2009 and 
2010–2019. We calibrated and validated the linear regression model for time trend analysis using data from 
water years 2000–2009. Odd-numbered years were used for calibration, and even-numbered years for valida-
tion. Preliminary analysis indicated that our data set met the assumptions required for linear regression (Helsel 
et al., 2020). Given that temperature exhibited a significant positive trend at many watersheds (Figure 2) and was 
a significant predictor, we included it in our model. Thus, the regression model took the form:

𝑄𝑄1 = 𝑎𝑎1 ∗ 𝑃𝑃1 + 𝑏𝑏1 ∗ 𝑇𝑇1 + 𝑐𝑐1 + 𝑒𝑒� (1)

In Equation  1, Q  =  annual streamflow; P =  annual precipitation; T  =  annual mean temperature; subscripts 
represent values from the calibration/validation period (time 1, or 2000–2009); a, b, and c are coefficients; and 
e represents model residuals. We also tested whether the model improved when we included the interaction of T 
and P as a product term, and seasonal rather than annual T and P; neither of these options improved model fit, 
so we proceeded with the simpler Equation 1. The regression held a and b the same across all watersheds, for 
two reasons. First, the processes that relate P and T to streamflow should be consistent across all watersheds, and 

Figure 2.  Significant trends in annual water budget components and drivers over the period 2000–2019, based on the Mann-Kendall trend test (p < 0.1). Q 
= streamflow; P = precipitation; T = temperature; and PET, potential evapotranspiration.
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second, allowing these coefficients to vary would effectively create a separate model for each watershed, which 
would result in many watersheds being omitted due to years with missing data during the calibration period. The 
intercept, c, was allowed to vary among watersheds to capture watershed specific differences with respect to 
factors that were not included in this linear model. The application of this model to the evaluation period (time 
2) uses time 1 coefficients and time 2 observations of annual precipitation and temperature to predict annual 
streamflow over time period 2 (2010–2019):

𝑄𝑄′

2
= 𝑎𝑎1 ∗ 𝑃𝑃2 + 𝑏𝑏1 ∗ 𝑇𝑇2 + 𝑐𝑐1� (2)

The difference between observed (𝐴𝐴 𝑄𝑄2 ) and predicted (𝐴𝐴 𝑄𝑄′

2
 ) mean annual streamflow during the evaluation period 

is represented as the quantity:

𝑄𝑄obs−exp = 𝑄𝑄2 −𝑄𝑄′

2
� (3)

where 𝐴𝐴 𝑄𝑄obs−exp represents the magnitude of streamflow change that cannot be attributed to precipitation and 
temperature and thus is typically interpreted to be due to vegetation change (Zhao et al., 2010).

One objective of time trend analysis was to determine how runoff responds to disturbance. As in our other anal-
yses, we hypothesized that runoff is likely to increase in disturbed watersheds, although a secondary hypothesis 
was that runoff response depends not only on magnitude of disturbance but also on aridity and/or incoming 
SRAD. To answer the question of whether streamflow has increased or decreased in disturbed watersheds, we 
interpreted significant change in streamflow, from our time trend analysis results (i.e., deviation in observed Q 
from predicted Q) in the context of disturbance. Significant change in annual streamflow was identified using 
a one-sample t test (Biederman et al., 2015), wherein the null hypothesis was that there has been no change in 
streamflow due to factors other than precipitation and temperature (𝐴𝐴 𝐴𝐴obs−exp = 0 ). P-values less than 0.05 were 
identified as significant deviations in streamflow. Disturbed watersheds were defined as those where tree mortal-
ity exceeded 10% of initial live tree volume.

2.2.4.  Streamflow Change as a Function of Disturbance Severity and Climate

We used multiple regression to address two objectives: (a) to evaluate the relative importance of several factors 
for predicting change in streamflow (ΔQ), which allowed isolation of the relative contributions of climate vs. 
disturbance to ΔQ, and (b) to determine whether the interaction of forest disturbance severity with aridity or 
SRAD affects runoff response to forest disturbance. A regression model was developed to predict ΔQ across two 
discrete time periods, 2000–2009 vs. 2010–2019.

To enable disentangling the confounding effects of climate vs. vegetation changes, we initially considered a large 
set of predictor variables encompassing time varying climatic variables (e.g., change in mean annual precipita-
tion) as well as time-invariant climate descriptors (e.g., long-term mean incoming SRAD) that are specific to 
each watershed. The initial set of potential predictors included baseline Q and baseline P for 2000–2009 (𝐴𝐴 𝑄𝑄1 and 

𝐴𝐴 𝑃𝑃1 , respectively), mean watershed aridity and SRAD, tree mortality during 2010–2019, and change in temper-
ature, precipitation, and PET between the two time periods. To meet the assumption of noncollinearity among 
predictors, we then reduced the number of predictors by evaluating pairwise correlations among all predictors 
and removing predictors with correlation coefficients with absolute values of 0.6 or greater, where the predictor 
with the lower correlation with ΔQ was removed. In this manner, PET, SRAD, and aridity were removed due to 
their respective correlations with temperature and 𝐴𝐴 𝑃𝑃1 ; SRAD and aridity were represented in the model in inter-
action terms with tree mortality. Due to multicollinearity between the interactions of mortality with SRAD and 
aridity, we removed the interaction of mortality with SRAD as it was a less useful predictor than the interaction 
of mortality with aridity. Thus, the final regression model took the form:

