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Abstract

Context Artificial Intelligence (AI) has rapidly

developed over the past several decades. Several

related AI approaches, such as Machine Learning

(ML), have been applied to research on landscape

patterns and ecological processes.

Objectives Our goal was to review the methods of

AI, particularly ML, used in studies related to

landscape ecology and the main topics addressed.

We aimed to assess the trend in the number of ML

papers and the methods used therein, and provide a

synopsis and prospectus of current use and future

applications of ML in landscape ecology.

Methods We conducted a systematic literature

search and selected 125 papers for review. These

were examined and scored according to multiple

criteria regarding methods and topic. We applied

quantitative statistical methods, including cluster

analysis based on titles, abstracts, and keywords and

a non-metric multidimensional scaling based on

attributes assigned during the review. We used

Random Forests machine learning to describe the

differences between identified clusters in terms of the

topics and methods they included.

Results The most frequent method found was Ran-

dom Forests, but it is noteworthy to mention the

increasing popularity of tools related to Deep Learn-

ing. The topics cover both ecologically oriented issues

and the landscape-human interface. There has been a

rapid increase in ML and AI methods in landscape

ecology research, with Deep Learning and complex

multi-step pipeline AI methods emerging in the last

several years.

Conclusions The rapid increase in the number ofML

papers in landscape ecology research, and the range of
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I. Pătru-Stupariu

Department of Regional Geography and Environment,

Faculty of Geography, University of Bucharest, Bd.
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methods employed in them, suggest explosive growth

in application of these methods in landscape ecology.

The increase of Deep Learning approaches in the most

recent years suggest a major change in analytical

paradigms and methodologies that we feel may

transform the field and enable analyses of more

complex pattern process relationships across vaster

data sets than has been possible previously.

Keywords Landscape ecology � Artificial
intelligence � Machine learning � Data analysis �
Classification � Clustering � Modelling � Prediction

Abbreviations

AI Artificial intelligence

BRT Boosted regression trees

CNN Convolutional neural networks

DT Decision trees

ES Expert systems

GAM Generalized additive models

LoR Logistic regression

ML Machine learning

MaxEnt Maximum entropy

MIR Model improvement ratio

NMDS Non-metric multidimensional scaling

NN Neural networks

RF Random forests

RNN Recurrent neural networks

SML Supervised learning

SVM Support vector machines

UsML Unsupervised learning

WoS Web of Science

XGBoo XGBoost—gradient boosting machine

Introduction

The last few decades have brought an impressive

number of scientific discoveries and novel technolo-

gies, ranging from the ubiquitous presence of com-

puters in our everyday lives, genomics, synthetic

biology, nanotechnology and advancements in space

exploration (Rotolo et al. 2015). Recent technological

revolutions, such as the internet of things (Ng and

Wakenshaw 2017), virtual reality and other immersive

experiences (Klippel et al. 2019) are rapidly trans-

forming human experience, and their development

represents both disruptive challenges and exciting

opportunities for human society. For example, chat-

bots powered by artificial intelligence (Androut-

sopoulou et al. 2019) are now able to engage

humans in realistic conversation that is impossible to

distinguish from actual interaction with a living

human, and deep learning has been able to predict

the structures of millions of complex protein mole-

cules (Senior et al. 2020).

A key role in recent explosive technological

advances and their impact on human society is played

by the field of Artificial Intelligence (AI), considered

by John McCarthy as being ‘‘the science and engi-

neering of making intelligent machines’’ (Rajaraman

2014). After its formal initiation in 1956, AI slowly

emerged over several decades as computer hardware

and software evolved in tandem to enable true artificial

intelligence. AI has had a sinuous evolution, with

ascents and descents, false starts, lost trails and

breakthrough moments (Wooldridge 2020). In recent

years, stimulated by rapid proliferation of powerful

and robust algorithms, as well as the accelerating

computational power correlated with the fall of the

hardware costs (Mitchell 1999), the field of AI has had

exponential growth, with applications in almost every

domain of activity, from medicine and health care

(Deo 2015), to biology (Geurts et al. 2009), financial

modeling (Bahrammirzaee 2010), manufacturing (Tao

et al. 2018), engineering (Mishra et al. 2020b) and

entertainment (Anderson et al. 2010).

An intelligent system is an entity endowed with

particular reasoning capabilities, such as natural

language processing, knowledge representation, auto-

mated reasoning, machine learning, computer vision,

and robotic functionality (Russell and Norvig 2020).

Among the functionalities of particular interest for the

life sciences and environmental studies is machine

learning, namely the ability of computer algorithms

and programs to learn from data without being

explicitly programmed (Samuel 1959, 2000). The

essence of machine learning is an algorithm whose

performance improves through experience (Jordan

and Mitchell 2015).

The field of Machine Learning (ML) has become a

major discipline in itself (Mitchell 1999), and its

applications can be found in a multitude of disciplines

related to Earth and life sciences, such as remote

sensing (Maxwell et al. 2018), geosciences and

geological mapping (Cracknell and Reading 2014;

Lary et al. 2016), mining biological data (Mahmud
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et al. 2018), vegetation mapping (Franklin 1995),

modeling the species distribution (Stockwell and

Peterson 2002), genetics and genomics (Libbrect and

Noble 2015) and ecology (Elith et al. 2006). The use of

ML techniques is not always a straight road, and many

challenges and pitfalls can be encountered (Halilaj

et al. 2018). On the other hand, these approaches offer

a wide range of opportunities, and they can offer new

and fruitful insights (Desjardins-Proulx et al. 2019).

In a nutshell, AI can be regarded as a broad concept

which encompasses a range of approaches in which

computers use algorithms to learn, create, communi-

cate and predict, while ML can be defined as a specific

subset of AI methods (European Commission 2019).

In turn, ML provides various approaches, such as

supervised learning, unsupervised learning, or rein-

forcement learning. ML comes with a multitude of

tools, techniques, and specific examples (Random

Forests, Neural Networks, Deep Learning, clustering),

whose learning mechanisms have various degrees of

complexity (Joshi 2020).

