

Sensitivity of Summer Stream Temperatures to Climate Variability in Pacific Northwest Forests

Charles Luce , US Forest Service Brian Staab, US Forest Service Marc Kramer, U. Florida Seth Wenger, U. Georgia Dan Isaak, US Forest Service Callie McConnell, US Forest Service

A Rapidly Growing Sensitivity Literature (>2012)...

- Kanno et al. (2014). Paired stream—air temperature measurements reveal fine-scale thermal heterogeneity within headwater brook trout stream networks. River research and applications, 30:745-755.
- Kelleher et al. (2012) Investigating controls on the thermal sensitivity of Pennsylvania streams. Hydrol. Process. 26:771–785.
- Kurylyk et al. (2015) Shallow groundwater thermal sensitivity to climate change and land cover disturbances: derivation of analytical expressions and implications for stream temperature modeling. Hydrol. Earth Syst. Sci 19: 2469-2489.
- Leach & Moore (2014) Winter stream temperature in the rain-on-snow zone of the Pacific northwest: influences of hillslope runoff and transient snow cover. Hydrology and Earth System Sciences 18: 819-838.
- Luce et al. (2014). Sensitivity of summer stream temperatures to climate variability in the Pacific Northwest. Water Resour. Res, 50, 2.
- Mayer (2012). Controls of summer stream temperature in the Pacific Northwest. Journal of Hydrology, 475:323-335.
- Null et al. (2013). Stream temperature sensitivity to climate warming in California's Sierra Nevada: impacts to coldwater habitat. Climatic Change, 116:149-170.
- Snyder et al. (2015) Accounting for groundwater in stream fish thermal habitat responses to climate change. Ecological Applications 25:1397–1419.
- Trumbo et al. (2014). Ranking site vulnerability to increasing temperatures in southern Appalachian Brook Trout streams in Virginia: an exposure-sensitivity approach. Transactions of the American Fisheries Society, 143:173-187.

Sensitivity defined as: Var_{S*T}

1) stream $\Delta^{\circ}C$: air $\Delta^{\circ}C$

2) stream Δ °C : flow Δ SD(Q)

"Connectivity" Theory

Streams that are cold in summer months are poorly "connected" to the atmosphere via energy exchanges.

Prediction: cold streams should show less variation relative to climate forcing factors (air temperature and discharge).

Sensitivity Parameters from Regressions

$$T_s = b_0 + aT_a + bQ_s + \epsilon$$

Model Timestep & Functional Form Intra-annual vs. Inter-annual

Linear vs. Non-linear

Dataset (Region 6 USFS)

Stream Temp Sites (n = 246; \geq 7 summers of data)

USHCN Air Temp Red (n = 25)

Streamflow Blue (n = 15)

Small to medium size streams

Principal Component Reconstructions for:

O_c: Standardized T_a : Air temperature 8 anomaly

$$X_{SY} = L_{Si} \times P_{iY}$$

P = Principal Component (time series)

i = which principal component (just using 1 & 2)

L= Loading (map)

S = Station

Y = Year

For a particular place, the time series is given by:

$$X_t = L_1 \mathsf{X} P_{1t} + L_2 \mathsf{X} P_{2t}$$

PCA Reconstruction Halfway, OR

STEAMBOAT CREEK NEAR GLIDE, OREG.

Stream Maximum Weekly Maximum Temperature (MWMT; °C)

Thermal Sensitivity (°C/°C) **Observed values, averaged across years** • >0.9 • 0.8 - 0.9 Y-axis • 0.7 - 0.8 52 20 20 • 0.6 - 0.7 Wide 8 • 0.5 - 0.6 • 0.4 - 0.5 range • 0.3 - 0.4 0.2 - 0.3 _____ • ____ 0 0.1 - 0.2 0 ° < 0.1 ð Ö 0,000 6 ₧ 00 **b**0 <mark>G</mark> 0 α

Sensitivity to Annual Streamflow Sensitivity to flow (°C: ΔSD_Q) 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 10 15 20 25 Stream MWMT (°C)

Bigger Data, Same Result...

(923 sites, 10-20 year monitoring records)

Why? What explains low sensitivity of cold streams

What about sensitivity of warmer streams?

	°C/°C
Elevation	-0.07
BFI	0.02
Watershed size	-0.08
Annual Precip	0.05
Canopy %	0.07
Reach slope	0.04

Stream MWMT (°C)

Two Possibilities: Local Climate Forcing &/or Buffering

Air microclimates in complex valley morphologies

This information needed at high resolution across 100,000s stream kilometers

Groundwater influxes downstream of headwaters

Brute Force, Empirical Approach SSN models to geostatistically krige sensitivity

Summary

- Streams exhibit a wide range of correlations with air temperature & discharge (sensitivity)
- Colder streams are less responsive to climate forcing across years
 - Groundwater, late snowpack
 - Indirect sensitivity to climate change could be large (e.g., wildfires alter riparian vegetation & limit site regrowth)
- Better understanding & prediction of sensitivities (especially in warmer streams) would enable better climate change forecasts