Δ� = �0 + �1�1 + �2 Δ� + �3 Δ� + �4 mortality + �5 mortality ∗ aridity� (4)

where 𝐴𝐴 𝑃𝑃 1 represents mean annual precipitation for 2000–2009; ∆P and ∆T were differences in mean annual 
precipitation (mm) and mean annual temperature (°C) between 2000–2009 and 2010–2019; and bx refer to coef-
ficients. As before, we tested whether model fit improved with the inclusion of a product term representing 
interactions between ∆P and ∆T, and also using differences in seasonal rather than annual P and T to consider 
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the effects of precipitation phase and snowpack, and the model did not improve so we implemented Equation 4 
using annual observations of P and T. For this analysis, mortality was standardized by total volume of trees in 
the watershed, that is, as the volume of trees that died during the study period relative to initial live tree volume, 
thus having possible values of 0–1 (USDA, 2020). The last term, mortality * aridity, represents the interaction 
of  tree mortality with aridity, which was included to test the hypothesis that streamflow response to forest change 
is influenced by aridity. We used the p-value associated with the coefficient of each predictor variable in Equa-
tion 4 to assess its significance as a predictor of ΔQ. We then compared standardized regression coefficients for 
each variable to determine the relative importance of climatic factors, forest disturbance, and interaction of forest 
disturbance with aridity for predicting ΔQ.

Based on the predominant hypothesis that runoff increases following forest disturbance, we expected that tree 
mortality would have a positive coefficient in the regression model, that is, that larger levels of tree mortal-
ity would lead to positive ΔQ. Our alternative hypothesis—that disturbance may decrease runoff at high arid-
ity or SRAD—led to the expectation that the coefficient for the interaction of tree mortality with aridity or 
SRAD would be negative, even as the coefficient for tree mortality alone was positive. To interpret the abil-
ity of each predictor variable to explain additional variability in ΔQ, we examined partial regression plots for 
each predictor (Moya-Laraño & Corcobado, 2008). Partial regression plots, also known as added variable plots, 
isolate the explanatory capability of a single variable relative to that of all other variables (Moya-Laraño & 
Corcobado, 2008). Although pairwise scatterplots between a predictor and ΔQ would be appropriate for simple 
(single-variable) regression, in the context of multiple regression, such plots ignore the effects of other varia-
bles in the model and can thus be misleading representations of the contribution of each variable to explaining 
variability in the response variable (Moya-Laraño & Corcobado, 2008). Partial regression plots were developed 
to address this concern using the R package car (Fox & Weisberg, 2019). To visualize the interactive effect of 
disturbance severity and aridity on streamflow change, we also examined marginal effects of the interaction 
between mortality and aridity using R package sjPlot (Lüdecke, 2021).

To interpret our regression model in the context of climatic warming, we used the regression model (Equation 4) 
to evaluate the sensitivity of streamflow changes to tree mortality and aridity, both with and without 1°C of 
warming. We compared our results to those of previous studies that projected decreases in streamflow with 
climate warming across the western U.S. (McCabe et al., 2017; Udall & Overpeck, 2017).

3.  Results
3.1.  Trends in Water Budget Components and Drivers

Most watersheds (>60%) did not experience significant monotonic trends in any water budget components or driv-
ers during 2000–2019 (Figure 2). P increased significantly between 2000 and 2019 in 26% of watersheds, driving 
some increasing trends in Q (13%) and Q/P (10%). P and Q decreased in <1% of watersheds, and Q/P  decreased 
significantly 6% of watersheds. T and PET increased significantly in 40% and 23% watersheds, respectively, and 
both decreased in ≤1% of watersheds (Figure 2), which is consistent with general climate warming. Significant 
changes in Q/P, P, Q, T, and PET were widespread with no clear geographic patterns (Figures 2a–2f).

When we repeated the Mann-Kendall trend test for the entire period of record (1980–2019), results were very 
different than for 2000–2019. More watersheds experienced significant decreases in P, Q/P, and Q (7%, 24%, 
and 17%, respectively), and only 8% of watersheds exhibited significant increases in Q and Q/P. This pattern 
coincides with significant increases in T (84%) and PET (81%), both of which decreased in <1% of watersheds. 
Thus, while an appreciable percentage of watersheds show evidence for long-term (1980–2019) increases in T 
and PET, only a small percentage show evidence for changes in Q and Q/P.