The use of AI and ML techniques in Landscape

Ecology was foreseen when such tools were in their

infancy by Zev Naveh, who wrote about ‘‘factual

updated information on the present status of the

landscapes and their ecodiversity, collected by inte-

grated field surveys and remote sensing, dynamic

Intelligent Geographic Information Systems, and

other advanced landscape ecological methods’’

(Naveh 1994). Important steps were taken in the last

several years towards this aim, and there is rapidly

increasing interest in developing operational

approaches relying on ML that could, for instance,

predict the distribution (Evans and Cushman 2009)

and abundance of species based on landscape patterns

(Chen et al. 2019). Indeed, several premises suggest

that AI-based approaches could be of interest in

tackling landscape ecological issues. There is an

increasing amount of geospatial or biodiversity-re-

lated data that waits to be used and interpreted. Indeed,

landscape ecology is particularly focused on Big Data

analytical issues given that it is the science of the

relationships between patterns and processes at mul-

tiple scales across space and time, which typically

involve many spatially and temporally varying factors

which must be measured continuously and interrelated

to predict their dynamic interactions (Cushman and

Huettmann 2010). ML approaches coupled to power-

ful cloud-computing platforms enable analysis of

datasets that until recently have been intractably large

and complex, and could offer solutions for extracting

relevant information (Ma et al. 2014) and further

translating data into scientific knowledge (Valletta

et al. 2017; Shirk et al. in review; Jones et al. in

review). Another strength of ML techniques is that

they are robust to nonlinear and complex interactions

(Silva et al. 2019; Kumar et al. 2021), and they provide

sound methods and algorithms for dealing with

complex systems under uncertainty and nonstationar-

ity (e.g., Jones et al. in press, Shirk et al. in press), such

as is common in ecological systems (Maldonaldo et al.

2018).

This paper aims to review the methods of AI that

were applied in landscape ecological and environ-

mental studies, with a focus on ML techniques. The

main objective was to understand to what extent ML-

related techniques have been used by the landscape

ecology community, how they have been applied and

how the field is changing. The specific objectives were

to identify the most ‘‘popular’’ ML methodologies

applied in related studies and to delineate the main

topics addressed. Another goal was to assess the trend

in the number of ML papers and the methods used.

Methods

Literature search and review protocol

A brief overview of the steps followed during the

literature search and review is presented in Fig. 1. The

literature search was conducted in December 2020 in

WoS (Web of Science). We used the features of the

WoS search engine that enabled us to provide groups

of words and logical operators. Thus, the search was

done according to the topic (which includes title,

abstract, author keywords, and keywords plus) for the

key-phrases (‘‘artificial intelligence’’ OR ‘‘machine

learning’’ OR ‘‘deep learning’’ OR ‘‘supervised

learning’’ OR ‘‘unsupervised learning’’ OR ‘‘rein-

forcement learning’’) AND [(landscape NEAR ecol-

ogy) OR (landscape NEAR pattern) OR (landscape

NEAR fragmentation) OR (landscape NEAR connec-

tivity) OR (landscape NEAR metric*) OR (landscape

NEAR planning) OR (landscape NEAR change*) OR

((‘‘land use’’ OR ‘‘land cover’’) NEAR pattern)].

As one can notice, we considered two groups of

key-phrases. The first one referred to the field of AI
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with a particular focus on ML and contained some

general phrases such as artificial intelligence, machine

learning, deep learning, supervised learning. unsuper-

vised learning, reinforcement learning. We sought to

not be overly specific in defining strict application of

ML methods, since the goal of this paper was to

identify papers that cover the full range of those that

mention or use ML approaches to evaluate the scope,

trend and focus ofML research in ecology. The second

group of key-phrases was directly related to landscape

ecology. We referred to major topics of interest, such

as patterns, fragmentation, connectivity, metrics and

planning, in combination with the key-phrases ‘‘land-

scape’’, ‘‘land use’’ and ‘‘land cover’’.

Our literature search using these criteria produced

396 papers. Two inclusion/exclusion criteria were

subsequently applied. Firstly, by using the Analyze

Results function provided by the WoS search engine,

we selected only those papers that corresponded to the

following eight WoS categories: Environmental

Sciences, Ecology, Geosciences Multidisciplinary,

Environmental Studies, Computer Sciences Interdis-

ciplinary Applications, Biodiversity Conservation,

Engineering Environmental, Regional Urban Plan-

ning. This step was performed to reduce papers to

those with a clear focus on ecological and landscape

science. After the application of this filter we retained

156 papers. Afterwards, each of these papers was

reviewed and those that were not directly related to the

topic of interest were removed from the list. Finally,

125 papers were selected as the database of the study.

A set of criteria was established for characterizing

the papers in the database and several attributes were

assigned to each item. Two different tracks were

followed in extracting attributes of these papers for

further analysis and review. The first one targeted an

objective and intrinsic assessment of the attributes of

each paper and for achieving this aim we extracted for

each paper the abstract, the author keywords and the

keywords plus, as provided by the WoS database. The

second track aimed to perform a subjective evaluation

by characterizing the papers against several criteria.

Two types of attributes were recorded. (i) The first

group focused on technical and methodological issues.

Thus, for each paper we extracted information refer-

ring to the ML technique(s) applied in the paper and

what it was used for. Besides the method itself and

other related information (software used, if technical

details regarding the use of the ML technique were

provided), we were interested if the ML technique was

Fig. 1 Workflow chart of the review process. In the upper box the steps of the literature search are represented. In the lower box a

synthesis of the review protocol was included
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part of a larger analytical or informatics pipeline and if

the paper brought a methodological contribution. (ii)

The second group included 27 attributes dealing with

the paper focus in relation to landscape ecology. Thus,

four of them referred to the characteristics of the study

area (non-urban, urban/settlement, mixed/not-avail-

able, fine scale). Five attributes were related to

landscape structure and patterns (land use/land cover,

land use/land cover change, 2D-patterns, 3D-patterns

and landforms, roads) while another six dealt with

environmental elements (soils, waters, vegetation,

agriculture, animals, climate). Another five attributes

referred to ecosystems (services/disservices, land-

scape epidemiology) and to disasters and human-

induced hazards (forest fires, storms and pollution).

We also evaluated if the paper considered the land-

scape-human interface, as reflected by five attributes

(socio-economic features, cultural landscapes, visual

quality, explicit implication of stakeholders and

explicitation of potential for decision and manage-

ment). Finally, we took into account the reference to

other ‘‘scapes’’ and whether the paper brought into

attention how patterns might affect processes.

Statistical analyses

To identify the main patterns and trends in ML

research in landscape ecology and to assess their

generality and robustness to different scoring criteria

and assessment methods, we conducted two comple-

mentary statistical analyses. The first one (cluster

analysis) relied on intrinsic information associated

with the papers (title, abstract, keywords). The second

analysis (non-metric multidimensional scaling) used

as input outcomes of the cluster analysis and the

attributes that were associated with the papers during

the review process.

Clustering analysis

We conducted a hierarchical agglomerative clustering

analysis (McGarigal et al. 2000) to group the papers

according to the frequency of individual words in their

titles, abstracts and keywords. The analysis was

intended to objectively identify the hierarchical

grouping structure of papers based on the frequency

of the words they use. The dataset for the clustering

was prepared by turning each word into a dummy

variable, and for each paper counting the number of

times it occurred in the title, abstract and keywords.

The matrix of word frequency across papers was then

filtered to remove all words that occurred in only one

paper, and all words that were deemed to be not

informative (e.g., particles, articles, adverbs). Follow-

ing the approach in McGarigal et al. (2016) we

computed the Bray Curtis distance matrix on the word

frequency matrix and then conducted hierarchical

clustering using Ward’s fusion method in R using the

hclust package. We then identified several levels of

clustering for further evaluation based on the fusion

pattern. We then used random forests (Breiman 2001)

to evaluate the relationship between the clusters

identified and year of publication and each of the

‘‘subjective’’ attributes recorded for each paper. This

enabled us to interpret the clustering, which is based

on objective textual analysis of word frequency, in

terms of the main characteristics of the paper such as

topic, focal issues and methods.

