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We carried out a systematic review and meta-analysis of the effects of forest thinning and burning
treatments on restoring fire behavior attributes in western USA pine forests. Ponderosa pine (Pinus
ponderosa) and Jeffrey pine (Pinus jeffreyi), with co-occurring species, are adapted to a disturbance
regime of frequent surface fires, but extended fire exclusion and other factors have led to historically
uncharacteristically dense stands and high fuel loadings, supporting high-severity fires. Treatments to
begin to reverse these changes and reduce fuel hazards have been tested experimentally and obser-
vations of wildfire behavior in treated stands have also been reported. Using a systematic review
methodology, we found 54 studies with quantitative data suitable for meta-analysis. Combined treat-
ments (thinning + burning) tended to have the greatest effect on reducing surface fuels and stand den-
sity, and raising modeled crowning and torching indices, as compared to burning or thinning alone.
However, changes in canopy base height and canopy bulk density were not consistently related to
treatment intensity, as measured by basal area reduction. There are a number of qualifications to
the findings. First, because it is not feasible to subject treated areas to severe fire experimentally,
inferences about potential fire behavior rely on imperfect modeling techniques. Second, research
has not been carried uniformly over the ranges of the pine forests, although we found no significant
differences in treatment effects between regions or forest types. Overall, however, meta-analysis of
the literature to date strongly indicates that thinning and/or burning treatments do have effects con-
sistent with the restoration of low-severity fire behavior.

� 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Ponderosa pine (Pinus ponderosa) and Jeffrey pine (Pinus jeffreyi),
alone or in mixed forests with other conifers or broadleaved spe-
cies, range over approximately 10 million ha of western North
America, forming forests of great ecological and social value. These
pines are adapted to a disturbance regime of frequent surface fires
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(Keeley and Zedler, 1998; Stephens et al., 2003), consistent with
the dry, fire-prone habitats they have occupied over evolutionary
time scales. Frequent fires maintained relatively open uneven-aged
forests with abundant, diverse understories over most of the land-
scape (Cooper, 1960; Minnich et al., 1995; Brown and Cook, 2006),
although some areas may also have experienced infrequent high-
severity fires (Sherriff and Veblen, 2007; Pierce and Meyer, 2008;
Brown et al., 2008; Jenkins et al., 2011). Forest structure, composi-
tion, and disturbance patterns across the vast range of these spe-
cies were affected by impacts associated with industrialized
society: grazing of large herds of introduced livestock (Belsky
and Blumenthal, 1997), logging and conversion to even-aged for-
ests (Naficy et al., 2010), and extended fire exclusion starting as
early as the mid-19th century (California, Oregon, South Dakota)
or beginning as late as the mid-20th century (northern Mexico)
(Allen et al., 2002; Stephens and Fulé, 2005). As a consequence, for-
est structure changed to dense stands of young trees, forest floor
fuels accumulated, and fire-sensitive conifers such as Abies and
Pseudotsuga expanded in pine/mixed-conifer ecotones (e.g., Cocke
et al., 2005). High-severity wildfires that killed most or all over-
story trees in patches >10 ha (hereafter called ‘‘severe’’ fires) were
reported in ponderosa pine forests of the Sierra Nevada as early as
the mid-19th century (Leiberg, 1902) and in the early 20th century
in the Pacific Northwest (Weaver, 1943) and Southwest (Cooper,
1960). But in recent years, heavy contiguous canopy and surface
fuels (Fiedler et al., 2002) facilitated the exponential growth in
the size of severe fires, especially during droughts that have be-
come increasingly frequent with warming temperatures (Wester-
ling et al., 2006). Severe fires in these formerly fire-adapted
forests have led to widespread topsoil loss (Moody and Martin,
2001), tree mortality, conversion to non-forest vegetation (Savage
and Mast, 2005), and invasion by introduced weedy species (Kee-
ley, 2006). Strikingly similar patterns of larger fires resulting from
higher fuel loads and warmer climate have been observed across
pine forests of the Mediterranean Basin in southern Europe and
northern Africa (Pausas, 2004; Leone and Lovreglio, 2004).

