Where's the Beef?

Why 20 Years of Predicted Global Warming Effects on Fish Distributions Remain Unsubstantiated

Dan Isaak and Bruce Rieman (retired, sort of.)
US Forest Service - Air, Water \& Aquatics Program
Rocky Mountain Research Station Boise, ID 83702

Scientific Consensus That Global Warming Would Occur for 30+ Years

Peterson et al. 2008. Bull. Amer. Metero. Soc. 1325-1337.

Strong Empirical Support for Warming

Regional Trends In Northwest Rivers

Morrison et al. 2002

Columbia River - Summer

Crozier et al. 2008
Missouri River, MT - Summer

$\Delta=0.33^{\circ} \mathrm{C} /$ decade
15

Temperature is Primary Control for Ectotherms Like Fish

Temperature \&

Inthe lab...

Thermal Niche

Isaak \& Hubert 2004

Are Species Distributions Shifting?

 Temporal distribution shifts

Parmesan and Yohe. 2003. Nature 421:37-42.

Shifts in Salmon Migration Timing

Median Spring Chinook Migration Dates at Bonneville

- Juanes et al. 2003 -Crozier et al. 2008 - Keefer et al. 2009 - Wedekind \& Kung 2010 -Crozier et al. 2011 -Etc.

Are Species Distributions Shifting? Spatial distribution shifts

Average distribution shift \dagger across taxa =
$6.1 \mathrm{~km} /$ decade poleward OR
$6.1 \mathrm{~m} /$ decade higher
Parmesan and Yohe. 2003. Nature 421:37-42.

We've Predicted It for $20+$ Years...

 Early brook trout climate assessmentsEffect of Climatic Warming on the Southern Margins of the Native Range of Brook Trout, Salvelinus fontinalis
J. Donald Meisner ${ }^{1}$

Meisner et al. 1988. Fisheries 13(3):2-8; Meisner 1990. CJFAS 47:1065-1070

There's A Lot on the Line

Climate Boogeyman

Recreational Fisheries

Low Flows Prompt Fishing Closure On Upper Beaverhead River And Reduced Limits On Clark Canyon Reservoir

Wednesday, September 29, 2004 Fishing

High Water

Temperature In Grande Ronde Kills 239 Adult Spring Chinook Columbia Basin Bulletin, August 14, 2009 (PST)

Land Use \&
Water Development

Western Trout Climate Assessment

Fish survey database ~10,000 sites

\#USGS
Colorado
State

Wenger et al. 2011. Proc. Nat. Acad. Sciences
 Habitat Response Curves
 Scenarios

Why Doesn't Biological Validation Exist?

We're not sampling the right places

Why Doesn' \dagger Biological Validation Exist?

Need to sample across thermal boundaries

Thermal niche boundary at critical isotherm

What is an Isotherm?
 How Does it Apply to Streams?

Line connecting locations with equal temperatures

Longitudinal

$18^{\circ} \mathrm{C}$ isotherm
Distance

Key BioClimate Model Assumption:

Critical isotherm delimits population boundary

Time 1	Cold	
$\frac{\omega}{U}$	Warm	$16^{\circ} \mathrm{C}$ isotherm

\& populations will track this isotherm

Stream Distance

Regional BioClimatic Model Predictions are Not Testable

Temperature isotherms mapped instead of fish distributions

Statistically imprecise
-Bull trout lower elevation limit $x=1,567 \mathrm{~m}, 95 \% \mathrm{CI}=172 \mathrm{~m}$ - 52 years for detectable range shift (assuming $+0.2 \quad$ C/decade)

Rieman et al. 2007

Stream-Specific Predictions of Isotherm Shifts Needed for Precision

1) Stream temperature lapse rate (${ }^{\circ} \mathrm{C} / 100 \mathrm{~m}$)
2) Long-term stream warming rate (${ }^{\circ} \mathrm{C} /$ decade)
3) Stream slope (degrees)
4) Stream sinuosity

A Use for High School Trigonometry!

1. Calculate vertical displacement for a given stream lapse rate and long-term warming rate.
Displacement (a) $=\frac{\text { Warming rate }}{\text { Lapse rate }}=\frac{0.2^{\circ} \mathrm{C} / \text { decade }}{0.4^{\circ} \mathrm{C} / 100 \mathrm{~m}}=+50 \mathrm{~m} /$ decade
2. Trans ate displacement to distance along stream of a given slope.