Non-metric multidimensional scaling

We applied a global non-metric multidimensional

scaling analysis (NMDS) (Kruskal 1964) to describe

the multivariate structure of the sample of papers in

terms of their attributes, such as methods and topic,

using the subjectively evaluated criteria described

above as variables. NMDS is an ordination method,

similar to Principal Component Analysis (PCA),

which depicts gradients of relatedness among entities

in multivariate space, based on a distance matrix

(McGarigal et al. 2000). The NMDS analysis is an

iterative process that seeks to minimize the overall

‘‘stress’’ of the configuration, by changing the position

of objects across a user-defined k-dimensional space

(Minchin 1987). We chose this type of analysis

because it is best suited for the kind of data that we

use in the study, given we are particularly interested in

patterns of differences and relatedness among papers.

Our data was encoded in discrete binary variables, and

NMDS analysis can successfully investigate the

structure of it because it uses a rank-based approach

for ordination, which is non-metric. Thus, as input, we

selected the membership to the two main clusters

found in the cluster analysis and the attributes of the

papers. We used the R 4.0.3 statistical software (R

Core Team 2017) and the package vegan (Oksanen

et al. 2016) for performing the analysis. The metaMDS

function was run with Bray–Curtis dissimilarity
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option, two dimensions, and 2000 maximum itera-

tions. The results were scaled using the standard

centering, PC rotation, and half change scaling.

Finally, we produced a plot of the plane spanned by

the first two axes of the NMDS solution.

Results

Methods of ML used in the studies—overview

We first analyzed the most ‘‘popular’’ methods of ML

applied in the papers considered in the study (Fig. 2,

see also Supplementary Material, Table S1). The most

frequent method was Random Forests, used in 51

papers. It was followed by Neural Networks, a

technique appearing in 34 papers, among which it is

explicitly mentioned that the neural network is a

Convolutional Neural Network in 11 papers, while in

two papers Recurrent Neural Networks were used. The

Support Vector Machine method was also popular,

appearing in 19 papers. The supervised techniques

appeared in 114 papers, while the unsupervised

techniques only in 12 (some papers used a mixture

of methods, combining the two approaches). Most

methods are data-driven techniques (Rodriguez-

Galiano et al. 2015), while some of them (such as

Logistic Regression, Generalized Linear Models,

Generalized Additive Models) could be also regarded

as hypothesis-driven methods (Taverna et al. 2004).

Two papers rely on the technique of Reinforcement

Learning. Three papers come from a completely

different perspective, namely the use of Expert

Systems. They are systems (or computer programs)

that use expertise, and that are capable of giving

advice or to solving problems in a given domain. The

approaches of these systems rely on the knowledge of

the experts in the field, and it is expected that the

solutions are comparable to the ones provided by the

humans (Lucas and van der Gaag 1991). The use of

knowledge-based approaches can be considered as one

of the early trends in ML (Joshi 2020).

The Random Forests method (Breiman 2001) is

widely used in ecology (Brieuc et al. 2018) and in

related fields such as remote sensing (Belgiu and

Dragut 2016), and our review confirms it is the most

commonly used ML method in landscape ecology

research. Its wide application likely stems from the

fact that it is quite easy to use and is flexible in

application to a wide range of data types and

questions. It has few assumptions, is non-parametric,

and performs well in predicting relationships in the

presence of nonlinear and interacting relationships

among variables (Rodriguez-Galiano et al. 2012;

Kumar et al. 2021). Other advantages of random

forest are related to the high accuracy and the ability to

determine the relevance of the variables (Cutler et al.

2007).

In recent years, various types of network-based

learning have become more well developed and more

widely used, and the number of papers applying such

techniques has rapidly increased. An Artificial Neural

Network, or simply a Neural Network (NN), is a

machine learning technique inspired by the human

thinking process (Zou et al. 2008). A Neural Network

integrates in a complex architecture combining several

smaller units (called perceptrons) and its task is to

process the input information for predicting the output

in the form of classification or regression (Joshi 2020).

A Convolutional Neural Network (CNN) is a special

case of NN, in which one of the key operations

performed is convolution. The convolution is an

operation that can detect meaningful features (i.e.,

characteristics of the data, cf. Géron 2019) while

storing fewer parameters (i.e., internal variables of the

ML model, cf. Goodfellow et al. 2016; Huettmann

et al. 2018). A CNN is suited for grid-type data and

therefore this NN model has a wide range of applica-

tions for processing imagery data (Albert et al. 2017),

in particular geospatial data or satellite imagery

(Huang et al. 2018). They were successfully applied

for image classification, including more demanding

tasks, such as extraction of human-made objects from

remote sensing imagery (Alshehhi et al. 2017). The
Fig. 2 Word cloud with the most frequent ML methods

(generated with https://www.jasondavies.com/wordcloud/)

123

1232 Landsc Ecol (2022) 37:1227–1250

https://www.jasondavies.com/wordcloud/


NN techniques are appealing due to their flexibility in

processing large and complex datasets, including

those related to vegetation, species, or biodiversity

(Christin et al. 2019). The methods relying on such

networks are, however, more challenging since inno-

vative network architectures could be necessary (Khan

et al. 2020). Overall, the emergence of NN-based

methods, the use of more sophisticated architectures

with multiple layers and of deep convolutional

networks is well correlated with the ‘‘deep learning

revolution’’ (Sejnowski 2018) occurring in the last

decade (e.g., Senior et al. 2020).

The Support Vector Machines represent a tradi-

tional method used both for classification and regres-

sion tasks. It has been widely applied successfully in

pattern recognition (Burges 1998) and in outlier

detection (Ma and Perkins 2003). The method is

particularly well suited for the classification of com-

plex relationships but is limited to relatively small or

med-size data sets (Géron 2019), and it can generalize

well even when the training sample is relatively small

(Mountrakis et al. 2011). Major challenges of this

method are choosing a suitable kernel (Huang et al.

2002) and the tuning of parameters (Chapelle et al.

2002).

Cluster analysis

Characteristics of the main clusters

The hierarchical clustering applied to our sample

papers found distinct structure among ML papers

based on the frequency of particular words in their

titles, abstracts and keywords. We described three

levels of nested hierarchical structure. In the first level,

there are two large main clusters describing the main

bifurcation in all ML/landscape ecology papers. The

first of these clusters is a large group (84 papers)

focused on landscape change, land use in a ‘‘landscape

architecture’’ context referring to urban and agricul-

tural systems, hydrology, and other geographical

topics. This cluster is further split in the next two

levels into two and then three subclusters (blue and

green boxes in Fig. 3).