Early in the 20th century, Aldo Leopold (1924, 1937) called
attention to the problems stemming from changing patterns of
ecosystem structure and disturbances. Early experiments in eco-
logical restoration through reinstatement of surface fire by means
of controlled burns (Weaver, 1951; Lindenmuth, 1960; Sweeney
and Biswell, 1961) were poorly received by some forest managers
(Brown, 1943), who preferred to rely on intensive silvicultural cut-
tings to control density. By the 1960s and 70s, fire policies were ad-
justed to account for the ecological role of fire and permit more
burning (Stephens and Ruth, 2005). Relatively progressive fire-
use policies are credited with successful restoration of fire-resilient
forests in some places, especially remote and unharvested forests
such as those of the Gila Wilderness in New Mexico (Rollins
et al., 2001). However, many forests have become altered to the
point where surface fires are insufficient to reduce many dense
stands (Sackett et al., 1996; Miller and Urban, 2000). Impelled by
the costly and damaging effects of severe fires, a number of exper-
imental and observational studies have focused on combined treat-
ments of tree thinning, prescribed burning, and other interventions
that may restore fire-resilience as well as structural, compositional,
and functional attributes that were characteristic of these ecosys-
tems before recent anthropogenic disruption (Covington et al.,
1997; Stephenson, 1999; Allen et al., 2002; Stephens et al.,
2009). The literature on this topic has grown rapidly but has not
been synthesized in a comprehensive manner.

Our focus in this systematic review is to ask if thinning and/or
burning treatments on ponderosa pine and related forests in wes-
tern USA produce restoration of natural fire behavior. Ecological
restoration is ‘‘the process of assisting the recovery of an ecosys-
tem that has been degraded, damaged, or destroyed’’ as compared
to reference conditions (Society for Ecological Restoration Interna-
tional, 2004). Ecologists have debated the merits of the term ‘‘nat-
ural’’ vs. ‘‘historical’’ in describing reference ecosystems (a detailed
discussion including the role of Native Americans is available in
Stephenson, 1999). Here we use ‘‘natural,’’ first because reference
ecosystems are not only found in the historical past but also in
modern times, such as remote or protected areas, and second be-
cause the implicit link to specific time periods in the term ‘‘histor-
ical’’ tends to understate the evolutionary lineage of ecological
attributes.

Many practical fuel treatments have been developed outside
the specific framework of ‘‘ecological restoration,’’ but still with
strong consideration of reference conditions. A key example is
the USA-wide research program called ‘‘National Fire and Fire Sur-
rogate Study’’ (FFS) (Stephens et al., 2009). A ‘‘fire surrogate’’ is a
treatment designed to restores stand structure without the func-
tion of burning, which may be useful because of the costs, risks,
and smoke associated with fire use. Research from these experi-
mental sites includes assessment of effects on fire behavior (e.g.,
Stephens and Modhaddas, 2005). Some treatments to reduce fuels
or alter fire behavior were designed with no attention or resem-
blance to reference ecosystems. For example, clearing of long but
narrow firebreaks was a common, albeit often ineffective and eco-
logically damaging, forestry practice to interrupt fuel continuity
(Agee et al., 2000). These latter of treatments are now uncommon
in the western USA and will not be considered in this review.

Literature reviews have not kept pace with the growing body of
literature in the field and there are no systematic reviews on the
topic. Existing reviews have examined specific aspects of the effec-
tiveness of forest treatments. For example, Fernandes and Botelho
(2003) reviewed the effectiveness of prescribed burning treat-
ments. Graham et al. (2004) integrated silvicultural and fire behav-
ior concepts to develop treatment recommendations. Agee and
Skinner (2005) drew upon the literature to standardize concepts
and terminology associated with fuel reduction. The most recent
and thorough review, published by Hunter et al. (2007), included
the topics of treatment effects on fire behavior and the relationship
between ecological restoration and other fuel treatments, but these
themes comprised a small fraction of the report (2 of 75 pages).

Systematic review methodology is increasingly utilized in envi-
ronmental issues to provide a thorough assessment of published
evidence using a predetermined protocol (Fazey et al., 2005; Pullin
and Stewart, 2006). We undertook a systematic review of the liter-
ature to examine the primary question, do thinning and/or burning
treatments on ponderosa pine and related forests in western USA
produce restoration of natural fire behavior? We used studies with
quantitative data that could be compared with meta-analysis tech-
niques (Gurevitch et al., 1992). We addressed three sub-questions:
(1) what is the functional relationship between forest structure
and fuel variables and fire behavior? (2) How might relationships
differ among pure ponderosa or Jeffrey pine forests versus related
forests (pine-oak and dry mixed conifer)? (3) How might regional
variability (Pacific Northwest, Sierra Nevada, Rocky Mountains,
and Southwest) affect outcomes?
2. Methods

