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Sensitivity defined as: 

1) stream Δ˚C : air Δ˚C 

2) stream Δ˚C : flow ΔSD(Q) 

VarS*T 



“Connectivity” Theory 

Streams that are cold in summer 
months are poorly “connected” to the 
atmosphere via energy exchanges.  
 
Prediction: cold streams should show 
less variation relative to climate forcing 
factors (air temperature and discharge). 



Sensitivity Parameters from Regressions 

𝑇𝑠 = 𝑏0 + 𝑎𝑇𝑎 + 𝑏𝑄𝑠 + 𝜖 
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Model Timestep & Functional Form 
  Intra-annual vs. Inter-annual Latter are better surrogates (control for 

within year trends in solar radiation and 
discharge – cite Luce 
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Stream Temp Sites 
(n = 246;  >7 
summers of data) 
 

USHCN Air Temp 
Red (n = 25) 
 

Streamflow 
Blue (n = 15) 
 

Twenty-five air temperature stations were 
selected from among COOP stations in the US 
Historical 
Climatology Network (USHCN) proximal to the 
field of stream temperature stations with 
records covering 
the 23 years available from the stream 
temperature sensor network (Figure 1). 
Similarly, 15 
streamflow stations were selected from 
streams proximal to the stream temperature 
stations (Figure 

Small to medium size streams 

Dataset (Region 6 USFS) 



Principal Component Reconstructions for: 

𝑋𝑆𝑌 = 𝐿𝑆𝑖 X 𝑃𝑖𝑌 
P = Principal Component (time series) 
i = which principal component (just using 1 & 2) 
 
L= Loading (map) 
 
S = Station 
Y = Year 

𝑋𝑡 = 𝐿1X 𝑃1𝑡 + 𝐿2X 𝑃2𝑡  

For a particular place, the time series is given by: 

𝑻𝒂: Air temperature  
       anomaly 

𝑸𝒔: Standardized 
       streamflow & 



 
Air stations 
 
2 PCs 
1st – Regional  
         Mean 
2nd – lat & lon 
 R2=0.81 
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Stations 
 
2 PCs 
1st – Regional Mean 
2nd – lat & lon 
 R2=0.90 
 

𝑸𝒔: Standardized 
       streamflow 
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Bigger Data, Same Result… 
 (923 sites, 10-20 year monitoring records) 
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Why? What explains low sensitivity of cold streams 



What about sensitivity of warmer streams? 
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If put all these into 
multiple regression, 
would explain ~6% 
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Elevation -0.07 

BFI 0.02 

Watershed size -0.08 
Annual Precip 0.05 

Canopy % 0.07 

Reach slope 0.04 



Two Possibilities: Local Climate Forcing &/or Buffering 
Air microclimates in complex 
valley morphologies 

This information needed at 
high resolution across 
100,000s stream kilometers 

Groundwater influxes 
downstream of headwaters 

Torgersen et al. 2012 



Brute Force, Empirical Approach 
 SSN models to geostatistically krige sensitivity 

• R2 = 0.91 
• RMSE = 1.0ºC  

Website & 
Freeware 

n = 923 & growing 
SSN 



Summary 
• Streams exhibit a wide range of correlations 

with air temperature & discharge (sensitivity) 
 
• Colder streams are less responsive to climate 

forcing across years 
– Groundwater, late snowpack 
– Indirect sensitivity to climate change could be 

large (e.g., wildfires alter riparian vegetation & 
limit site regrowth) 
 

• Better understanding & prediction of 
sensitivities (especially in warmer streams) 
would enable better climate change forecasts 