The second cluster (41 papers) at the first bifurca-

tion split is stable across the next three levels of

splitting of the first cluster—2, 3, and 4-cluster

solutions—showing that the cluster is highly distinc-

tive. This is the group of ‘‘ecological’’ papers focusing

on habitat, species, ecosystems, and landscapes. It

includes papers that predicted landscape change in an

ecological context.

There is a clear difference in these two main

clusters in terms of date of publication (Supplemen-

tary Material, Fig. S1). The first cluster (cluster 1) is

very recent, with a median publication date of 2019

and a range from 2017 to 2020. The second cluster

(cluster 2) covers a wider range of years with a median

of 2014 and a range from 2005 to 2017. This shows

that the first cluster represents the most recently

emerging work and the second older work in applica-

tions of ML in landscape ecology.

A linear discriminant analysis using the year as a

predictor of cluster membership was able to classify

cluster 1 versus cluster 2 with 87% success. Given that

year of publication was not a criterion in the cluster-

ing, this shows there is a strong distinction between

recent and older work based on the words in title,

keywords, and abstract. The older cluster (cluster 2) is

also very homogeneous, with stability of membership

across the four first levels of clustering, while the first

newer cluster splits into subclusters, showing the more

recent work has diversified and that work in the last

three years is much more variable than work in the

prior 12.

The first split of the first cluster from level one is

into two sub-clusters. The first subcluster (19 papers)

word cloud emphasizes Land, Landscape, Water,

Forest, Wetland, Land use, Spatial, Urban, Habitat

(Supplementary Material, Fig. S2a). The second

subcluster (65 papers) focuses more on landscape

classification and landscape change mapping, with

also emphasis on connectivity (Supplementary Mate-

rial, Fig. S2b). This split is also highly related to the

year of publication (Supplementary Material, Fig. S3).

The first subcluster at the 3-cluster strata is exclusively

papers published in 2020, while the second includes

papers since 2017 with a median of 2019. This shows

that among the most recent papers there is a substantial

change in the field, as measured by similarity in title,

abstract, and keywords between themost recent papers

(2020) and the prior few years.

In the 4-cluster strata, the second subcluster from

the 3-cluster strata is split into two clusters. The other

three clusters remain as they were in the 3-cluster

solution. The first subcluster in the 4-cluster strata (38

papers) focuses on landscape, land use, urban, and

classification (Supplementary Material, Fig. S4a)
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suggesting a focus on land cover classification and

land use prediction (Supplementary Material,

Fig. S4b). The second cluster in the 4-cluster strata

(27 papers) focuses on landscape change, species

ecology, risk modeling. There is a substantial differ-

ence in the year of publication among these two

subclusters at the 4-cluster strata as well (Supplemen-

tary Material, Fig. S5), with the first subcluster

consisting largely of 2020 papers and the second

largely 2018 papers. The fact that all clusters at each of

the first three levels (2, 3, and 4-cluster strata) are

highly associated with the year of publication indi-

cates that there is a rapidly changing field of artificial

intelligence in landscape ecology such that the main

clusters of papers based on differences in titles,

abstracts and keywords are highly related to time

since publication, indicating rapid and coherent evo-

lution in the field over a very short period of time.

Evaluation of the differences between clusters

We used random forest with the Model Improvement

Ratio (MIR; Murphy et al. 2010) to evaluate the

differences among clusters in terms of methods used

and attributes of the paper. At the first level, the

random forest MIR for discriminating among the two

major clusters based on methods showed that all

methods variables were selected by random forest, but

there was a significant difference in their relative

importance (Supplementary Material, Fig. S6). The

most important variables, in order of decreasing model

improvement ratio, for discriminating between cluster

1 and 2 are the methods ES (Expert Systems), SVM

(Support Vector Machines), LoR (Logistic Regres-

sion), DT (Decision Trees), CNN (Convolutional

Neural Networks), GAM (Generalized Additive

Models), pipeline (the ML methodology was part of

a more complex pipeline), MaxEnt (Maximum

Entropy), BRT (Boosted Regression Trees) and NN

(Neural Networks). Methods such as ES, SVM, LoR,

DT, MaxEnt, GAM were present more frequently in

the second cluster. Instead, methods such as NN,

CNN, BRT, or the pipeline approach were recorded

more frequently in cluster 1 than in cluster 2. The RF

(Random Forests) method was present with equal

frequency in clusters 1 and 2. The out-of-bag estimate

of the error rate was 28%, and the confusion matrix

(Supplementary Material, Table S2) hints that in terms

of methodology, methods in cluster 1 are not present in

cluster 2, but some of the methods in cluster 2 are also

present in cluster 1.

In the random forest analysis predicting cluster

membership of the first two clusters based on paper

attributes, fewer variables were selected (Supplemen-

tary Material, Fig. S7). In order of decreasing variable

importance based on MIR, the attribute ‘‘vegetation’’

was the most important variable, followed by

‘‘3D/landforms/topography’’, and ‘‘Historical/Ar-

chaeology/Cultural/Tourism’’. The first two attributes

were more commonly a topic arising in the papers of

cluster 2, while the latter was more frequently

discussed in the papers of the first cluster. The out-

of-bag error for predicting class 1 versus 2 based on

paper attributes was 30.4%, with higher class error for

class 2 than class 1 (Supplementary Material,

Table S3).

In the random forest MIR modeling to predict

membership in cluster 1 versus cluster 2 in the three

cluster strata (excluding the original cluster 2 from the

2-cluster strata as it is unchanged), all methods

Fig. 3 Hierarchical clustering dendrogram showing colored

boxes for the 2, 3, and 4-cluster solutions. The red boxes

delineate the first two clusters with the largest differentiation.

The blue boxes delineate the three most differentiated clusters.

The green boxes delineate the four most differentiated clusters
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variables were selected, with RNN (Recurrent Neural

Networks) and SML (Supervised Machine Learning)

being by far the most influential, followed by CNN

(Convolutional Neural Networks) and UsML (Unsu-

pervised Learning), with the other variables having

similar and low effects (Supplementary Material,

Fig. S8). More commonly in cluster 1 versus cluster

2 are RNN, UsML, CNN, while SML is common to

both cluster 1 and 2, but more common in cluster 2,

XGBoo (XGBoost—Gradient Boosting Machine) is

slightly more common in cluster 2 than 1 and RF

(Random Forests) is equally common in both 1 and 2

of the three cluster strata. The out-of-bag error for the

discrimination between cluster 1 and 2 in the three

cluster tier was 22.62%, with a much higher class error

for cluster 1 than 2, meaning that cluster 2 uses

methods different than cluster 1, but some of the

methods in cluster 1 are also used in cluster 2

(Supplementary Material, Table S4).