We initiated the review following the steps suggested by Pullin
and Stewart (2006): (1) formulate questions, (2) design protocol
and search strategy, (3) perform data extraction, and (4) conduct
analysis. The review team (co-authors) drafted primary and sec-
ondary questions, which were then refined in informal discussions
with outside experts. We completed a review protocol that de-
scribed criteria for data searching, inclusion, and quality of evi-
dence (Table 1). The protocol was formally reviewed by the



Table 1
Criteria for inclusion of studies and corresponding quality of evidence assigned in the review.

Inclusion
category

Specific criteria

Subjects Western (Pacific Northwest, Sierra Nevada, Rocky Mountains, and Southwest) coniferous forests dominated by (1) ponderosa pine (Pinus ponderosa),
Jeffrey pine (Pinus jeffreyi), (2) pines mixed with oak (Quercus spp.), or (3) dry mixed conifer forests dominated by one of these pine species but also
containing firs (Abies spp.), Douglas-fir (Pseudotsuga menzieseii), other pine species (e.g., Pinus lambertiana, Pinus coulteri) and aspen (Populus
tremuloides)

Timeframe Searched 1970-present, but references to relevant earlier research that appeared in the literature were incorporated
Treatments Thin only; burn only (prescribed fire and/or wildland fire use); thin and burn; control (untreated)
Outcomes Forest stand and fire behavior modeling variables: species composition, surface fuels, tree density, basal area, canopy cover, canopy bulk density and

canopy base height, crowning index and torching index based on fire behavior simulation models, and observations of actual fire behavior and
severity
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Centre for Evidence-Based Conservation, a non-profit international
organization at Bangor University, Wales, that supports systematic
reviews. The final version of the protocol, after addressing peer re-
viewer comments, was posted online (http://www.cebc.ban-
gor.ac.uk/, Systematic Review No. 42).

We searched online databases using internet search engines
(Ingenta, Web of Science, JSTOR, Google Scholar), online govern-
ment databases, and electronic libraries of universities in the wes-
tern U.S. with graduate programs in Forestry. Search terms
included: western forests AND fuels treatments, fuels treatments
AND ponderosa pine, fuels treatments AND Jeffrey pine, fuels treat-
ments AND mixed conifer, thinning AND ponderosa pine, thinning
AND Jeffrey pine, thinning AND mixed conifer, burning AND pon-
derosa pine, burning AND Jeffrey pine, burning AND mixed conifer,
fire behavior AND ponderosa pine, fire behavior AND Jeffrey pine,
fire behavior AND mixed conifer. Searches were conducted on both
the common and scientific names of the species. Types of literature
included refereed journal articles, peer-reviewed and non-peer-re-
viewed reports such as government documents and conference
proceedings, theses and dissertations, and unpublished manage-
ment reports. We applied inclusion criteria (Table 1) to each study
we encountered in the search; those considered relevant were im-
ported into a database for review.

All studies were reviewed by a member of the review team.
Reviewers did not assess papers that they authored. Review data
were summarized in a spreadsheet using categories describing
the subjects (forest type, geographic region), treatments, and out-
comes (Table 1).

Although the review question focused on fire behavior, testing
treatment effectiveness in restoring natural fire behavior is not
amenable to direct experimentation. Numerous studies have
shown that treated sites can be burned safely and effectively with
prescribed fire (e.g., Sackett et al., 1996; Stephens and Modhaddas,
2005), but it is not possible to deliberately ignite severe experi-
mental fires in treated pine forests. Two alternative methods of re-
search, both included in this review, are simulation modeling of
fire behavior (e.g., Scott, 1998; Stephens, 1998; Fiedler et al.,
2002) and retrospective observational studies evaluating the
behavior of severe wildfires that burned through treated and
paired untreated forests (e.g., Pollet and Omi, 2002; Cram et al.,
2006; Martinson and Omi, 2003; Finney et al., 2005).