3.2.  Runoff Ratio and Forest Change

This analysis sought to test the hypothesis that forest cover is inversely related to runoff, and comparison of trends 
in runoff ratio (Q/P) to net tree growth demonstrated only moderate support for this hypothesis. Slightly less than 
half of all watersheds (43%) met the expectation that Q/P is inversely related to change in forest density (Figure 3, 
upper left and lower right quadrants, with 24 and 44 watersheds, respectively), and the remaining watersheds 
(57%) did not conform to this expectation (Figure 3, lower left and upper right quadrants). However, a small 
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proportion of watersheds exhibited statistically significant trends in Q/P, as we found in the previous section. 
Note that in Figure 3a, watersheds in both left quadrants experienced negative net tree growth, that is, mortality 
exceed growth by surviving or newly established trees, which indicates disturbance and decrease in volumetric 
forest density. To quantify the degree to which estimated net growth might reflect random sample variability 

Figure 3.  (a) Relationship between trend in Q/P (measured as Kendall's tau) and net growth of trees for 2000–2019. Positive values of Kendall's tau indicate a 
monotonic increase in Q/P. Colors for watersheds with significant trend over time are assigned based on quadrants, where upper left and lower right quadrants conform 
to expected Q/P response to forest changes, and lower left and upper right exhibit runoff ratio trends do not conform to expectations. (b) Position of watersheds in 
the Budyko framework of evaporative index (1 − Q/P) vs. aridity index (PET/P). (c and d) Aridity and incoming solar radiation, with watersheds grouped into the 
quadrants in (a). Boxes represent interquartile ranges; horizontal bars within boxes represent medians. Boxes were not statistically significantly different, based on 
Kruskal-Wallis test (α = 0.1). (d) Geographic distribution of watersheds, with colors as assigned in (a). Q, streamflow; P, precipitation; ET, evapotranspiration; PET, 
potential evapotranspiration.
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or noise, which is higher in smaller watersheds due to smaller sample sizes, we examined the standard errors 
associated with the estimated net growth in each watershed as produced by the EVALIDator tool. For >75% of 
watersheds, net growth differed from 0 by more than one standard error. Thus, we inferred that most watersheds 
have sufficient sample size to reliably indicate positive vs. negative net growth.

Trends in Q/P that contradict the expectation that Q/P is inversely related to change in forest density occurred in 
two situations. First, Q/P decreased in watersheds with negative net tree growth, that is, greater mortality than 
live tree growth (Figure 3a, lower left quadrant). This response was observed mainly in water-limited catchments 
where PET/P > 1 and at lower latitudes in the southwestern U.S. (Figures 3b–3e, magenta symbols). Second, 
Q/P increased while net tree growth was positive (Figure 3a, upper right quadrant). This response was generally 
observed in energy-limited or moderately water-limited (PET/P < 2) watersheds at higher latitudes of the Pacific 
Northwest and northern Rocky Mountains (Figures 3b–3e).

Given recent research questioning the inverse relationship between forest cover and runoff (Goeking & 
Tarboton, 2020), an alternative hypothesis is that runoff ratio is more likely to decrease following forest distur-
bance in watersheds with high aridity and at lower latitude. However, we found that forest disturbance itself was 
more widespread and severe within water-limited watersheds, as evidenced by the preponderance of magenta and 
blue symbols where PET/P > 1 (Figures 3b and 3c) and where incoming SRAD is relatively high (Figure 3d). 
Results of the Kruskal-Wallis test showed no significant differences in aridity or SRAD among disturbed water-
sheds with increased vs. decreased runoff ratio, nor were there significant differences among relatively undis-
turbed watersheds with increased vs. decreased runoff ratio (Figures 3c and 3d). However, these results do not 
account for an increasing trend in P over 2000–2019 (see previous section). The following two analyses do 
account for this effect and thus allow better separation of forest disturbance vs. climate effects on streamflow.

3.3.  Streamflow Change as a Function of Precipitation and Temperature Versus Other Drivers

Time trend analysis and subsequent t tests for significant deviations in streamflow indicated that observed stream-
flow changed significantly in 44 (28% of) watersheds in 2010–2019 relative to 2000–2009 (Figure 4) due to 
factors other than precipitation and temperature. Of these watersheds, streamflow decreased and increased by 
statistically significant magnitudes in 30 and 14 watersheds, respectively (Table 3). Validation of the linear model 
(Equation 1) had adjusted r 2 = 0.98. As expected, both precipitation and temperature were significant predictors 
(p < 0.01 for both variables).

Only 26 watersheds experienced both disturbance and significant change in streamflow, as determined by time 
trend analysis, and streamflow decreased in 20 of these watersheds (Table 3). This finding contradicts the hypoth-
esis that streamflow increases following disturbance. The geographic distribution of significant decreases in 
streamflow in disturbed watersheds (Figure  4) partially supports our secondary hypothesis that streamflow 
response to disturbance is influence by factors such as incoming SRAD, aridity, or latitude. Additionally, 18 
undisturbed watersheds had significant changes in streamflow (10 decreases and eight increases; Figure 4). These 
results imply that deviations in observed vs. expected streamflow, as predicted from a linear model based on 
precipitation and temperature, cannot be attributed to vegetation change alone, which has commonly been an 
interpretation of time trend analysis (Biederman et al., 2015; Zhao et al., 2010). However, unlike the univariate 
trends shown in Figures 2 and 3, time trend analysis accounts for changes in P and T over time and evaluates Q 
relative to those changes.

