Space, Time, and Temperature in Streams: Towards a General Framework for Understanding and Prediction of Thermal Regimes

Dona Horan, Daniel Isaak, Charles Luce, Gwynne Chandler, Sherry Wollrab Boise Aquatic Sciences Laboratory US Forest Service, Boise, ID

What is a Regime? Temporal variation characteristic to a site

Maheu et al. 2015. A classification of stream water temperature regimes. River Research & Applications

Factors Causing Temporal Variation Environmental covariates

and river temperature research. Hydrological Processes 22: 902-918.

Regimes Vary in Space Covariates & heat budgets differ in different places

Regimes Vary in Space Covariates & heat budgets differ in different places ~300,000 stream kilometers

Regimes Vary in Space Covariates & heat budgets differ in different places

~300,000 stream kilometers

Maheu et al. 2015.

It's Complex, but 100% Variance Covers It **Space-Time ANOVA Variance Decomposition** Var_{total} = Var_{space} + Var_{time} + Var_{S*T} + error

An Example with Real Data ~4,000 annual monitoring sites in PNW

Central Idaho Temperature Network

167 Sites Since 2010

Space-Time Variance Decomposition Summer Mean Stream Temperature

Space-Time Variance Decomposition Summer Mean Stream Temperature 2013

Space-Time Variance Decomposition Summer Mean Stream Temperature

Average change across sites = Var_{Time} = 1.30°C $Var_{s*T} = 0.37^{\circ}C$ Site level deviation from average change

2010

2013

Space-Time ANOVA Variance Decomposition $Var_{total} = Var_{space} + Var_{time} + Var_{S*T} + error$

Different Extent & Grain = Different Variance Structure (spatial dimension) Big network = great spatial heterogeneity

Small network = little spatial heterogeneity

Same Extent & Different Grain = Different Variance Structure Big network = sparsely sampled

Big network = densely sampled

Kotlier and Wiens 1990

Different Extent & Grain = Different Variance Structure (temporal dimension) Long duration (100 years) = much variation

25

() 20 **dual** 15 10

10

5

6/30/2012

Webb and Nobilus 2007

Kotlier and Wiens 1990

Short duration (1 week) = limited variation

How We Model Also Affects Interpretation of Variance Structure

Mohseni curve

15 20 25 30

NSC=0.9

10

Many Accurate Predictive Tools...

Neural networks

But Prediction *≠* **Understanding**

Understanding = Attribution of Variance "Why" do temps change through space & time?

Mechanistic

Correlative

An Attempt at Best of Both Worlds: Understanding and Prediction

Accurate Prediction & Attribution of Variance to Covariates n = 48.000 summers of data

Covariate Predictors

Elevation (m)
 Canopy (%)
 Stream slope (%)
 Ave Precipitation (mm)
 Latitude (km)
 Lakes upstream (%)
 Baseflow Index
 Watershed size (km²)
 Glacier (%)

Var_{time}

Var_{space}

10. Discharge (m³/s) 11. Air Temperature (°C) n = 48,000 summers of data 21 years (1993-2013) R² = 0.90 RMRS = 1.0°C

Observed (°C)

Measuring Covariates & Heat Budgets are Big Challenges Correlative models = crude covariates limit understanding

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

10% 5% Error 15% Var(S*T)

20%

50%

Var(Time)

 Var(Spaceautocorr)
 Var(Spacecovariates) Mechanistic models = intensive measurements limit extent

Tout

Elevation

Precipitation

Slope

Measuring Covariates & Heat Budgets are Big Opportunities

High resolution air temperature models

Satellite & drone sensors

Hybrid model approaches?

Bigger/faster computers

Data are not limiting (>5,800 annual monitoring sites & growing)

~50,000,000 hourly records/annually!

Temperature (°C)

Time

16

Mexico

>50,000,000 hourly records
>18,000 unique stream sites

Challenges are Not Limiting

Shrinking

Budgets

Need for better prediction & understanding will intensify

Urbanization & Population Growth

Need to do more with less