A Valley Confinement Algorithm for Aquatic, Riparian, and Geomorphic Applications

David E. Nagel and John M. Buffington

U.S. Forest Service, Rocky Mountain Research Station, Boise Aquatic Sciences Lab

Nagel, D. E. and J. M. Buffington. 2013. A Valley Confinement Algorithm for Aquatic, Riparian, and Geomorphic Applications. Esri Southwest User Conference, Salt Lake City, UT, November 13-15.

Boise Aquatic Sciences Lab

Idaho Water Center

Fish and watershed research

Valley Confinement Algorithm (VCA)

Python Script

Objective: Identify unconfined valleys at a landscape scale using nationally available GIS data

Valley Characteristics and Justification

Valley Confinement

Degree of lateral confinement of a valley, constrained by topographic features

Shallow alluvial deposits

Confined

 \bigcirc

Unconfined

Characteristics of Unconfined Valleys

- Hyporheic exchange
- Channel morphology
- Grain size
- Riparian habitat

Hyporheic Exchange

Baxter and Hauer 2000

Bull trout preferentially spawn at the downstream end of unconfined valleys where hyporheic upwelling may warm stream temperatures for overwintering embryos

Boulton and others 2010

Cascade

Channel morphology

Step-pool

Plane-bed

Pool-riffle

Montgomery and Buffington 1997

Channel morphology

Pool-riffle morphology has 80% more pool area and 40% deeper pools, favored by juvenile salmon

McDowell 2001; Hall and others 2007

\bigcirc

Grain Size

Spawning Chinook salmon prefer grain sizes that are often associated with unconfined valleys

Isaak and Thurow 2006

Riparian Areas

Riparian areas, often associated with unconfined valleys, provide disproportionately important ecosystem functions compared to confined valleys

Wissmar 2004

Valley Confinement Algorithm

Python script with an interface that allows users to vary the results based on the needs of the application

4	Valley Confinement Algorithm (VCA)			
•	Workspace location	8		Valley Confinement Algorithm (VCA)
•	Input DEM			An algorithm that identifies
•	Input streams			unconfined valley bottoms.
	Use waterbody shapefile: Yes (1); No (0)			
	1 Input waterbodies (optional)	~		
	Valley form: Valley bottom only (1): Valley bottom and distance (2)	<u></u>		
	1 1 1 1 1 1 1	*		
	the foreign and also the hold (21) (action)	~		
	9 1			
	Use riood option: Yes (1); No (U) 1	~		
	Flood factor (optional) 3			
	Average annual precipitation (cm) 250			
	Maximum valley width (m) 1000			
	Minimum drainage area (sq. km)			
	Mimimum stream length per polygon (m) 100			
	Minumum valley bottom area (sq. m)			
•	Output shapfile name	1		
			~	
	OK Cancel Environments << H	lide Help		Tool Help

VCA Inputs

Uses nationally available NHDPlus data

DEM

Flow lines

Water bodies

Average annual precipitation

Valley bottom polygons

Valley Flood

Objective: Flood the valley floor as a factor of bankfull depth

If bankfull depth is 0.5 m, a flood factor of 3 will flood the valley to 1.5 m above the channel.

For channels in the Columbia River basin

$$h_{bf} = 0.054 A^{0.170} P^{0.215}$$

*h*_{bf} is bankfull depth (m) *A* is contributing area (km²) *P* is average annual precipitation (cm)

Hall and others 2007

Computing Bankfull Depth

 \bigcirc

		0	Tat	054/	0.17	⁷⁰ p 0).215	⁵ = h	bf
SequenceSlides.mxd - ArcMa	ap - Arcinfo		Shr		dit	-		•	×
File Edit View Bookmarks Ins	ert Selection Geoprocessing Cu	itomize Windows Help				DANKEN	DAWKED		
	▶ <		I-	CUMURAINAG	PRECIPX	BANKFW	BANKFU	FLOOD_DEP	
			Ľ	0.490	7.1	1.14	0.16	0.40	
		Drawing • R (•) 🔄 🗋 • A • 🔄 💋 Arial	-	2.000	7.1	13.56	0.21	0.03	-
arcToolbox		A CONTRACT		3382.477	7.1	13.50	0.71	2.13	-
B SD Analyst Tools Analysis Tools	🗉 🥩 Layers			3372.846	7.1	13.56	0.71	2.13	-
E Cartography Tools	UalleyBottom3	A Del		3369 574	7.1	13.56	0.11	2.13	-
H · · · · · · · · · · · · · · · · · · ·	□ □ a_Waterbody			3362 323	71	13.49	0.7	21	-
Data Management Tools				180 164	71	5.96	0.43	1.29	-
Geocoding Tools				119.534	7.1	5.32	0.4	1.2	Ē
Geostatistical Analyst Tools Height Constant	a_NHDFlowline			117.818	7.1	5.32	0.4	1.2	Ē
Multidimension Tools	🖃 🗹 a_hill	ETEO CARTON		114.903	7.1	5.25	0.4	1.2	Ē
Analyse Tools Analyse Tools Parcel Fabric Tools	Value High : 254			111.815	7.1	5.18	0.39	1.17	7
Schematics Tools Server Tools	Lawy 0	IS IN AVISAV		102.928	7.1	5.11	0.39	1.17	~
Spatial Analyst Tools	LOW:0		<						
Tracking Analyst Tools	🗄 🗹 a_elev	RALMO	Γ.	• • •	F FI) out of 185	1 Selected)	
			L:St	reamsCAThresh_E	dit				
			13995.	548 2446187,437 Meters	×.				
		-15	13995.	548 2446187.437 Meters	.::				