We considered the possibility that our choice of disturbance threshold could affect our results and therefore eval-
uated the direction of streamflow response given different disturbance thresholds. Among all watersheds, 67 met 
our initial disturbance criterion of >10% tree mortality during 2010–2019. Different thresholds (5%, 15%, and 
20%) did not lead to different conclusions about the proportion of disturbed watersheds that experience decreased 
vs. increased streamflow. For all thresholds of disturbance, a slight majority (>54%) of disturbed watersheds 
exhibited decreased streamflow, based on observed streamflow compared to that predicted by the time trend 
analysis model.
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3.4.  Streamflow Change as a Function of Climate and Disturbance

All coefficients in the multiple regression model for ΔQ (Equation 4) were statistically significant (p < 0.05; 
Table 4) with adjusted model r 2 = 0.70 (p < 0.01). The average change in runoff (ΔQ) across all 159 watersheds 
during the time period considered in this analysis was positive (63 mm/yr), consistent with an increase in P 
(mean ΔP was 91 mm/yr). Standardized regression coefficients indicate the direction and relative impact of each 
predictor on ΔQ (Figure 5a) and indicate that 𝐴𝐴 𝑃𝑃1 had the largest impact on ΔQ, which may be due to a positive 

association of 𝐴𝐴 𝑃𝑃1 and ΔP between 2000–2009 and 2010–2019 in watersheds that were already relatively wet. 

Specifically, the wettest watersheds—those in the Pacific Northwest—had the largest 𝐴𝐴 𝑃𝑃1 and ΔP, and also had 

low tree mortality. 𝐴𝐴 𝑃𝑃1 , ΔP, and mortality all had positive coefficients and 

thus positive effects on ΔQ, while ΔT and the interaction of mortality with 

aridity had negative coefficients (Table 4; Figure 5a). Partial regression plots 
(Figures  5b–5f) illustrate the ability of each predictor variable to explain 
variability in ΔQ that is not specifically accounted for by other predictors. 
Note that partial regression plots are not scatterplots of pairwise variables 
but instead represent the effect on model residuals of adding an additional 
model term to an existing model. The slopes of the lines in the partial regres-
sion plots (Figures 5b–5f) are equal to the regression coefficients and are all 
significantly different than zero (Table 4), which indicates that each predictor 
provides useful information in predicting ΔQ. Examination of model diag-
nostics verified that residuals were normally distributed and independent of 
predictor values. Figure 5 shows that some observations exert high leverage 
for some predictors.

Figure 4.  Percent deviation in observed mean annual streamflow (Q) for 2010–2019, relative to Q predicted by time trend 
analysis (calibrated for 2000–2009). Watersheds with statistically significant deviation in Q (large symbols) were identified 
using on a one-sample t test (p < 0.05); small symbols represent watersheds with no significant deviation in Q (p ≥ 0.05). 
Disturbed watersheds (triangles) are those where tree mortality exceeded 10% of initial live tree volume.

Runoff lower than 
expected (decreased Q)

Runoff higher than 
expected (increased Q)

Any 
change

Significant 
change

Any 
change

Significant 
change

Disturbed (n = 67) 42 20 25 6

Not disturbed (n = 92) 56 10 36 8

Total 98 30 61 14

Note. Disturbed watersheds are defined as those where tree mortality exceeded 
10% of initial live tree volume. Significant change in annual streamflow was 
identified as p < 0.05 from a one-sample t test.

Table 3 
Results of Time Trend Analysis, Which Predicts Mean Annual Streamflow 
From Observed Precipitation and Temperature and Then Compares 
Observed to Predicted Streamflow for a Future Time Period
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One purpose of this regression analysis was to test the hypothesis that runoff increases following tree mortality, 
and as an alternative hypothesis, that the sign (positive or negative) of runoff response to disturbance is affected 
by aridity. Our results provide partial support for both hypotheses. As expected, the coefficient for tree mortal-
ity was positive (Table 4; Figure 5a); the statistical significance of this positive coefficient supports the first 
hypothesis that runoff increases with decreased forest cover. However, the significant and negative coefficient 
for the interaction of mortality and aridity also supports our alternative hypothesis that mortality does not result 
in increased runoff in all cases. In particular, runoff response to disturbance may be negative in very arid water-
sheds. Figure 6a illustrates ΔQ as a function of mortality and aridity based on observations (i.e., not modeled 
values), demonstrating two important results. First, relatively wet watersheds (aridity < 1.5) generally had posi-
tive ΔQ, and ΔQ was larger for watersheds with more tree mortality. Second, very dry watersheds (aridity > 2.5) 
generally experienced negative ΔQ, and higher mortality was associated with larger decreases in Q. In interpret-
ing these results, it is important to note that overall ΔP was positive, which is expected to contribute to positive 
ΔQ; thus, the dashed line representing ΔP in Figure 6a provides a more neutral axis of reference than ΔQ = 0.