Quantitative data on fuel and forest structure were compared
across treatments, forest types, and regions using meta-analysis
techniques (Gurevitch et al., 1992). Meta-analyzes commonly use
‘‘effect sizes’’ (i.e., Hedges’ d, Cohen’s d), which are calculated
based on sample size and variance, assuming that studies with
large sample sizes and smaller variances are more reliable (Hedges
and Olkin, 1985; Rosenberg et al., 2000). However, standard devi-
ation between replicate means is often not: (1) reported, (2) avail-
able because sample size is one, or (3) meaningful because the size
of a replicate varies dramatically from study to study. Thus, we
used a response ratio as our effect size calculation, defined as ln
(treatment mean/control mean) (Hedges et al., 1999). This metric
has become more commonly used in meta-analysis (Mosquera
et al., 2000; Côté et al., 2001) as it is designed to measure relative
differences (often appropriate in ecological studies). In addition,
rather than weighting by the inverse of the sample variance, we
used a biologically meaningful weighting scheme where each ef-
fect size was weighted by the total number of sites sampled (Mos-
quera et al., 2000).

Using Metawin software (v.2, Rosenberg et al., 2000), we built
generalized linear models to examine relationships between ef-
fect sizes and covariates (treatment, forest type, geographic re-
gion). For each categorical variable with P2 observations, we
calculated a mean effect size (MES) with confidence intervals gen-
erated by bootstrapping (Adams et al., 1997), corrected for bias
for unequal distribution around the mean. We presented the
back-transformed response ratios which reflect the number of
times greater the treatment mean was than the control mean. Ef-
fect sizes were considered to be significantly different from 1
when the confidence interval did not include 1. An effect size of
1, positive, or negative indicated no change between treatment
and control, an increase in the response variable compared to
the control, or a decrease in the response variable, respectively
(Rosenberg et al., 2000).

Publication bias in meta-analysis occurs because studies with
significant results are more likely to be published than those with-
out significant results (Arnqvist and Wooster, 1995). We reduced
the possibility of bias by thoroughly searching theses, government
documents, and other non-published studies to acquire data. In
addition, we visually examined normal quantile and funnel plots
to confirm data normality. We controlled for the problem of lack
of independence in data (i.e., multiple effect sizes can be calculated
from the same study using the same control for multiple treat-
ments) by including a covariate to identify the origin of the data
(reference), which was an indicator variable to uniquely identify
each study. This approach allowed us to analyze the relative
importance of ‘‘reference’’ compared to the other covariates in
our model selection approach. The analysis revealed that
only one variable (crowning index) showed a ‘‘reference’’ effect,
making this a relatively unimportant variable in explaining effect
sizes.
3. Results and discussion

We found 139 publications that met the inclusion criteria (Ta-
ble 1) for incorporation into the review, of which 54 studies had
quantitative data suitable for meta-analysis (Appendix A). The
studies covered most of the ranges of the subject forest types but
the southern part of the region, especially Arizona and California,
were the most represented (Fig. 1). Relevant studies were pub-
lished relatively recently, with 108 (78%) of the 139 having been
published after 2000.

http://www.cebc.bangor.ac.uk/
http://www.cebc.bangor.ac.uk/


Fig. 1. Geographical distribution of the range of ponderosa pine, pine-oak, and dry mixed conifer forests as well as locations of studies included in the review. Code numbers
refer to the study ID values (Appendix A).
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3.1. (1) What is the functional relationship between forest structure
and fuel variables and fire behavior?

Six variables related to surface fuels and forest structure had suf-
ficient data for meta-analysis (Fig. 2). Fuel variables included (1) fine
woody debris, woody material <7.62 cm in diameter, (2) sound
coarse woody debris >7.62 cm in diameter, and (3) rotten coarse
woody debris. Surface fuels showed a common pattern of significant
reduction compared to controls in burn-only treatments, significant
increase in thin-only treatments, and little change in thin/burn
treatments. The probable mechanisms explaining the countervail-
ing tendencies are the consumption of woody debris by fire vs. the
addition of debris by thinning, which may have cancelled each other
out in the combined thin/burn treatments.