For the random forest distinguishing papers in

clusters 1 vs 2 of the 3-cluster strata, theMIR indicated

that the attributes ‘‘2D-patterns’’, ‘‘potential deci-

sion/management’’, ‘‘animals’’, ‘‘mixed or N/A (study

area)’’, ‘‘vegetation’’, ‘‘water/ice’’, and ‘‘environ-

ment/climate’’ were the retained variables, with

‘‘2D-patterns’’ much more influential than the others

(Supplementary Material, Fig. S9). More common for

cluster 1 in the three cluster strata were the attributes

‘‘vegetation’’, ‘‘animals’’, ‘‘water/ice’’, ‘‘environ-

ment/climate’’, ‘‘potential decision/management’’

while the other two [‘‘2D-patterns’’, ‘‘mixed or N/A

(study area)’’] were more frequently occurring in the

papers in the cluster 2. The out-of-bag error for

predicting cluster membership in cluster 1 versus 2 in

the three cluster strata was 21.43%, with much higher

class 1 error than class 2, indicating perfect ability to

predict class 2 but extensive misassignment of class 1

as class 2 (Supplementary Material, Table S5).

For the random forest distinguishing papers in

cluster 2 versus 3 in the 4-cluster tier based on

methods, the MIR showed that BRT (Boosted Regres-

sion Tree), pipeline (the ML methodology was part of

a more complex pipeline), NN (Neural Networks) and

SVM (Support Vector Machines) were the most

important variables with other variables having sim-

ilar and low predictive ability (Supplementary Mate-

rial, Fig. S10). All these four methodological attributes

were more common in cluster 2 than 3 in the 4-cluster

strata. The out-of-bag error rate for separating clusters

2 and 3 in the 4-cluster strata was 55%with 100% class

error for cluster 3, with all observations misassigned to

cluster 2 (Supplementary Material, Table S6). The

random forest MIR analysis for distinguishing

between clusters 2 and 3 for the 4-cluster strata

showed that the attributes ‘‘LULC’’ (land use/land

cover) and ‘‘environment/climate’’ were the strongest

predictors, followed by ‘‘design/architecture/percep-

tion/visibility’’, ‘‘forest/fires/wildfires’’, ‘‘agriculture’’

and ‘‘animals’’ (Supplementary Material, Fig. S11).

The out-of-bag error for predicting cluster 2 versus 3

in the 4-cluster strata was 30.77% with higher class

error for cluster 3 than for cluster 2 (Supplementary

Material, Table S7). The attribute ‘‘LULC’’ was

common in both clusters 2 and 3 of the 4-cluster

strata, but more common in cluster 3. The topics

‘‘environment/climate’’, ‘‘forest/fires/wildfires’’,

‘‘agriculture’’, ‘‘urban/settlement’’ were more fre-

quently recorded in cluster 3, while ‘‘design/architec-

ture/perception/visibility’’ was more common in

cluster 2 than 3 and the attribute ‘‘animals’’ is equally

common in clusters 2 and 3 of the 4-cluster strata.

Non-metric multidimensional scaling

In order to facilitate visualization of how the ML

applications match the major interests of the landscape

ecological community, we applied the NMDS and

produced a plot of the plane spanned by the first two

axes. The resulting NMDS plot shows the best

configuration found, in which objects ordinated closer

to each other are more similar than those further apart.

It is worth noticing that NMDS has been successfully

applied in a similar study by Simensen et al. (2018),

who reviewed methods for landscape characterization.

The categories selected were the membership to the

first two main clusters provided by the cluster analysis

and the attributes of the papers, grouped into land-

scape structure and patterns, environmental elements,

ecosystems, disasters and human-induced hazards,

landscape-human interface, reference to other

‘‘scapes’’ and whether the paper brought into attention

how patterns might affect processes. The plot (Fig. 4)

perfectly reflects the cluster structure obtained from

the titles, abstracts, and keywords. In the figure, the

points belonging to cluster 1 and cluster 2 in the first

main bifurcation were colored with blue and yellow,

respectively. We also drew polygons containing the

two sets of points for emphasizing the separation that
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occurs along the first axis. By taking into account the

topics of these papers, we concluded that the first axis

(Supplementary Material, Fig. S12 and S13) covers

both the ecological context (environment, habitat,

species) as well as land-use from a ‘‘landscape-

architectural’’ perspective, with a focus on how

various systems (urban, agricultural) are structured

and how they evolve over time. The second axis in the

plot could be related to the landscape-human interface,

having several important facets: the cultural compo-

nent (landscape archaeology), the human perception

(visual quality and assessment), and the planning

perspective (planning, management, and decision).

Finally let us mention that there exists a ‘‘core’’ of

studies that directly link landscape patterns to pro-

cesses, but also studies that are tangentially connected

to the domain and that envisage related research topics

(e.g., climate change).

Discussion

Methods and research topics: evolution

and perspectives

There is an increasing number of papers applying ML

techniques in landscape ecological studies (Fig. 5).

Thus, out of 125 papers, 41 were published in 2020,

and 19 papers appeared in 2019. This recent evolution

goes along with the exponential growth of the number

of papers related to ML (Thessen 2016; Kong et al.

2020). Our analyses indicated that not only the number

of papers increased but also the methods became more

diversified and the more complex approaches were

brought into implementation in the last several years.

The papers in the database cover a wide range of

topics. Most of them are related to land cover/land use

classification and their change, including particular

types such as forest. There is also a relatively large

number of studies dealing with species and their

Fig. 4 Plot of the first two axes provided by the NMDS. The

points are colored according to their membership to the two

large clusters describing the main bifurcation. The convex hulls

of the two sets of points were drawn as polygons. The

interpretation of the two axes is derived from the topics of the

papers in the two clusters
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distribution. A few papers also bring to attention

socio-economic and cultural topics.

No unique hierarchy of methods

When addressing a landscape ecological problem with

ML methods, the natural question is whether there is

an a priori approach that is best suited to that problem.

Several papers considered in this study provided some

insights by comparing several methods in various

contexts. The main finding of those comparative

papers was that there is no unique hierarchy of models

and no method that is universally superior to others.

By no unique hierarchy of methods we mean that the

ML methods in use have a range of nonexclusive and

overlapping characteristics such that they cannot be

distinctly grouped into nested groups based on their

characteristics, and different methods can provide

complementary information and vary in their utility

depending on the structure of the data and question

being addressed. This statement goes along with the

‘‘No Free Lunch Theorem’’ claiming that there is no

single optimal solution for all types of problems

(Wolpert and Macready 1997). It can be deduced from

studies that reported comparable outcomes (Maldon-

aldo et al. 2018; Debanshi and Pal 2020b), especially

when working across scales (Dronova et al. 2012), that

combinations of methods (Saeidi et al. 2017; Xu et al.

