Southwest Washington Adaptation Partnership: Effects of Climate Change on Fisheries

Ruth Tracy, Baker Holden, Dona Horan, Jessica Hudec, John Chatel, Dan Isaak

Climate Factors Relevant to... Chinook salmon

•ESA listed as threatened
•Populations require fluvial connectivity to ocean
•Ocean cycles strongly affect freshwater abundance
•Fall spawner & eggs incubate overwinter

Species of Concern... Coho salmon

ESA listed as threatened
Populations require fluvial connectivity to ocean
Ocean cycles strongly affect freshwater abundance
Fall spawner & eggs incubate overwinter

Species of Concern... Steelhead

- •ESA listed as threatened
 •Populations require fluvial connectivity to ocean
- •Ocean cycles strongly affect freshwater abundance
- •Relatively warm thermal niche unsuitably cold upstream areas could serve as refugia
- Spring spawner after peak flowsNatal habitats occur in small
- streams susceptible to disturbance

Species of Concern... Bull trout «

 ESA listed as threatened •Cold thermal niche constrains populations to high-elevation refugia Extant populations occupy ~20 kilometers of stream Habitats & populations are fragmented & isolated •Occurs in small streams that are susceptible to disturbance Spawns in fall & eggs incubate overwinter

Taking Climate into the Water Where Fish Live...

Taking Climate into the Water Where Fish Live...

Climate model (air temp & precip)

Regional patterns

Stream temperatures & flow

Stream reach patterns

GIS Data for Stream Flow & Temperature Scenarios Downloaded from Websites

VIC Streamflow Scenarios

Google "Stream flow Metrics"

Google "NorWeST stream temp"

Isaak et al. 2010. Ecol. Apps. **20**:1350-1371 Isaak et al. 2012. Climatic Change **113**:499-524. Luce et al. 2014. Wat Res Res DOI: 10.1002/2013WR014329 Ver Hoef et al. 2006. Environ Ecol Stat **13**:449-464. Ver Hoef & Peterson. 2010. Journal Am Stat Ass **105**:6–18.

Liang et al. 1994. J. Geophys Res **99**:14415–14428. Wenger et al. 2010. Water Res Res **46:**W09513. Safeeq et al. 2014. Hydrology and Earth System Sciences **11**:3315-3357.

Stream Hydrography Base Layer 1:100,000 NHDPlus

Baseline (1970 - 1999)

>0.006 m³/s summer flow <15% slope **Deleted intermittent channels**

~65% network reduction

1980s

Mean Summer Flow (cms)

Non-FS lands: 2,104 km of streams USFS lands: 2,389 km on FS lands

2080s

Mean Summer Flow (cms)

Stream Flow Statistics for A1B Warming Scenario

		All lands		USFS lands	
Flow metric	Climate period	Water year day	Days Advance	Water year day	Days Advance
Median flow date	1980s	158	-	165	-
	2040s	142	-16 days	144	-21 days
	2080s	134	-24 days	133	-32 days
		Number of	Days	Number of	. Days
		days	increase	days	increase
Winter high flow days	1980s	11.0	-	9.3	-
	2040s	13.0	2.0	12.3	3.0
	2080s	14.0	3.0	13.8	4.5
		ft³/s	% change	ft³/s	% change
Mean summer flow	1980s	94.8	-	59.0	-
	2040s	57.0	-39.9	32.7	-44.6
	2080s	40.0	-57.8	20.7	-64.9
Mean annual flow	1980s	186.9	-	91.2	-
	2040s	193.0	3.3	94	3.1
	2080s	194.1	3.9	94.5	3.6

Stream Temperature Database & Scenarios

1980s NorWeST ≈Stream Temp August Mean Temp (°C) < 8 8 - 11 11 - 14

-> 20 **Mean August Stream Temperature** = 11.5°C

Increase = 2.17°C

Isaak et al. 2016. Slow climate velocities of mountain streams portend their role as refugia for cold-water biodiversity. *Proc. Nat. Acad. Sciences* doi:/10.1073/pnas.1522429113

Isaak et al. 2016. Slow climate velocities of mountain streams portend their role as refugia for cold-water biodiversity. Proc. Nat. Acad. Sciences doi:/10.1073/pnas.1522429113