Forest structure, measured by (4) tree density, (5) basal area,
and (6) canopy cover, included the most frequently reported vari-
ables in the literature, with over 60 observations for density. These
variables are related to fire behavior through tree spacing, ladder
fuels, mass, and contiguity of canopy fuels. Forest structural vari-
ables were consistently significantly reduced compared to controls
(Fig. 2), but in contrast to surface fuels, the treatments generally
had a synergistic rather than antagonistic effect. Mean effect sizes
tended to be reduced most in the thin/burn combination.
Canopy fuel variables were less frequently reported in the liter-
ature and results were not consistently related to forest structural
changes, as illustrated in Fig. 3. All treatments were combined for
these comparisons because of the relatively small numbers of
observations reported in the literature (about 15 observations
per treatment). Canopy base height (CBH), a measure of the ability
of a surface fire to pre-heat canopy fuels and transition to crown
fire, was generally increased in comparison to controls after treat-
ment but there was no relationship between the changed values
and basal area effect sizes. Canopy bulk density (CBD), was weakly
related to basal area effects (r2 = 0.25). It is a counterintuitive result
that reductions in basal area, which is directly proportional to bio-
mass, did not produce linear responses in canopy fuel variables,
but there are several possible explanations. First, CBH is almost al-
ways raised, even by treatments that have very limited effects on
basal area or biomass, such as low-severity prescribed burning or
‘‘minimal’’ thinning, because the smallest and shortest trees are
most vulnerable to fire and/or preferentially targeted for thinning
(Fulé et al., 2006). Second, CBH has been calculated by several dif-
ferent methods (e.g., straight averaging, density profile, lowest
quintile) that produce inconsistent results (Cruz et al., 2003). The
CBD, while more consistently related to basal area effects than
CBH, has been calculated with different allometric equations for



Fig. 2. Mean effect size and bootstrapped confidence intervals for six fuel and forest structure variables compared by treatment. Mean effect sizes are scaled as proportions of
control values (1.0 or 100%); values above 1 indicate proportional increases over controls, values below 1 indicate decreases. Numbers above effect sizes indicate number of
observations for each treatment.
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ponderosa pine, which yield numerically disparate values (Rocca-
forte et al., 2008), and with a variety of methods (e.g., canopy bio-
mass divided by canopy volume, density profile; Cruz et al., 2003).
The canopy volume method in particular lends itself to conflicting
results because canopy volume shrinks as canopy base height rises,
so the reduction in canopy biomass may be overridden by a greater
decrease in volume, leading to the paradoxical result of increased
CBD following treatment. Two implications may be drawn from
the canopy fuel results: first, treatments did alter canopy fuels to
make forests less vulnerable to both passive and active crown fire.
Second, the high variability in the canopy fuel data is likely due in
part to the lack of standard calculation methods and the small
number of sites where these variables have actually been mea-
sured (Scott and Reinhardt, 2005). Until the analytical environment
is improved with new data, it may be helpful to weigh treatment
effects on canopy fuels in relative terms rather than relying on
absolute values.

Simulation modeling results came from studies using several
different software packages, such as Nexus (Scott and Reinhardt,
2001), FlamMap (Finney, 2006), or Fuel Management Analyst (Carl-
ton, 2005). Although these programs differ in some respects, they
share central algorithms for fire type and spread (Rothermel,
1972, 1991; Van Wagner, 1977). Effect sizes of the two indices
that have been widely reported to assess potential crown fire



Fig. 3. Comparison of basal area effects of all treatments with canopy base height effects (upper panel) and canopy bulk density effects (lower panel). All effect sizes were
calculated as response ratios, defined as ln(treatment mean/control mean).
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behavior—Crowning Index (CI), windspeed required to maintain
active crown fire spread, and Torching Index (TI), windspeed re-
quired for transition from surface to passive crown fire (Scott
and Reinhardt, 2001)—were compared (Fig. 4). Higher index values
mean reduced forest susceptibility to crown fire. All treatments re-
sulted in significant increases in CI and TI compared to controls.
Mean increases in wind speed required to support crown fire
behavior ranged from approximately 1.5 to 4 times (x-axis in
Fig. 4), a substantial difference in predicted fire behavior as com-
pared to controls, but there were no significant differences be-
tween treatments. Actual values of variables related to crown fire
behavior are of uncertain precision and may be biased toward
underprediction (Cruz and Alexander, 2010), but the relative dif-
ferences compared to controls and the consistency across the stud-
ies in this review indicate that all treatments are likely to provide
meaningful reductions in the likelihood of passive and active
crown fire.