2019a) or ensemble models may perform better

(Folmer et al. 2016). The difficulty of performing a

comparison resides not only in the nature of the

problem addressed but also in the fact that the

outcomes may depend on the dataset and the model

tuning (Chen et al. 2019). On the other hand, several

studies provided clear hints that specific methods

perform better in a given context. Some of them

indicated that the Random Forests technique outper-

forms other methods such as logistic regression for

prediction of forest loss (Cushman et al. 2017) and

species distribution modeling (Cushman and Wasser-

man 2018; Kumar et al. 2021), Generalized Additive

Models and Support Vector Regressions in predicting

soil nutrients (Jeong et al. 2017), other ensemble

models in crop classification (Shukla et al. 2018) or

than Decision Trees in a problem dealing with nest-

site selection (Frommhold et al. 2019). In modeling

stream impairment, Random Forests were found easier

to train and robust to overfitting compared to Boosted

Regression Trees (Giri et al. 2019). Other studies

indicated that Support Vector Machines performed

better than Random Forests in the classification of

livestock activities (Eikelboom et al. 2020) or that

Support Vector Machines were more appropriate than

Decision Trees and Random Forests for land cover

classification (Keshtkar et al. 2017).

In some analyses, two methods had comparable

performances: for instance Support Vector Machines

and Random Forests (Liu et al. 2020) or Random

Fig. 5 Evolution over time of the number of papers in WoS dealing with AI (blue, the actual number is divided by 1000) and with

applications of AI in landscape ecological studies (blue, the papers that represent the database of the study)
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Forests and Neural Networks (Lidberg et al. 2020).

The Deep Learning techniques offer an opportunity to

select some internal characteristics, such as a specific

architecture or particular activation functions. Thus,

various models were compared when assessing the

forest landscape visual quality (Jahani and Rayegani

2020), or a new convolutional neural network was

proposed for processing bioacoustic data (Chen et al.

2020).

A possible optimal approach would be to use a

specific method for each given task in multi-stage

analyses. For instance, one could combine unsuper-

vised and supervised methods, such as Bastille-

Rousseau and Wittemyer (2021) for characterizing

movescapes or Qian et al. (2020) for dynamic land use

simulations. Another solution is to use complementary

methods. For example, Chen et al. (2019) proposed

combined approaches, in which some techniques

(Neural Networks, Support Vector Machines or

k-Nearest Neighbors) were applied for prediction,

while Random Forests were used for assessing the

relative importance of various predictors. In the

studies relying on satellite imagery, a (complex) pre-

processing step could be required. It is worth men-

tioning that, especially in recent papers, the ML

methods were part of a more complex workflow and

were aggregated with other techniques.

Software tools supporting ML methods

Most studies used R as the main software tool for data

training, model validation, and testing. We also found

some analyses that relied on Python, Matlab, or other

specific tools (e.g., Weka or TreeNet). Indeed, the R

software environment plays a crucial role in ecological

analyses, and its popularity is reflected by the large

number of papers in which a suitable package of R was

used (more than 50 papers out of 125). On the other

hand, in the programming community, the Python

language has become very popular and is now widely

used in Machine Learning and Data Science. It

provides an increasing number of scientific libraries

and application programming interfaces that could be

of interest when applying ML techniques in landscape

ecological issues. Another advantage of Python

follows on the fact that it was adopted by the

geospatial community, and it can be used as a scripting

language in various geographical information systems

(GIS). From this perspective, developing tools or

instruments that apply ML techniques in the frame-

work provided by a GIS could make such approaches

available to a broader community of researchers and

practitioners.

Focal areas of application of the ML methods

The 125 papers we analyzed were identified by

applying the search protocol a wide range of topics.

Methods stemming from AI/ML were used for various

and, in several cases, intertwined tasks, such as

mapping, classification or feature extraction, model-

ing/association, prediction, simulation. Indeed, the

applications of ML techniques can cover a wide range

of topics (e.g., Olden et al. 2008, Huettmann et al.

2018, Gutzwiller and Chaudhary 2020).

Mapping

This task refers to an approach in which the final

outcome of the ML pipeline is a map or a geo-spatial

representation. In the 18 papers dealing with mapping,

the most commonly used method was Random Forests

(a share of 50%), followed by Neural Networks and

Support Vector Machines (both with a share of

16.67%). The mapping approaches focused on land

use/land cover (Huang et al. 2018; Storie and Henry

2018; Yin et al. 2018; Pavri and Farrell 2020), land and

vegetation cover (Evans and Cushman 2009; Samar-

khanov et al. 2019), or land cover change (Keshtkar

et al. 2017), by applying ML methods to satellite

imagery. More focused applications dealt with vege-

tation communities (Helmer et al. 2008; Henderson

et al. 2014; Mishra et al. 2020a). The vegetation

studies were also directed towards ecological niches

(Drake et al. 2006) and plant functional types

(Dronova et al. 2012) or referred to croplands and

agricultural fields (Debats et al. 2016; Dimov et al.

2017). Environmental issues were also tackled in

relationship with mapping insect distribution (Davies

et al. 2020) or aboveground Carbon density (Ashner

et al. 2016). More oriented towards the interface

between landscape and humans was the mapping of

aesthetic suitability (Saeidi et al. 2017).

Classification and feature extraction

In the classification and feature extraction tasks, the

aim is to use the ML algorithms for grouping the
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variables of interest in classes (pre-determined or not),

or to identify in the input data certain characteristics.

Random Forests and Support Vector Machines were

the most used methods used for classification and

feature extraction (with a share of 42.42% and

24.24%, respectively). In addition, Convolutional

Neural Networks were more frequently used in

classification and feature extraction papers (15.15%)

than other categories we evaluated. ML approaches to

classification were frequently applied in studies that

measured and characterized the landscape structure.

Determining land use/land cover is the most common

goal, but not the only topic of interest in ML

applications to classification and feature extraction.

The papers cover topics ranging from class delineation

(Chapman et al. 2010; Griffiths et al. 2010; Vander-

haegen and Canters 2017; Ross et al. 2018; Xu et al.

2019b; Athukorala and Murayama 2020) to the

identification of complex boundaries between urban

and non-urban land (Feng et al. 2016). Other land-

scape elements considered were soils (Chang et al.

2011; Lidberg et al. 2020), landforms, topographic and

morphological features (Ginau et al. 2020; Shumack

et al. 2020). Topics related to vegetation dealt with

species identification (Horning et al. 2020) or detec-

tion of growth (Jones et al. 2014; Bayr and Puschmann

2019) and covered a wide range of scales, from the

classification of vegetation communities at a very high

resolution (Greaves et al. 2019), to large-area crop

classification (Shukla et al. 2018). Special attention

was paid to issues related to animals. Thus, we found

topics such as recognition of bird species based on

acoustic information (Ross et al. 2018), identification

of tropical bat calls (Chen et al. 2020), establishing

predictor variables for nest-site selection (Frommhold

et al. 2019), classification of activities (Eikelboom

et al. 2020), analysis of functional connectivity for

wildlife species (Day et al. 2020) and extraction of

movescapes (Bastille-Rousseau and Wittemyer

2021). A few papers brought into attention topics

oriented towards the human perspective, such as

extraction of semantic features from photographs

(Payntar et al. 2021), dating test data of cultural layers

(Olsoy et al. 2020), and assessment of landscape

aesthetic value (Kerebel et al. 2019). It is worth

noticing that some papers brought to attention holistic

approaches, aiming to sort places according to their

characteristics (Aschwanden 2016) or to compute the

similarity between landscapes (Jasiewicz et al. 2014).