Figure 6b illustrates predictions and 90% prediction intervals for ΔQ as a function of tree mortality for aridity 
at its observed 5th percentile, median, and 95th percentile, assuming that all other variables are held constant at 
their mean observed values. The value of aridity at which tree mortality was predicted to have a negative effect 
on Q was 2.35. Thus, for watersheds with PET/P ≥ 2.35, ΔQ decreased with tree mortality. Thus, in these very 
water-limited watersheds there is an inverse relationship between ΔQ and tree mortality. Note that 95% of water-
sheds experienced levels of tree mortality less than 33%, so predictions above this level of mortality are beyond 
the range of most data and therefore uncertain.

As shown in Equation  4, the regression model accounted for changes in precipitation and temperature. The 
modeled relationship between mortality, aridity, and ΔQ (Figure 6b) demonstrates the same variable response 
to disturbance as that shown by observations (Figure 6a), illustrating that the response of ΔQ to disturbance and 
the interaction of disturbance with aridity is not explained by precipitation and temperature changes alone. Thus, 
decreased streamflow in response to increased temperature or decreased precipitation may be modulated (in wet 
watersheds) or exacerbated (in dry watersheds) by disturbance.

To assess the overall sensitivity of our modeled ΔQ to potential warming, we summarized ΔQ for several values 
of mortality and aridity, with and without 1°C of warming (Table 5) and with no change in precipitation. Specifi-
cally, Equation 4 was applied with ΔP = 0 and ΔT = 0 or 1. The model predicted a mean decrease in streamflow 
of 5.6% for 1°C of warming. Regression-based estimates for ΔQ at various levels of tree mortality and aridity 
generally suggest that streamflow is expected to increase at increasing levels of disturbance for watersheds at low 
to moderate values of aridity, while the opposite is true in very arid watersheds, specifically with PET/P > 2.35, 
as manifested in the rightmost column of Table 5. Left to right in Table 5, the model indicates greater percent-
age increases in streamflow following disturbance in more humid watersheds, trending down to a decrease in 
streamflow for the most arid watersheds. For 1°C of warming, the 5.6% decrease in streamflow is superimposed 
on these trends.

Variable Units Coefficient Standard error t-statistic P-value

Intercept mm/yr −29.20 10.20 −2.860 0.005

𝐴𝐴 𝑃𝑃1  mm/yr 0.087 0.008 11.473 <0.001

ΔP mm/yr 0.107 0.047 2.279 0.024

ΔT °C −27.85 6.895 −4.038 <0.001

Mortality Proportion 250.3 67.91 3.685 <0.001

Mortality * aridity Proportion −108.4 43.59 −2.488 0.014

Table 4 
Regression Coefficients, Standard Errors, t-Statistics, and Associated p-Values for Multiple Linear Regression of ΔQ 
Between 2000–2009 and 2010–2019
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4.  Discussion
We found variable runoff response to forest disturbance using multiple analysis methods: Mann-Kendall trend 
analysis, time trend analysis of predicted vs. observed streamflow based on observed precipitation and tempera-
ture, and multiple regression using both climatic and disturbance variables. Collectively, our results confirm, via 

Figure 5.  Effect of each variable on change in annual streamflow (ΔQ), in mm/yr, from 2000–2009 to 2010–2019: (a) 
unitless standardized coefficient estimates, which indicate the magnitude of change in ΔQ, in standard deviations, for a 
change equal to one standard deviation of each predictor variable. 𝐴𝐴 𝑃𝑃1  = mean annual P for 2000–2009, ∆P, change in 
precipitation, and ∆T, change in temperature. (b–f) Partial regression plots for each predictor variable. Each plot depicts the 
relationship between the named predictor and ΔQ while accounting for the explanatory capability of all other predictors. 
Values along the x axis of each plot represent the residuals of a model omitting the named variable, values along the y axis 
represent the residuals of a model of the named predictor as a function of all other predictors, and the slope of the line is 
equal to the multiple regression coefficient for the named variable.
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systematic broad-scale analysis, that the generally held hypothesis that forest cover and streamflow are inversely 
related is not universal in semi-arid western watersheds. Examination of the relationship between Mann-Kendall 
trend in Q/P vs. net tree growth allowed us to identify two scenarios that do not conform to this relationship 
(Figure 3). First, statistically significant decreases in Q/P occurred during a period of forest cover loss in a small 
number of watersheds (four) that occur in areas of high aridity (PET/P) and high incoming SRAD. Second, 10 
watersheds exhibited statistically significant increases in Q/P during a period of forest cover growth. Time trend 
analysis indicated that among watersheds with significant changes in streamflow, 77% (20 of 26) of disturbed 
watersheds, and only 56% (10 of 18) undisturbed watersheds, experienced decreased streamflow. Thus, signifi-
cantly decreased streamflow was more prevalent in disturbed than undisturbed watersheds, counter to commonly 
held expectations. Increased streamflow in 44% (8 of 18) of undisturbed watersheds coincided with higher 
precipitation overall in 2010–2019 compared to 2000–2009. Multiple regression analysis showed that mortality 
explains some variability in ΔQ that is not explained by climatic drivers, and that the direction of streamflow 
response to mortality (i.e., increase vs. decrease) is affected by aridity.