Studies that reported treatment performance in actual severe
wildfires provided corroborating evidence that supported the rela-
tionship between treatment effects and reduction in fire severity.
Several studies compared treated and untreated sites that burned
under severe fire conditions and reported detailed quantitative
information on basal area, tree density, and other variables. These
data were incorporated into the observations used for meta-analy-
sis, as described above (e.g., Pollet and Omi, 2002; Cram et al.,
2006; Strom and Fulé, 2007). These studies are particularly useful
because they provide empirical evidence of the relationship be-
tween treatment effects and fire behavior. Other studies were con-
ducted at landscape scale (e.g., Finney et al., 2005) or reported less-
used variables that were not comparable across studies (e.g., Ritch-
ie et al., 2007), but provided additional evidence of treatment ef-
fects on reducing fire severity. Finally, documents based on
literature reviews and expert opinion (e.g., Brown et al., 2004;
Hessburg et al., 2005) tended to concur on the physical and biolog-
ical effects of treatments but expressed the greatest variation in
terms of the implications of using treatments for restoration of nat-
ural processes and/or creating desired future conditions (e.g., Cov-
ington et al., 1997; Allen et al., 2002; Johnson et al., 2003).

3.2. (2) How might relationships differ among pure ponderosa pine
forests versus related forests (pine-oak and dry mixed conifer)?

Ponderosa pine forests were the most common category
encountered in the search (Fig. 5), but mixed conifer would have



Fig. 4. Mean effect size and bootstrapped 95% confidence intervals for two indices related to crown fire behavior, compared by treatment. Crowning Index is an estimate of
windspeed required to maintain active crown fire. Torching Index Mean is an estimate of windspeed required for a surface fire to transition to crown fire. Effect sizes are
scaled as proportions of control values (1.0 or 100%); values above 1 indicate proportional increases over controls, values below 1 indicate decreases. Numbers above effect
sizes indicate number of observations for each treatment.
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predominated if all the categories of mixed conifer forests that
included ponderosa or Jeffrey pine were grouped together. No sig-
nificant differences in effect sizes between forest types were ob-
served for basal area, canopy cover, torching index, or crowning
index. Ponderosa pine is the most shade-intolerant species of those
considered in this review, so it would have been logical to expect
forest structure to display a trend toward increasing density from
pine and pine-oak toward mixed conifer forests.

The lack of difference associated with forest type is consistent
with research findings of relatively high similarity in past fire re-
gime and forest structure between pine and dry mixed conifer
forest types. For example, in the Southwest the mean frequency
of historical surface fire in pine forests was within 1–5 years of
the mean fire frequency in mixed conifer forests (Swetnam and
Baisan, 1996), with gradient studies showing these forest types
to be linked by synchronous fire events (Fulé et al., 2003; Mar-
golis and Balmat, 2009). Differences in composition and struc-
ture are generally strikingly more pronounced in contemporary
than in historical forests (e.g., Youngblood, 2001; Minnich
et al., 1995; Brown et al., 2008). In some cases, modern ‘‘mixed
conifer’’ forests may be largely an artefact of fire exclusion that
permitted establishment of Abies or other mesic tree species
(Weaver, 1951). Data from remote unlogged relict areas with
continuing fire regimes provide modern-day examples similar
to historical mixed conifer conditions of dominance by surface
fire-adapted pines and Douglas-fir, relatively few ladder fuels,
and low surface fuel loading, characteristics similar to those of
undisrupted pure pine forests (Stephens and Fulé, 2005). Given
the greater relative similarity among pine and mixed conifer
forests in the past, we infer that treatments using historical
reference points are likely to have converged, at least within a
broad range of natural variability.



Fig. 5. Number of studies reviewed by forest type. ‘‘PNW’’ is Pacific Northwest, ‘‘SW’’ is Southwest.

Fig. 6. Number of studies reviewed by region. ‘‘PNW’’ is Pacific Northwest, ‘‘SW’’ is Southwest. The international study was a U.S./Mexico comparison.
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Management implications of the lack of differences between
forest types are, first, that treatments are likely to have a more sig-
nificant impact than forest type on forest structure, fuels, and fu-
ture fire behavior. Second, this finding is likely linked to
underlying ecological similarities in historical composition, struc-
ture, and function between these forest types.

3.3. (3) How might regional variability (Pacific Northwest, Sierra
Nevada, Rocky Mountains, and Southwest) affect outcomes?

The Southwest was the region best represented in the literature
(Fig. 6), consistent with the dominance of ponderosa pine in this
area of the U.S. The West Coast (Pacific Northwest plus Sierra Ne-
vada) was the second most common region. As was the case with
comparisons of forest type, no significant differences in effect sizes
between regions were observed for any response variable except
torching index. However, given the limited number of studies from
Washington, Oregon, Idaho, Montana, Colorado and Utah, it would
be helpful to expand fire and restoration research in these areas.

