The Global Stream Internet Fusing data, spatial stream models, and social networks for stream science, conservation, and management

Dan Isaak (USFS) Erin Peterson (QUT) Jay Ver Hoef (NOAA) Dave Nagel (USFS) Mike Young (USFS)

Global Freshwater Ecosystems are Disproportionately Biodiverse

"Freshwater makes up only 0.01% of the World's water and approximately 0.8% of the Earth's surface, yet supports at least 100,000 species – almost 6% of all described species" Dudgeon et al. 2006

... but are Disproportionately at Risk

Species at Risk by Plant & Animal Group

Williams et al. 2011

Many Things Can be Done to Improve Habitat & Population Resilience

Maintaining/restoring flow...
Maintaining/restoring riparian...
Restoring channel form/function...
Prescribed burns limit wildfire risks...
Non-native species control...
Improve/impede fish passage...

a) Where to do them?

b) Is there a grand strategy?

c) How to maximize bang for the

Local tactical nuances

I'm going to invest here... ... instead of here

strategic

context

Debris flow susceptible channel
 Thermally suitable - occupied
 Thermally suitable - unoccupied
 Projected habitat loss
 Road culvert fish barrier

A Global Stream Internet is:

A network of people, databases, digital information systems & analytical techniques that interact synergistically to create & communicate massive amounts of information efficiently

All ~5,000,000 stream kilometers

NHDPlu

Vector shapefiles & Documentation

Cooter et al. 2010. A nationally consistent NHDPlus framework for identifying interstate waters: Implications for integrated assessments and interjurisdictional TMDLs. *Environmental Management* **46**:510-524.

Website: http://www.horizon-systems.com/NHDPlus/NHDPlusV2_home.php

Component #1: Digital Hydrography Datasets

Are increasingly common...

A pan-European River and Catchment Database

Hydrol. Earth Syst. Sci., 18, 1917–1933, 2014 www.hydrol-earth-syst-sci.net/18/1917/2014/ doi:10.5194/hess-18-1917-2014

A new stream and nested catchment framework for Australia

J. L. Stein, M. F. Hutchinson, and J. A. Stein

Lehner, B., Verdin, K., Jarvis, A. (2008): New global hydrography derived from spaceborne elevation data. Eos, Transactions, AGU, 89(10): 93-94.

Component #2: Stream Reach **Descriptors (the "PLUS" part of NHDPlus)**

Unique reach IDs

- Elevation
- Slope
- %Landuse
- Reach descriptol Precipitation

100's more

Wang et al. 2011. A hierarchical spatial framework and database for the national river fish habitat condition assessment. Fisheries 36: 436-449. Available at: https://www.researchgate.net/profile/Lizhu Wang2 Hill et al. 2016. The stream-catchment (StreamCat) dataset: A database of watershed metrics for the conterminous USA. The Journal of the American Water Resources Association.

Available at: http://www2.epa.gov/national-aquatic-resource-surveys/streamcat

Vector shapefile

table attributes

Component #3: Data: a) purposeful designs

Spatially Balanced Sampling of Natural Resources

Don L. STEVENS Jr. and Anthony R. OLSEN

b) ad hoc crowd-sourced, citizen science endeavors

Spatial Trend

 $\alpha_{u, d} \approx 4$

Component #3: Data: c) Existing Sources

Challenge: Organizing & digitally archiving big datasets

Database Teams Often Required

Opportunity: Researchers work with managers to use their data & social networks are strengthened

Component #4: Models & Inference Data feeds All Models... Mechanistic Models

Statistical Models

- $\mathbf{Y} = \mathbf{b}_{o} + \mathbf{b}_{1}\mathbf{X}$
- SSNs
- MaxEnt
- GLMM
- GLM
- Random forests

Our preference =

1) Versatility (binomial, Poisson, Gaussian)

- Water quality
- Discharge/temperature
- Species
- occurrence/abundance
- Habitat conditions

2) network topology recognition through covariance structure

4) Autocovariance functions enable applications with clustered datasets

SSNs Facilitate BIG DATA Applications Aggregate Data Relevant to Many Agencies $25 \qquad r^2 = 0.60; RMSE = 2.26^{\circ}C_{10}$ ature

Challenge: Teams of People With Complementary Technical Skillsets are Needed

Managers

GIS analysts

Database experts Scientists **Ecological Modelers** F=m© ORAC DATABASE

Component #5: Information Outputs & User-

Community Engagement Data & information must be:

- Discoverable (Google-able)
- Understandable (thorough metadata)
- Usable (Software & User-Friendly Digital Formats)

BOUT AWAE RESEARCH - PROJECTS, TOOLS, & DATA - PUBLICATIONS - CONTACT US

Regional Database and Modeled Stream Temperatures

The Rangewide Bull Trout eDNA Project 🛹

- 50,000 annual web-visits
- Hundreds of data products downloaded

Number of Annual Website Visits

As Databases & User Communities Grow, Things Become More Efficient

Recent Example: What are large river warming rates due to climate change?

Database query: 1) Sites with >10 years of monitoring

2) Sites that occur on rivers with >100 cfs flow

Result: 391 sites on 56,000 river km

River Temperature Trends for 1976–2015

Isaak et al. 2018. Global warming of salmon and trout rivers: Road to ruin or path through purgatory? *Transactions of the American Fisheries Society.*

The Earth is Big The Global Stream Internet will Take Time

But progress is ongoing (last 25 Years)...

- Field navigation from paper maps & compass to GPS to ?drones?
- Net seines & traps to eDNA sampling
- Small datasets (n = 10 to 100) to giant databases (n = 1,000 to 100,000,000)
- Limited spatial study components to ubiquitous GIS & digital stream networks & many covariates
- No stream statistical theory to SSNs
- Limited computing to virtually unlimited

The End