3. Multiply slope distance by stream sinuosity ratio in meandering streams.

Isotherm Shift Rate Curves

Stream lapse rate $=0.4^{\circ} \mathrm{C} / 100 \mathrm{~m}$

Isaak \& Rieman, In prep. for Global Change Biology

Isotherm Shift Rate Curves

Stream lapse rate $=0.4^{\circ} \mathrm{C} / 100 \mathrm{~m}$

Isaak \& Rieman, In prep. for Global Change Biology

Isotherm Shift Rate Curves

Isaak \& Rieman, In prep. for Global Change Biology

Mapping Climate Change "Velocity"

Long-term stream warming rate $=0.2^{\circ} \mathrm{C} /$ decade Stream lapse rate $=0.4^{\circ} \mathrm{C} / 100 \mathrm{~m}$

sensu Loarie et al. 2009. Nature 462:1052-1055.

Climate Vulnerability \& Physiography

Climate Vulnerability \& Physiography

Trouble? ${ }^{\text {uth dakota }}$
Latitudinal Refuge

Precise Isotherm Shift Predictions

Is it a problem?

Precise Isotherm Shift Predictions

Is it a problem?
How much time left on the clock?

Elevation
Headwater populations with ≤ 10 stream km in trouble by 2050

Biological Monitoring Implications

Longitudinal surveys to map population boundaries \& establish baseline

Measure Shift Between Surveys

Tingley \& Bessinger. 2009. Detecting range shifts from historical species occurrences. TREE 24:625-633.

Power Analysis for Trend Detection

 How long would monitoring have to occur?

Streams differ in thermal variation \& this variation partially masks climate signal that populations receive

Stream Distance

Power Curves for Isotherm Shifts

Stream lapse rate $=0.4^{\circ} \mathrm{C} / 100 \mathrm{~m}$
Stream slope $=4 \%$
 for 4\% channels

Power Curves for Isotherm Shifts

Stream lapse rate $=0.4^{\circ} \mathrm{C} / 100 \mathrm{~m}$
Stream slope $=1 \%$

for 1% channels Isaak \& Rieman, In Prep. Global Change Biology

Empirical Evidence in the Short-Term Resample stream profiles from 20+ years ago

RICHARD GARD, School of Forestry and Conservation, University of California, Berkeley 94720^{1}
GLENN A. FLITTNER, Bureau of Marine Sciences, California State University, San Diego 92100
J. Wildl. Manage. 38(2):1974

Broad Distributional Resurveys

 Assess site extirpation/colonization frequencies relative to temperature

Site occupancy
Beever et al. 2003; 2010

Broad Distributional Resurveys Assess site extirpation/colonization frequencies relative to temperature

United States Department of

Deparmment of
Agriculture
Forest Service
$\underset{\text { Research Station }}{\substack{\text { Intermountain } \\ \text { Rese }}}$
General Technical
Report INT-241
February 1988

Platts 70's/80's

Bjornn 1960's/70's

Density and Biomass of Trout and Char in Western Streams
RELATIONSHIPS AMONG STREAM ORDER, FISH POPULATIONS, AND AQUATIC GEOMORPHOLOGY IN AN IDAHO RIVER DRAINAGE

Wenger et al. 2011. PNAS

Conclusions/Discussion

-Estimates of biological shift rates is the "X Prize" and critical information necessary to facilitate accurate climate risk assessments \& empower managers to make tough decisions.

- Monitoring efforts should focus on streams with fast ISRs and low thermal variance. Detection of biological shifts will require a minimum of 20 years (but could be much longer).
-Resurveys of historical sites are needed to provide empirical evidence of biological shifts in near future.
- Headwater populations that occupy < 10 km of stream \& lack upstream elevational refuges may be extirpated by 2050.
-Interesting ecological questions:
a) Do shift rates differ between temperature mediated boundaries where populations are allopatric or sympatric (with nonnative competitors)?
b) Do shift rates differ at warm (extirpation) or cold (colonization) boundaries?