Among our analysis methods, only the multiple regression quantitatively assessed change in streamflow as a 
function of both climatic and disturbance variables in a way that allowed isolating and quantifying climate and 
disturbance effects. Therefore, the finding that disturbance severity (i.e., magnitude of tree mortality) is a signif-
icant predictor with a positive coefficient supports the overarching hypothesis that streamflow increases as a 
result of disturbance, and that disturbance effects on streamflow are separable from climate effects. However, 
the interaction of mortality and aridity had a negative coefficient, which signifies a decrease in streamflow as a 
result of disturbance in very arid watersheds. Observational data (Figure 6a) as well as our multiple regression 

Figure 6.  Interacting effect of tree mortality and aridity on ΔQ (2000–2009 vs. 2010–2019). (a) Boxplots of ΔQ (as a proportion of Q1) based on observed values from 
159 watersheds. (b) Marginal effects of mortality and aridity, based on the multiple regression model (i.e., values of ΔQ for different values of mortality and aridity 
when values of other predictors are held constant); values of aridity represent the 5th percentile (0.3), median (1.4), and 95% percentile (2.9) of watersheds examined in 
this study. In both plots, horizontal dashed lines represent ΔP times P1/Q1, (relative to Q1 for 6a), which illustrates the expected ΔQ based solely on ΔP.

Aridity (PET/P)

Tree mortality
0.30 (5th 

percentile)
0.77 (25th 
percentile) 1.44 (median)

2.08 (75% 
quantile)

2.93 (95th 
percentile)

No warming 0% 0.0% 0.0% 0.0% 0.0% 0.0%

10% 4.4% 3.4% 1.9% 0.5% −1.3%

25% 11.0% 8.5% 4.8% 1.3% −3.4%

1°C warming 0% −5.6% −5.6% −5.6% −5.6% −5.6%

10% −1.2% −2.3% −3.7% −5.1% −7.0%

25% 5.4% 2.8% −0.9% −4.4% −9.1%

Table 5 
Predicted Change in Mean Annual Streamflow (Expressed as a Percentage of Q1, or Initial Mean Q) for Different Levels of 
Tree Mortality and Aridity, With and Without a 1°C Temperature Increase and Assuming No Change in Precipitation
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results (Figure 6b) provide quantitative evidence that disturbances at high aridity are more likely to result in 
decreased streamflow than those at lower aridity. These findings are consistent with a recent modeling study (Ren 
et al., 2021), which concluded that of runoff responds variably to forest disturbance caused by mountain pine 
beetle, that the response depends on both mortality level and aridity, and that drier years tend toward decreased 
post-disturbance streamflow. In that study, the inflection from increased to decreased runoff occurred between 
aridity values of 2.0 and 3.0, or in wetter areas with mortality levels less than 40%, and decreased runoff was 
explained by either increased canopy evapotranspiration or increased ground transpiration following disturbance 
(Ren et al., 2021).

Independent of forest cover changes, we observed decreased streamflow associated with increased T and PET. Our 
multiple regression model predicted a mean decrease in streamflow of 5.6% for 1°C of warming, which is consist-
ent with the 6% reduction per °C that is predicted for the entire Colorado River Basin (Udall & Overpeck, 2017) 
and 6%–7% reductions per degree that are predicted for the Upper Colorado River Basin (McCabe et al., 2017; 
Udall & Overpeck, 2017). Our study period, 2000–2019, coincides with the onset of above-average tempera-
tures in the Colorado River Basin that began in 2000 and contributed to below-average streamflow (Udall & 
Overpeck,  2017). Although this trend has been previously documented in western U.S. watersheds (Brunner 
et al., 2020; Udall & Overpeck, 2017), the time trend and multiple regression analyses presented here disentangle 
climate from vegetation effects and offer a refined understanding of the role of forest change effects on stream-
flow in these trends.

Increasing T and PET are driving not only decreases in streamflow in many western watersheds (Brunner 
et al., 2020; Udall & Overpeck, 2017) but also increases in tree mortality (Williams et al., 2013). Our analysis of 
trend in Q/P relative to net tree growth, and our regression model of ΔQ as a function of tree mortality, show rela-
tively high forest disturbance in watersheds with high aridity and SRAD (Figures 3c and 3d). Higher T and PET 
may affect streamflow both directly, via increased evaporative demand, and indirectly via vegetation-mediated 
effects such as replacement of trees with vegetation that may actually have higher total evapotranspiration 
(Bennett et al., 2018; Guardiola-Claramonte et al., 2011; Morillas et al., 2017). Additionally, increases in T and 
PET that result in increased soil evaporation can increase vegetation moisture stress and susceptibility to distur-
bance such as wildfire (Groisman et al., 2004).