Modeling

Almost half of the papers in the database dealt with

modeling. This refers to establishing a relationship

between different entities or existing data, such that

certain variables or objects of interest (one or more)

are characterized by using appropriate descriptors.

The latter are expected to be more accessible, while

the former are supposed to be meaningful, but difficult

to be assessed or measured directly. The top three

modeling approaches, with a share of 31.59%,

15.79%, and 14.04%, respectively, include Random

Forests, Neural Networks, and Boosted Regression

Trees. The statistics showed that the range of methods

used for modeling was varied. For instance, the Expert

Systems and the Reinforcement Learning were found

as methodologies applied only for modeling problems.

In this group of papers, there was a large focus on

modeling land cover and land use, and their changes

(Bone and Dragicevic 2009; Huang et al. 2009;

Papadimitriou, 2012; Shafizadeh-Moghadam et al.

2017; Pourmohammadi et al. 2019; Pazur et al. 2020).

Some papers addressed specific topics such as esti-

mating the probability of occurrence of specific land

cover types (Zheng et al. 2020), modeling landscape

dynamics with expert-systems (Pechanec et al. 2012;

Pechanec 2013), modeling the land use suitability

(Djuric et al. 2013), identifying drivers of resilience

(Lucash et al. 2019) or the potential of change

(Cushman et al. 2017; Zubair et al. 2017). Applica-

tions of ML in landscape modeling often focused on

identifying drivers of change in relationship to various

explanatory variables (Wang et al. 2016; Christensen

and Arsanjani 2020) or determining the mechanisms

of land use change (Levers et al. 2018). Moreover, ML

methods are often employed to establish links between

land use patterns and environmental quality (Zhang

et al. 2020) or to investigate relations with structural

patterns (Arndt et al. 2019). Models of environmental

elements in our review focused on environmental

predictors (Jeong et al. 2017), geomorphic processes

(Perignon et al. 2020), acoustic-environmental con-

nections (Mullet et al. 2016), stream impairment (Giri

et al. 2019), and water richness in relationship to CH4

emissions (Debanshi and Pal 2020a) or wetland habitat

suitability (Debanshi and Pal 2020b). Of particular

interest is the modeling of phenomena that might

impact the environment: drivers of fire occurrence

(van Beusekom et al. 2018; Miranda et al. 2020),
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assessing the impact of 3D urban architecture (Sun

et al. 2020) or landscape composition (Osborne and

Alvares-Sanches 2019) on the land surface tempera-

ture, effect of land-use distribution on particulate

matter pollution (Li et al. 2020), monitoring of

environmental degradation (Rachmawan et al. 2018).

Vegetation-related topics often focused on identi-

fication of species (Balzotti et al. 2020) and prediction

of species distributions (Altartouri et al. 2015), with a

focus on biodiversity hotspots (Werneck et al. 2012).

The determinants of the vegetation structure were

studied in different contexts, such as identifying

relationships between landscape phenology and flow-

ering (Huete et al. 2019), determining explanatory

variables for vegetation features (Barbosa and Asner

2017), assessing the influence of environmental fac-

tors on foliar distribution patterns (Balzotti and Asner

2018) and investigating the potential impact of large-

scale climate phenomena (El Niño-Southern Oscilla-

tion) on crops (Lu et al. 2017). Vegetation dynamics

research employing ML methods often focused on

modeling forest loss at multiple scales (Cushman et al.

2017) or predicting drivers of vegetation change (Aiba

et al. 2016; Balzotti et al. 2020; Vidal-Macua et al.

2020). Animals, livestock, and wildlife species were

studied in a multitude of contexts. The most frequent

focal topics were predicting species distributions

(Magness et al. 2008; Giles et al. 2016; Kampicher

and Sierdsema 2018; Bounas et al. 2020; Thomson

et al. 2020), species richness (Hopton and Mayer

2006), habitat suitability (Folmer et al. 2016; Singh

et al. 2017; Wagner et al. 2020), including co-

occurrence of wildlife and livestock species (Hassell

et al. 2021). Other papers focused on specific auteco-

logical topics for particular species or systems (e.g.,

how birds are attracted by nocturnal lights (McLaren

et al. 2018). Genetic approaches, referring to genetic

structure (Hether and Hoffman 2012) and gene flow

(Fountain-Jones et al. 2017) were also tackled with

ML methods.

Despite a large number of modeling papers, the

human-related component was only infrequently

addressed. We found topics such as the relationship

between socio-economy and cultural landscapes

(Maldonaldo et al. 2018), the relevance of pho-

tographs in the context of cultural ecosystems

(Karasov et al. 2020), assessment of the visual quality

of forest landscapes (Jahani and Rayegani 2020) as

well as models of pedestrian reactions in an urban

environment (Naderi and Raman 2005).

Prediction and simulations

This task refers to applying ML techniques for

establishing relationships between various variables,

but, unlike the modeling, the focus is on simulated

data. The most frequently used methods in prediction

and simulation were Random Forests (59.10%) and

Neural Networks (22.73%). Ecological predictions

with ML methods frequently focused on especially

species occurrence and distribution (Liu et al. 2011;

Donnelly et al. 2017; Curry et al. 2018; Baltensperger

and Joly 2019; Chen et al. 2019) and habitats

(Kennedy et al. 2015), including prediction of wildlife

damage to agricultural resources (Sommerfeld et al.

2021) or the spread of zoonotic-related diseases

(Brock et al. 2019). Simulations or predictions also

frequently focused on land use/land cover changes

(Shade and Kremer 2019; Xu et al. 2019b; Qian et al.

2020), with particular attention to agricultural issues

(Moriondo et al. 2013; Yaramasu et al. 2020), biomass

(Hudak et al. 2012) or soil organic carbon stocks

(Hounkpatin et al. 2018). Particular attention was paid

to water systems (Konapala et al. 2020; Talukdar and

Pal 2020) and their behavior in the context of

disturbances (Fox and Magoulick 2019). Prediction

of disasters refers to determining fire probabilities

(Gray et al. 2018). Recent contributions refer to the

socio-ecological context in relation to a bundle of

ecosystem services (Lorilla et al. 2020) and the

simulation of stakeholder involvement (Tian et al.

2020).

Overall, the usefulness of ML methods resides in

their abilities to process a large amount of data and to

address nonlinearities and more complex dependen-

cies (Elith et al. 2008; Kumar et al. 2021). Thus, by

using supervised ML techniques, one can model/

predict how one or more variables of interest depend

on numerical descriptors which are at hand. The nature

of the model depends on the ML technique itself

(parametric, non-parametric) and on the datatype used

(classification or regression-type model).

