Spatial Statistical Models on Stream Networks

Jay Ver Hoef¹, Erin Peterson², Dan Isaak³

¹NOAA National Marine Mammal Lab, Seattle, USA ²CSIRO Mathematics, Informatics, and Statistics, Brisbane, Australia ³USDA Forest Service, Boise, USA

NOAA/NMML, CSIRO/CMIS, USDA/FS

A > 4 > 4 > 4 > 4

Introduction
• 00 00000
Concepts

Concepts NCEAS Working Group

NOAA/NMML, CSIRO/CMIS, USDA/FS

Introduction
00000000
Concepts

Concepts Dual Spatial Coordinate System

(ロ) (四) (日) (日) (日)

Introduction
00000000
Concepts

Concepts

Classification of Analytical Methods

Concepts Spatial Linear Model

/∰) < ∃)

Concepts

Stream Network Covariance

- ∢ ≣ ▶

Concepts

Distance and Flow

NOAA/NMML, CSIRO/CMIS, USDA/FS

Introduction 0000000 Why Bother?

Why Bother?

Better Predictions

Ver Hoef, Peterson, Isaak

Introduction
00000000
Problem

Problem:

Valid Covariance Matrices Using Stream Distance

NOAA/NMML, CSIRO/CMIS, USDA/FS

Time Series Moving Average Construction

Ver Hoef, Peterson, Isaak

NOAA/NMML, CSIRO/CMIS, USDA/FS

Time Series Moving Average Construction

Ver Hoef, Peterson, Isaak

NOAA/NMML, CSIRO/CMIS, USDA/FS

Э

Stream Network Moving Average Construction

-

P

Tail-up Models

$$C_u(r_i, s_j | \boldsymbol{\theta}_u) = \begin{cases} \pi_{i,j} C_t(h | \boldsymbol{\theta}_u) & \text{if } r_i \text{ and } s_j \text{ are flow-connected,} \\ 0 & \text{if } r_i \text{ and } s_j \text{ are flow-unconnected,} \end{cases}$$

Tail-Up Linear-with-Sill Model

$$C_t(h|\boldsymbol{\theta}_u) = \sigma_u^2 \left(1 - \frac{h}{\alpha_u}\right) I\left(\frac{h}{\alpha_u} \le 1\right),$$

Tail-Up Exponential Model

$$C_t(h|\boldsymbol{\theta}_u) = \sigma_u^2 \exp(-3h/\alpha_u),$$

NOAA/NMML, CSIRO/CMIS, USDA/FS

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Tail-down Models

► Tail-Down Linear-with-Sill Model, $b \ge a \ge 0$,

$$C_d(a, b, h | \boldsymbol{\theta}_d) = \begin{cases} \sigma_d^2 \left(1 - \frac{h}{\alpha_d} \right) I \left(\frac{h}{\alpha_d} \le 1 \right) & \text{if flow-connected,} \\ \sigma_d^2 \left(1 - \frac{b}{\alpha_d} \right) I \left(\frac{b}{\alpha_d} \le 1 \right) & \text{if flow-unconnected,} \end{cases}$$

Tail-down Exponential Model,

$$C_d(a, b, h|\boldsymbol{\theta}_d) = \begin{cases} \sigma_d^2 \exp(-3h/\alpha_d) & \text{if flow-connected,} \\ \sigma_d^2 \exp(-3(a+b)/\alpha_d) & \text{if flow-unconnected,} \end{cases}$$

3

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Mixed Models

Mixed Model (Variance Component Model),

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{z}_u + \mathbf{z}_d + \mathbf{z}_e + \mathbf{W}_1\boldsymbol{\gamma}_1 + \ldots + \mathbf{W}_p\boldsymbol{\gamma}_p + \boldsymbol{\epsilon},$$

Tail-down Exponential Model,

$$\operatorname{var}(\mathbf{Y}) = \mathbf{\Sigma} = \sigma_u^2 \mathbf{R}(\alpha_u) + \sigma_d^2 \mathbf{R}(\alpha_d) + \sigma_e^2 \mathbf{R}(\alpha_e) + \sigma_1^2 \mathbf{W}_1 \mathbf{W}_1' + \ldots + \sigma_p^2 \mathbf{W}_p \mathbf{W}_p' + \sigma_0^2 \mathbf{I}.$$

(ロ) (四) (日) (日) (日)

Mixed Models

NOAA/NMML, CSIRO/CMIS, USDA/FS

Estimation

SO4, Tail-up Model Only									
effect	estimate	std.err	df	t.value	prob.t				
Intercept	9.07	0.984	21	9.22	<0.0001				
Distance Upstream	-0.1337	0.0537	21	-2.488	0.0213				
SO4, Components Model									
effect	estimate	std.err	df	t.value	prob.t				
Intercept	9.20	1.399	21	6.58	<0.0001				
Distance Upstream	-0.1259	0.0664	21	-1.893	0.0722				
$ \begin{aligned} \mathbf{Estimation} \\ \begin{pmatrix} \mathbf{z}_{observed} \\ \mathbf{z}_{unobserved} \end{pmatrix} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \ \operatorname{var}(\boldsymbol{\varepsilon}) = \boldsymbol{\Sigma}(\boldsymbol{\theta}) \end{aligned} $									

NOAA/NMML, CSIRO/CMIS, USDA/FS

■ _ _ のへ(?)