The lack of differences between regions may appear surprising
because the review covered a broad, subcontinental range over
approximately 10� of latitude. Conditions of temperature, precipi-
tation, precipitation timing (monsoonal, continental, Mediterra-
nean), effects of El Niño/Southern Oscillation and other climatic
patterns, geological substrate, and topography varied widely and
sometimes directionally over this extensive area. However, as
noted above, the relative similarity in historical attributes of
process and structure, together with evidence of the long-term
evolutionary role of fire (Keeley and Zedler, 1998), may be unifying
characteristics even over a vast geographic region. The implica-
tions in terms of management are therefore similar to those for for-
est type: treatments have a stronger influence than regional
differences, likely due to underlying ecological similarities among
the disparate forest ecosystems.
4. Conclusions

The literature on effects of forest treatments has grown dramat-
ically in the past decade. While this review covered a broad geo-
graphical region and a variety of treatments, meta-analysis of
surface fuel and forest structure variables showed consistent and
significant trends. Burning significantly reduced fine and coarse
surface fuels compared to controls, while thinning significantly in-
creased both fuel categories; thin/burn treatments were interme-
diate in effect. Almost all treatments significantly reduced tree
density, basal area, and canopy cover. Individual treatments were
not statistically distinguishable but thin/burn treatments tended
to have the greatest mean effect. Canopy fuel variables, canopy
base height and canopy bulk density, generally were changed by
treatments toward reducing the potential for passive and active
crown fire. However, the relationship between forest structural
changes and canopy fuel changes was not linear, likely due in part
to inconsistencies in the calculation methods that can lead to
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paradoxical results. While these variables should be used with cau-
tion, the trend was consistent with treatments leading to reduced
fire severity.

Fire behavior simulation studies showed that treatments had
consistent and significant effects in reducing forest vulnerability
to crown fire by increasing windspeeds necessary to support active
crown fire (Crowning Index) and transition from surface to crown
fire (Torching Index). There are uncertainties and potential biases
associated with fire behavior simulation modeling, but the relative
differences in the index values as compared to controls should be
reliable. Studies that reported actual tests of fire behavior under
severe weather and moisture conditions corroborated the trends
observed in surface fuels, forest structure, canopy fuels, and simu-
lated fire behavior: treated sites had substantially reduced fire
severity.

Treatments had significant and much greater effects on all the
studied variables than did pre-existing differences in forest type
or region, implying that decisions about treatments are likely to
have similar impacts on fire behavior across the broad range of for-
est types and geographical extent covered in this review. The sim-
ilarities in response are likely due to underlying ecological and
evolutionary similarities among these wide-ranging forest ecosys-
tems. These ecological underpinnings provide support for consid-
ering treatments in the context of ecological restoration, rather
than simply as an expedient approach to fuel reduction.

The literature shows that the primary question of the review
(do thinning and/or burning treatments on ponderosa pine and re-
lated forests in western USA help restore natural fire behavior?)
can be answered with a qualified ‘‘yes.’’ The literature includes a
high proportion of replicated randomized experiments, a tech-
nique supporting strong inferences, and treatment effects were fre-
quently statistically significantly different from controls. There are
logical links between commonly reported and precisely measured
variables (surface fuels and forest structure) and less-reported, less
precise fire-related variables (canopy fuels, fire behavior) as well as
some empirical support for linkages. However, the majority of the
studies with quantitative data are relatively recent (<10 years) and
contrasted small study areas. The modeling results most often re-
viewed do not account for heterogeneity in stand structure, fuels,
and winds. Some treatments such as light thinning and/or low-
intensity burning are so mild as to have limited effects on fuels,
forest structure, or fire hazard. There are also uncertainties in the
estimation of canopy fuels and simulated fire behavior. Over time,
the true test of treatment effects will involve measurements at lar-
ger scales and under repeated burning regimes. The potential addi-
tional impact of climate change, probably not yet reflected in the
recent literature, will also play an increasingly important role in
the future trajectories of ponderosa pine and related dry forests.
Despite a number of qualifications, however, scientific findings to
date strongly indicate that thinning and/or burning treatments
do have effects consistent with the restoration of natural fire
behavior.
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