Opportunities and challenges

When tackling a specific problem with AI or ML

methods (Fig. 6), the first question that might arise
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would be whether there is an ‘‘appropriate’’ method to

address it. The comparisons provided by several

studies hinted that it is hard to provide a clear and

unequivocal answer. Some evaluations have sug-

gested partial hierarchies and those studies might be

useful when attempting to select a methodology. On

the other hand, it is important to correctly apply,

follow and describe theMLworkflow (Géron 2019). A

minimal protocol is necessary, such as indicating the

underlying hypothesis for choosing a specific method,

detailing the number of features, the size of the

training/validation/test datasets, indicating the mea-

sure of the generalization error, providing technical

details on the architecture in the case of the Neural

Networks (number of layers, activation functions

used, etc.). Several shortcomings may appear and

need to be considered, such as variables overlooked,

patterns that might influence the classification, and

technical issues that might decrease the accuracy

(Brovelli et al. 2008). From this point of view,

Fig. 6 Relationship and intertwining between landscape

ecological analysis (green) and machine learning (blue). The

data analysis flow is adapted from Willcock et al. 2018, Fayyad

et al. 1996. The machine learning approaches are adapted from

Géron 2019, Hapke and Nelson 2020, and Zhou 2018
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presenting key technical details instead of generalities

regarding the approaches proposed has the advantage

of the study replicability. Furthermore, since ML

essentially relies on data, the applications of its

associated techniques in landscape ecological prob-

lems could provide valuable information and exam-

ples for ML or Data Science researchers. This

highlights once again the need to carefully apply the

specific ML rules and protocols. The communication

between scientists andML developers (Liu et al. 2018)

would be beneficial and could open interdisciplinary

perspectives. Moreover, the black boxes of the ML

techniques (Lucas 2020) could become this way more

translucent.

The areas of applicability could be extended by

taking over and adapting emerging methodologies and

approaches from related fields, such as Computer

Vision (Grys et al. 2017), Geometric Deep Learning

(Bronstein et al. 2017), or Data Science (Farley et al.

2018). Indeed, the first two research directions take

into account the spatial representation of data (2D and

3D, respectively), while the latter one could propose

suitable approaches for handling the data. When

referring to data, the availability of public repositories

could be indeed useful for comparing various models,

or even for getting samples for training and testing the

models. More and more resources for geo-spatial data

or biodiversity data can be freely accessed. The

diversification of the methodologies and the extension

of the datasets could be fruitful in studying topics that

are of interest, such as the effect of sample size (Luan

et al. 2020), the impact of scale (Dronova et al. 2012),

and proceeding to multiscale analyses (Cushman et al.

2017).

ML techniques are very powerful, but one needs to

appropriately balance them with the capacity of

human interpretation. This is due, for instance, to

some limitations of the ML (and, more generally, AI)

approaches (Hernandez-Orallo 2017), often related to

their sensitivity to training which can affect their

generalizability and predictive power. It is therefore

desirable to use expert knowledge and to have

extensive human supervision and interpretation when

interpreting and, if applicable, when implementing the

outcomes of automated-driven analyses (Portelli

2020). Moreover, the needs and perspectives of

practitioners need to be taken into account, otherwise

such studies would remain at theoretical level (Mac

Aodha et al. 2014). This calls for tools that are easy to

use and interpret, and which have a user-friendly

interface that can be easily integrated into a GIS.

Another solution could be provided by the participa-

tory approaches (Fagerholm et al. 2012). The partic-

ipation of various stakeholders could be beneficial in

both directions: more data could be gained for feeding

various algorithms and, in turn, the practitioners could

benefit from new insights useful for management,

planning, or decision.

Last but not least, an important topic when

discussing AI applications refers to the need for

ethics. This issue receives increasing attention at the

international level, and regulations or methodologies

are provided by various organisms (e.g., COE 2020).

Such rules are applicable when using automated ML

techniques, but especially when designing more

intelligent systems that can take decisions by them-

selves or in collaboration with a human.

Conclusions

This paper provides an objective review and quanti-

tative analysis of the current uses, trends and future

directions of AI applications to landscape ecological

studies, with a focus on ML techniques. A cluster

analysis based on the titles, abstracts, and keywords of

125 papers indicated that there is a clear distinction

between recent and older work in terms of the

methods, topics and scope of research. In particular,

this hinted at a rapid evolution in the field over a very

short time period and to a high degree of synchro-

nization between landscape ecological studies and the

ML trends more broadly across fields. Specifically, in

landscape ecology, ML techniques such as random

forests were adopted early and continue to be widely

used, while methods related to neural networks and

Deep Learning are now rapidly being advanced and

increasingly used.

The majority of the papers in the database we

evaluated used ML techniques. Among them, the most

common was Random Forests and this method was

rather uniformly used over time. In recent years, other

methods, related to the development of Deep Learn-

ing, were tested and adopted by the community. This

suggests a broadening of the methodological base of

ML and AI as applied in landscape ecology and a rapid

increase in technical sophistication. We believe this

foreshadows rapid expansion of landscape ecology
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research facilitated by ML and AI to address complex,

multiscale, temporally dynamic interactions that pre-

viously have been intractable due to complexity and

data volume.

We found that there is no unique and universal

method to address a given task. ML techniques rely on

data, and a rigorous application of the ML rules and

best practices is necessary. Moreover, it is worth

noting that recently the applications of the ML and AI

methods in landscape ecology have increasingly been

incorporated into more complex workflows which

provide streamlined pipelines for multi-stage analysis.

This suggests that the applications of ML and, by

extrapolation, of AI in landscape ecology are becom-

ing rapidly more diverse, sophisticated and powerful

in addressing increasingly demanding problems.

ML methods have been used for a multitude of

tasks, such as mapping, classification/feature extrac-

tion, modeling, prediction, and simulation. We found

that land use and land cover mapping is the topic

which first began to employ AI and ML methods, and

now they are increasingly used in a much wider range

of topics, such as landscape architecture, scenario

optimization, complex systems research and ecolog-

ical forecasting. The cluster analysis, combined with

the non-metric multidimensional scaling indicated a

complex and evolving trajectory of ML and AI

applications in landscape ecology, with recent prolif-

eration of both the number and the range of methods

and topics employed. The topics of the papers covered

ecologically oriented issues, oriented towards the

ecological context and, especially more recent work,

focusing on landscape change and land use in a

‘‘landscape architecture’’ context. Another important

dimension of the studies was related to the landscape-

human interface.

Overall, there is an increasing and sustained interest

in applying AI and especially ML techniques in

landscape ecological problems. Increased communi-

cation with the members of the ML community would

open new perspectives for interdisciplinary

approaches. Moreover, extending the collaboration

with practitioners and stakeholders could contribute to

a democratization of these approaches and could lead

to novel applications.
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