Possible mechanisms for nonconforming decreases in runoff in watersheds with decreased forest cover (i.e., 
lower left quadrant in Figure  3a) may be a combination of increased transpiration by surviving or newly 
established vegetation, as well as increased SRAD reaching snowpack and soil surfaces, either of which may 
increase total evapotranspiration. The first mechanism, net increase in evapotranspiration due to increased total 
transpiration, has been observed following insect outbreaks with rapid growth of surviving trees (Biederman 
et al., 2014), simulated tree die-off that resulted in increased herbaceous transpiration (Guardiola-Claramonte 
et al., 2011), and replacement of trees with dense shrubs (Bennett et al., 2018); all three of these studies were 
conducted in semiarid to arid watersheds. Further, short-term streamflow response may contradict longer-term 
response as young trees grow rapidly during forest recovery (Perry & Jones, 2017) in a phenomenon known as 
the Kuczera effect (Kuczera, 1987), and the use of net growth as a disturbance metric can quantify the extent to 
which post-disturbance regrowth may produce this effect. The second mechanism, increased SRAD as a result 
of canopy loss, could result in earlier snowpack ablation (Lundquist et al., 2013) driven by increased sublima-
tion (Biederman et al., 2014) and increased evapotranspiration from soil and non-canopy vegetation (Morillas 
et al., 2017; Reed et al., 2018). Changes to post-disturbance energy budgets have been observed following multi-
ple disturbance types and severities (Cooper et al., 2017; Maness et al., 2013). Just as net increases in evap-
otranspiration can occur following forest disturbance and lead to decreased streamflow, the converse is that 
net decreases in evapotranspiration can occur during periods of forest cover growth and thus lead to increased 
streamflow (i.e., upper right quadrant in Figure 3a). Independently of forest disturbance or growth, an additional 
contributing factor to decreased runoff may be a long-term decline in deep soil moisture due to recent droughts 
(Iroumé et al., 2021; Peterson et al., 2021; Williams et al., 2020).

Another potential confounding effect is the type of winter precipitation (rain vs. snow). In this study, we 
accounted for precipitation and temperature at annual and not seasonal time scales; neither the regression model 
used for time trend analysis nor the multiple regression model for ΔQ improved appreciably when seasonal 
rather than annual timescales were tested. Previous work has observed both streamflow increases (Hammond 
& Kampf, 2020) and decreases (Berghuijs et al., 2014) in response to winter precipitation phase (snow to rain) 
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shifts. Warmer temperatures have been observed to result in decreased streamflow in watersheds with high snow 
fraction, that is, >0.15, although the causal mechanism for this observation is unknown (Berghuijs et al., 2014). In 
contrast, Hammond and Kampf (2020) observed both increased and decreased streamflow following shifts from 
snow to mixed rain and snow. Streamflow response to snow-to-rain transitions appear to be more strongly associ-
ated with the seasonal timing, particularly relative to the seasonal timing of maximum annual evapotranspiration, 
than the type of precipitation (de Lavenne & Andréassian, 2018; Knighton et al., 2020; Robles et al., 2021). In 
our study, increasing trends in Q/P and simultaneous increases in tree growth occurred in a wide variety of envi-
ronments (Figure 3e), including the temperate Pacific Northwest, where snow fraction may be less than 0.15, as 
well as high-elevation forested watersheds across the western U.S. where winter precipitation phase change may 
translate to more rain-on-snow events that produce rapid winter runoff. Because seasonal snowpack represents 
storage of water that becomes available for transpiration by plants during the growing season, seasonal asyn-
chrony between water availability and the growing season may dampen any relationship between forest cover 
changes and streamflow response (Knighton et al., 2020).

Results of our time trend analysis demonstrate that streamflow has deviated from predictions based on precip-
itation and temperature at many watersheds across the western U.S., regardless of forest disturbance (Table 3). 
An assumption of time trend analysis is that any change not predicted by factors included in the model, typically 
precipitation and temperature, is due to factors not included in the model, typically vegetation (i.e., land cover) 
change or land use change (Zhao et al., 2010). However, time trend analysis provides observational but not causal 
links of change in streamflow to factors such as vegetation change. Incongruities between the subset of water-
sheds that were disturbed and those with significant streamflow change (Table 3) call into question the underlying 
premise of time trend analysis that deviations of observed from predicted streamflow are due to vegetation change 
alone (Zhao et al., 2010). In our exploration of whether changes in streamflow were correlated with changes in 
T and PET over longer time periods, we found that although T and PET increased in most watersheds, increases 
in T and PET were not strongly correlated with changes in streamflow or runoff ratio. Given that Mann-Kendall 
trend tests detected significant increases in T and PET for 1980–2019 that were not detectible during the period 
covered by our time trend analysis (2000–2019), it is possible that model coefficients for T over multiple decades 
may not remain constant as temperature increases beyond the range of observed T during 2000–2009. In other 
words, the assumptions inherent in time trend analysis may not hold in a nonstationary climate as changes may 
go beyond ranges for which the model was calibrated. Other possible explanations for significant changes in 
streamflow include shifts in winter precipitation phase (from snow to rain), the timing of seasonal precipitation, 
longer-term increases in T and PET that are occurring beyond the timeframe considered in this analysis, seasonal 
T and precipitation extremes that are not reflected in annual mean values, and/or forest disturbance below the 
threshold considered in our analysis.