Prediction

Software / Tools - Collaborators

Jay Ver Hoef, Statistician

NOAA National Marine Mammal Laboratory

David Clifford, Statistician

CSIRO Mathematics, Informatics & Statistics

Rohan Shah, Mathematician & Programmer CSIRO Mathematics, Informatics & Statistics

Software / Tools

• Multidisciplinary skills are required

- Knowledge of aquatic ecology
- Specialized skills using geographic information systems (GIS)
- Spatial statistics

- Knowledge transfer & methodological uptake requires software/tools
 - Journal articles are not enough

http://ddsgeo.com

 $\begin{pmatrix} \mathbf{Z}_{observed} \\ \mathbf{Z}_{observed} \end{pmatrix} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \ \operatorname{var}(\boldsymbol{\varepsilon}) = \boldsymbol{\Sigma}(\boldsymbol{\theta})$

Suite of GIS and Statistical Tools

Software / Tools – FLoWS

Functional Linkage of Watersheds and Streams (FLoWS)

- ArcGIS Geoprocessing Toolbox written in Python for ArcGIS v9.3
- Developed by Dave Theobald and John Norman at Colorado State University
- Website:

http://www.nrel.colostate.edu/projects/starmap/flows_index.htm

What are the FLoWS v9.3 tools?

- Graph theoretic-based analysis tools
- Functionally link aquatic and terrestrial components of a landscape based on hydrologic processes
- Hydrologic modelling framework

Software / Tools – STARS

Spatial Tools for the Analysis of Streams (STARS)

• ArcGIS Geoprocessing Toolbox written in Python for ArcGIS v9.3.1

Toolsets

- <u>Pre-processing</u>: Identify unique topological relationships that are prohibited in the SpatialStreamNetwork class
- <u>Calculate:</u> Derive spatial data needed to fit a spatial statistical model to streams data:
 - Hydrologic distances
 - Spatial weights
 - Covariates for both observed & unobserved locations
- <u>Export:</u> Export the spatial features, topological relationships, and attribute information to a format that can be easily accessed using R

Software / Tools - STARS

Export – Create .ssn Directory

Stores the spatial features, topological relationships, and attribute information to a format that can be easily accessed using R

• .SSN directory components:

- Sites & edges shapefiles
- Text file containing topological information for each network
- Prediction site shapefile(s): optional

• If it's in the .ssn directory, you need it

Water for a Healthy Country

CSIRO

Software / Tools

Spatial Stream Networks (SSN) Package

Purpose

• Read, store, visualize, analyse & export spatial streams data

Our design goals

- Make the package user friendly
 - Easy to install on multiple operating systems
 - Fit models to multiple response types
 - Include helper functions so that you don't have to be an R developer or a statistician to fit a model
 - Reduce opportunities for user error

SpatialStreamNetwork Class: S4 object

- Formally defined class structure
 - Ensures data is in the "right" format
- Conventions for spatial classes set out by Bivand et al. 2008
 - Co-authored sp package to extend R classes and methods for spatial data
 - 49 other packages depend on sp
- SpatialStreamNetwork class
 - Contains both point and line features: edges, sites, prediction sites
 - Unique coordinate system used to navigate network

.ssn directory

- Explicitly linked to SpatialStreamNetwork object
- R reads/writes data to this location

• binaryID.db: SQLite database

- Stores some topological information for line segments
- Automatically created when data are imported into R

Distance matrices

- Stored as .Rdata files
- External storage means they only have to be calculated once

SSN Package Functionality...

- Fit generalised linear models with spatially-autocorrelated errors
 - Normal likelihood methods (including REML)
 - Quasi-likelihood for Poisson and Binomial families
- Supported distributions: Gaussian, binomial, Poisson
 - Repeated measurements are permitted
 - Random effects may be included
- Block-kriging estimates
- Multiple covariance models supported:
 - Tail-up & tail-down: Exponential, Linear-with-Sill, Spherical, Mariah
 - Euclidean: Exponential, Spherical, Linear-with-Sill, Cauchy

SSN Package Functionality...

- Influence & cross-validation diagnostics
 - Raw residuals, studentized residuals, cross-validation residuals, Leverage values, Cooks D, cross-validation predictions, and standard errors for the cross validation predictions
- Predictions & std errors at unobserved locations
 - Predicted response variable & standard errors for the predictions

• Create SSN objects

- Generate network(s) with observations & prediction locations
- Point distribution based on different sample designs: Poisson, hard core, systematic

• Simulate data

- Gaussian, binomial, Poisson distribution
- Different covariance structures & fixed effects

Helper Functions for 4 Classes

Allow users to examine data, produce model diagnostics, visualize data, and export results easily

Model Diagnostics

 AIC, generalized R² for covariates, cross-validation statistics, variance components

Visualisation

- Plot: map of observed values, residuals, or predictions and/or standard errors
- Torgegram: flow-connected & flow-unconnected
- QQplots, histograms, boxplot

Others:

Access, alter, export, subset, summary...