BANKFD * Flood factor = Flood depth (3)

	CUMDRAINAG	PRECIPX	BANKFW	BANKED	FLOOD_DEP	^
•	0.498	7.1	1.14	0 16	0.48	
	2.668	7.1	1.85	0.21	0.63	
	3382.538	7.1	13.56	.71	2.13	
	3382.477	7.1	13.56	0.71	2.13	L
	3372.846	7.1	13.56	0.71	2.13	L
	3369.574	7.1	13.56	D.71	2.13	
	3362.323	7.1	13.49	0.7	2.1	L
	180.164	7.1	5.96	0.43	1.29	L
	119.534	7.1	5.32	0.4	1.2	L
	117.818	7.1	5.32	0.4	1.2	
	114.903	7.1	5.25	0.4	1.2	L
	111.815	7.1	5.18	.39	1.17	
	102.928	7.1	5.11	0.39	1.17	~
1	• • 1	→ →	- (0) out of 185	1 Selected)	

Elevation

Flooded elevation

Flooded Elevation

 \bigcirc

Initial Valley Bottom

Intersection of flooded elevation with ground elevation

10 km

 \bigcirc

Slope Cost Distance Restricts processing to near stream locations

Distance from streams Slope

Slope cost

Slope cost distance threshold

Eliminates non-channeled valleys

Ground Slope Threshold

Slope

< 9% slope

Helps eliminate confined valleys

Quad Map and DEM Comparison

DEMs may have higher ground slope than indicated by quad maps

Results

 \bigcirc

10 km

Filtering

 \bigcirc

Stream Length and Polygon Size Criteria

10 km

Validation and Results

Field Validation

78% of field sites identified as unconfined by the VCA had a confinement ratio greater than 4.

Office Validation

Quad Maps and Aerial Photography

South Fork Boise River Basin Accuracy = 94%

South Fork Salmon River Basin Accuracy = 87%

Landscape Scale Results

THANK YOU

Dave Nagel dnagel [at] fs.fed.us

Acknowledgements: Sharon Parkes, Seth Wenger, and Jaime Goode

References

Baxter, C.V. and F. R. Hauer. 2000. Geomorphology, hyporheic exchange, and selection of spawning habitat by bull trout (*Salvelinus confluentus*). Canadian Journal of Fisheries and Aquatic Science 57(7):1470-1481.

Boulton, A.J., T. Datry, T. Ksaahara, M. Mutz, and J.A. Stanford. 2010. Ecology and management of the hyporheic zone: streagroundwater interactions of running waters and their floodplains. Journal of the North American Benthological Society, 29(1):26-40.

Boxall, G. D., G. R. Giannico, and H. W. Li. 2008. Landscape topography and the distribution of Lahontan cutthroat trout (*Oncorhynchus clarki henshawi*) in a high desert stream. Environmental Biology of Fishes 82:71-84.

Hall, J. E., D. M. Holzer, and T. J. Beechie. 2007. Predicting River Floodplain and Lateral Channel Migration for Salmon Habitat Conservation. Journal of the American Water Resources Association 43:786–797.

Isaak, D.J., and R.F. Thurow. 2006. Network-scale spatial and temporal variation in Chinook salmon (Oncorhynchus tshawytscha) redd distributions: patterns inferred from spatially continuous replicate surveys. Canadian Journal of Fisheries and Aquatic Sciences 63:285-296.

McDowell, P. F. 2001. Spatial variations in channel morphology at segment and reach scales, Middle Fork John Day River, northeastern Oregon. In: Dorava, D. M., D. R. Montgomery, B. B. Palcsak and F. A. Fitzpatrick, Geomorphic Processes and Riverine Habitat, Water Science and Applications, Volume 4, American Geophysical Union, Washington DC, 159-172.

Montgomery, D. R. and J. M. Buffington. 1997. Channel-reach morphology in mountain drainage basins. Geological Society of America Bulletin 109:596-611.

Wissmar, R.C. 2004. Riparian corridors of Eastern Oregon and Washington: Functions and sustainability along lowland-arid to mountain gradients. Aquatic Sciences 66:373-387.