A caveat of this study is that we characterized disturbance across entire watersheds, when in reality, disturbance 
is typically patchy and may include a combination of stand-replacing and nonstand-replacing disturbances. For 
example, less severe disturbance may be uniformly distributed throughout a watershed whereas more intense 
disturbances that may affect only small portions of a watershed, where both scenarios would lead to comparable 
watershed-scale metrics of forest cover loss or tree mortality. Previous studies illustrated that forest structure 
affects snowpack (Broxton et al., 2016; Moeser et al., 2020), so this distinction may be important for determining 
disturbance effects on runoff. The ability to project future changes in streamflow due to both changing climate 
and forest disturbance will likely improve with enhanced spatial representation of forest characteristics.

Several challenges exist in combining observational data sets from different disciplines and using different 
temporal and spatial sampling frames, and here we describe some of those challenges and potential future solu-
tions. First, the analyses conducted in this study required using forest inventory data collected across multiple 
years rather than an annual time step. It is not currently possible to produce estimates of the FIA attributes used 
in this analysis at an annual time step at the scale of individual watersheds, and this constraint undoubtedly 
dampens observed hydrologic response to acute, episodic disturbances such as severe wildfire. Ongoing work 
in the area of statistical small area estimation (Coulston et al., 2021; Hou et al., 2021) demonstrates promising 
capabilities for characterizing forest attributes at finer spatial and temporal scales. Combining FIA-based esti-
mates with other data sets, for example, the Monitoring Trends in Burn Severity data set that delineates large 
wildfires by severity class (Eidenshink et al., 2007), could illuminate how specific disturbances may have unique 
or compounding effects on streamflow and snowpack. Application of such techniques to future investigations 
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will require  identification of appropriate lag effects and legacy effects (e.g., response to recovery from severe 
disturbance vs. persistent response to the initial severe disturbance).

Second, most CAMELS watersheds are smaller than the encompassing HUC8 watersheds that we used to summa-
rize forest data, although we found that forest change metrics from the National Land Cover Database (Homer 
et al., 2020) were statistically similar at the two scales. Compatibility of these data sets could be improved by 
combining ground observations from forest monitoring plots with remote sensing and other ancillary data, for 
example, via the small area estimation techniques described above. Ongoing extension of the period of record and 
improved precision in estimates for individual watersheds will enhance our ability to relate forest characteristics 
and dynamics to changes in hydrologic processes and flux magnitudes. In particular, improved precision of future 
monitoring may help quantify important relationships among modulating factors such as aridity and incoming 
SRAD.

Correlation is not causation, and therefore we cannot be sure that any observed changes in streamflow are due to 
forest disturbance or the lack thereof. Our results, which are based on observations across many watersheds, under-
score the need for process-based modeling to understand where, why, and to what degree unexpected streamflow 
responses may occur as a result of the combined effects of forest change and climate change. Although there may 
indeed be forest disturbance effects on streamflow, hydrologic responses may be modulated, offset, or intensified 
by factors such as aridity and incoming SRAD and by changes in forcing such as increasing temperature.

5.  Conclusions
We used a large-sample hydrology approach to combine hydrologic, climatic, and forest data within 159 water-
sheds in the western U.S. to assess evidence for the hypothesis that forest cover loss leads to increased stream-
flow. This study expanded on previous studies that have linked streamflow to climatic drivers by also considering 
quantitative forest disturbance information, which allowed us to disentangle climate effects from forest distur-
bance effects on streamflow. Multiple analysis methods—including simple trend analysis, time trend analysis 
accounting for climate variables, and multiple regression—demonstrated that streamflow in some disturbed 
watersheds was lower than expected based on climatic drivers (i.e., P and T) alone. Results of both observations 
and multiple regression modeling showed that streamflow response to disturbance was modulated by aridity. 
Although disturbed watersheds exhibited increased streamflow at low to intermediate aridity, which is consistent 
with the hypothesis that reduced forest cover produces increased water yield, we found that disturbance in very 
arid watersheds (aridity  >  2.35) was associated with reduced streamflow. Disturbance was also more preva-
lent in watersheds with high SRAD and high aridity, the very watersheds that are more likely to be vulnerable 
to decreased streamflow following disturbance. These results suggest that very arid watersheds may be more 
susceptible to both increased forest disturbance and decreased streamflow in the future.

Data Availability Statement
In an effort to make this study reproducible, the data and computational scripts used to produce the study results 
have been made publicly available in HydroShare (Goeking & Tarboton, 2022).
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