Changes Within Coho Habitat 584 River Kilometers of Habitat

		Number of high flow days				America	The second
Stream metric	<u>Period</u>	<u><5</u>	<u>5-10</u>	<u>>10</u>	A	Stor E	N C
Winter 95% flow	1980s	80 (14%)	162 (28%)	343 (59%)	5	THE ME	the state
	2040s	37 (6%)	27 (5%)	521 (89%)		STA STA	
	2080s	-	40 (7%)	545 (93%)	4	Swift Low	er is R
			m³/s		فسر	Falls	N.Ser
		<u><0.034</u>	<u>0.034-0.085</u>	<u>>0.085</u>	Eliza	1-	- Big Brother
Summer flow	1980s	2.4 (1%)	41 (6%)	541 (93%)	my		- Falls
	2040s	4.6 (1%)	53 (9%)	526 (90%)		M	Spirit Fails
	2080s	6.6 (1%)	55 (9%)	523 (89%)			
				Stream kilometers			
		<u><8</u>	<u>8-11</u>	<u>11-14</u>	<u>14-17</u>	<u>17-20</u>	<u>>20</u>
August temperature	1980s	6.1 (1%)	73 (13%)	351 (60%)	107 (18%)	6 (1%)	40 (7%)
	2040s	-	30 (5%)	215 (37%)	284 (49%)	11 (2%)	45 (8%)
	2080s	-	18 (3%)	118 (20%)	375 (64%)	26 (5%)	46 (8%)

Changes Within Coho Habitat August Temperatures within Cispus River

Changes Within Coho Habitat August Temperatures within Cispus River

Changes Within Steelhead Habitat 901 Kilometers of Habitat

Changes Within Steelhead Habitat Summer Flows within the Wind River

Changes Within Bull Trout Habitat 20 Kilometers of Natal Habitat

Changes Within Bull Trout Habitat

August Temperatures within Pine & Rush Creeks

Changes Within Chinook Habitat 359 River Kilometers of Habitat

	- The Barry St.				126	home	- NA
		Number of high flow days			r ^a	1 75	THE.
Stream metric	Period	<u><5</u>	<u>5-10</u>	<u>>10</u>	C	- Cal	YS
Winter high flow days	1980s	65 (18%)	139 (39%)	155 (43%)	Z	C.S.	~ {
	2040s	26 (7%)	23 (6%)	310 (86%)		3	1 Solo
	2080s	-	26 (7%)	333 (93%)	4	Swift Creek	er is R s
			m³/s				
	-	<u><0.034</u>	<u>0.034-0.085</u>	<u>>0.085</u>			Big Brother Fálls
Summer flow	1980s	-	9.8 (3%)	349 (97%)	- Con	T. F. M. F.	Som
	2040s	-	20 (6%)	339 (94%)	5		Falls
	2080s	-	21 (6%)	338 (94%)		1 de	
			Stream kilometers				
		<u><8</u>	<u>8-11</u>	<u>11-14</u>	<u>14-17</u>	<u>17-20</u>	<u>>20</u>
August temperature	1980s	4.1 (1%)	45.4 (13%)	241 (67%)	39 (11%)	6 (2%)	24 (7%)
	2040s	-	20 (6%)	133 (37%)	167 (46%)	12 (3%)	28 (8%)
	2080s	-	9 (2%)	83 (23%)	223 (62%)	15 (4%)	29 (8%)

Fish Climate Vulnerability What matters? 1) species considered 2) stream location 3) climate factor

Where do vulnerabilities meet "on-the-ground" opportunities?

Climate Vulnerability Could Provide a Context for Prioritizing Stream Restoration Efforts...

2013 Aquatic and Riparian Restoration Annual Report USDA Forest Service Pacific Northwest Region

- •Modifying road culverts...
- •Maintaining/restoring flow...
- •Maintaining/restoring riparian...
- •Restoring channel form/function...
- •Non-native species control...
- •Large woody debris...

Before

Changes Within Chinook Habitat Summer flows in Lewis River

Forest Datasets Were Key to The Quality of This Assessment...

& Will Be Key to Improving Assessments in <u>Future</u> Decades...

1980s

6 KM