Model Fitting

```
> mf04.glmssn0c <- glmssn(Summer mn ~ ELEV DEM + SLOPE, mf04c,</p>
     CorModels = c("Exponential.tailup", "Exponential.taildown",
     "Exponential.Euclid"),
     addfunccol = "afvArea")
>
> summary(mf04.glmssn0c)
$fixed.effects.estimates
  FactorLevel
                  Estimate
                                std.err t.value prob.t
1 (Intercept) 29.348881916 5.540699171 5.296964 0.00000
    ELEV DEM -0.009970748 0.002758303 -3.614812 0.00051
2
3
        SLOPE -12.812193742 12.340454558 -1.038227 0.30207
$covariance.parameter.estimates
                                                  0.5
     Covariance.Model Parameter Estimate
1 Exponential.tailup parsill 1.782467e+00
   Exponential.tailup range 7.845687e+05
2
3 Exponential.taildown parsill 2.370570e+00
4 Exponential.taildown
                          range 1.951213e+05
 Exponential.Euclid parsill 3.625637e-01
5
6
  Exponential.Euclid
                          range 1.631959e+05
               Nugget parsill 1.536211e-02
> varcomp(mf04.glmssn0c)
              VarComp Proportion
1
  Covariates (R-sg) 0.139588592
   Exponential.tailup 0.338483306
2
3 Exponential.taildown 0.450161531
                                                    Ω
4
   Exponential.Euclid 0.068849368
               Nugget 0.002917203
5
```


Torgegrams

Abundance Residuals

Future Tool Development

Statistical tools

• Continue to improve the SSN package...

Update GIS tools

- Personal geodatabase is not supported in ArcGIS v10
- FLoWS toolset is only available up to ArcGIS v9.3

Tools *must* be more computationally efficient

- Sensor networks = massive datasets
- Model-fitting algorithms can't handle observations

CSIRO Accelerated Computing Projects

- Speed up matrix operations
 - Intel's MKL library (commercial software)
 - Multiple GPU-based calculations
 - Implement MAGMA multi-GPU qr() decomposition function in R

NCEAS Spatial Stats for Streams Working Group

 Implicit goal

 Make the tools and dataset available so that others can extend/apply these methods

 http://www.nceas.ucsb.edu/featured/peterson

Accessing the Tools, Documentation & Data

SSN & STARS: Tools for Spatial Statistical Modeling

US FOREST SERVICE Research and Development

US Forest Service website (currently under construction):

http://www.fs.fed.us/rm/boise/AWAE/projects/SpatialStreamNetworks.shtml

Tools:

• FLoWS, STARS, & SSN package

Documentation:

• Tutorials, journal articles, examples

Datasets:

- Full Lower Snake dataset
- Smaller subsets of the Lower Snake
- Space-time, block kriging, macroinvertebrates

SSN & STARS: Tools for Spatial Statistical Modeling on Stream Networks

Regional Infrastructure for VHP Analysis of Stream Data

0,000 STIEUTI KINTETELS

A Regional Stream Temperature Model for Mapping Thermal Habitats & Species Climate Vulnerability Across the GNLCC

Dan Isaak¹, Erin Peterson², Seth Wenger³, Jay Verhoef⁴, Charlie Luce¹, Jason Dunham⁵, Dave Nagel¹, Jeff Kershner⁵, Brett Roper¹, Steve Hostetler⁵, Dona Horan¹, Gwynne Chandler¹, Sherry Wollrab¹, Sharon Parkes¹, Dave Hockman⁵

GNLCC Temperature Project

GNLCC_{plus} Temperature Project

Interagency Database

NorWeST ≈≈Stream Temp

Interagency Database

NorWeST ≈≈Stream Temp

Regional Temperature Model

Computation Challenges: Model Fitting NCEAS - Lower Snake Hydrologic Region

Peterson, Ver Hoef, and Isaak 2010

Lower Snake VHP Temperature Model

Observed (C

Prediction Precision "Maps"

Temperature Prediction SE's

Payette National Forest Spatial Uncertainty Map

Data Model for Prediction Points

1 km default, but customizable

NHD+ Hydrolayer Conditioning

1. Converging streams - stream segments upstream that are not connected to the main channel were deleted.

2. Downstream divergences - sidechannels were deleted.

3. Multi-segment confluences (i.e., > 2 stream converging) were adjusted

GIS Layers Online

Shapefiles of prediction points

Reconditioned NHD+

Websites for Distribution

Harris Tennister Perint in State

SSN & STARS: Tools for Spatial Statistical Modeling on Stream Networks

• Nextle control of control processing on characterized as a selection processing of the control of the cont

Regional Infrastructure for VHP Analysis of Stream Data

Wyoming

Just add your data...

sheet: He TTWE ArcOII toohet and the SDR package for 2 statistical articles.

Temperature Data, but also...

The End