Stream Climate Trends and Aquatic Resource Vulnerability on the Nez Perce-Clearwater National Forests

Dan Isaak, US Forest Service Rocky Mountain Research Station

Clearwater-Nez is a Special Fishy Place

How Will Global Climate Change Affect My Streams & Favorite Fishes? Global climate Regional

climate

River network temperatures

Stream reach

Accurate Local Information Needed to Empower Local Decision Makers

Strategic assessments from regional models

I'm going to invest here... ... instead of here

There's A Lot on the Line...

Climate Boogeyman

Recreational Fisheries

Low Flows Prompt Fishing Closure On Upper Beaverhead River And Reduced Limits On Clark Canyon Reservoir

Wednesday, September 29, 2004 Fishing

High Water

\$4 Billion on Fish & Wildlife Recovery Efforts in PNW Since 1980 (ISAB/ISRP 2007)

ESA Listed Species

Green Team has Huge Potential Synergies for Information Development & Application

Large land-base

(190 Million Acres)

"Boots-on-the-Ground"

USFS has ~600 fish bios/hydros. (That's an aquatics army!)

Managers collecting mountains of useful data

Research branch develops information & connects people

General outline:

1) Historical trends & future predictions for streams (flow, temperature, sediment regimes) western U.S. & Clearwater/Nez Perce NF

2) How could aquatic resources be affected?

3) Tools & monitoring systems for climate-smart prioritization. What are our goals?

4) Key uncertainties (some resolvable, some not)

Western US Observed Climate Trends Air temperatures (1950 – 2009)

What does it mean for streams and stream critters?

Total Annual Precipitation

Trends in Stream Runoff Timing

Stewart et al. 2005

Earlier snowmelt & river runoff

(1948-2000)

> 20d earlier
 15-20d earlier
 10-15d earlier
 5-10d earlier
 < 5d
 5-10d later
 10-15d later
 15-20d later

> 20d later

20th Century Trends in 20-Year Flood Frequencies (1915–2003)

doi:10.1029/2006WR005099

Increases in Winter Floods Rain-on-snow events

Website: http://www.fs.fed.us/rm/boise/AWAE/projects/modeled_str eam_flow_metrics.shtml

Wenger et al. 2010. Water Resources Research 46, W09513

VIC Streamflow Scenario Winter flood frequency (95% event)

•Predictions linked to stream segments for 1:100,000 NHD Plus

Scenarios:
1) historical (1980s);
2) A1B mid-century (2040s – ensemble GCMs);
3) A1B late-century (2080s – ensemble GCMs)

Wenger et al. 2010. WRR 46, W09513; Wenger et al. 2011. PNAS 108:14175-14180

VIC Streamflow Scenario Runoff timing (Center of annual flow mass)

•Predictions linked to stream segments for 1:100,000 NHD Plus

Scenarios:
1) historical (1980s);
2) A1B mid-century (2040s – ensemble GCMs);
3) A1B late-century (2080s – ensemble GCMs)

Wenger et al. 2010. WRR 46, W09513; Wenger et al. 2011. PNAS 108:14175-14180

August Flow Declines Common Across Northern Rockies (1950-2008)

Leppi et al. 2012. Impacts of climate change on August stream discharge in the Central-Rocky Mountains. *Climatic Change* **112**: 997-1014.

Flow Declines ~ Smaller & More Fragmented Habitats

Fish passage issues exacerbated

Flow Declines ~ Less Productive Habitats

Less water & velocity

Less aquatic insect drift

Harvey et al. 2006. Reduced streamflow lowers dry-season growth of rainbow trout in a small stream. Transactions of the American Fisheries Society 135:998-1005.

Wildfires Increasing Westwide

Future Means More & Bigger Fires

BEALFORTION TROOP ROOSEVELT & THE FIRST BRANES AVEN AMERICA

National Research Council 2011

Sediment Loading to Stream Channels

Thunderstorms & debris

flow torrents

Bad news if you're a fish living here

Sediment Loading to Stream Channels Channel form & habitats will evolve

Goode et al. 2011. Enhanced sediment delivery in a changing climate in semi-arid mountain basins: Implications for water resource management and aquatic habitat in the northern Rocky Mountains. *Geomorphology* **139/140:**1-15.

Temperature Trends In Northwest Rivers

Isaak et al. 2012. Climatic Change 113:499-524.

Seasonal Trends In Temperatures (1980-2009) Unregulated sites (7) with 30 years of annual data

Isaak et al. 2012. Climatic Change 113:499-524.

Stream Temperatures Track Air Temps

Streams warm about 60% as fast

Air Temperature Trend Stream Temperature Trend

0 -0.1 -0.2 Spring Summer Fall Winter

Warming rate (C/decade) 0.2 0.1

0.4

0.3

Lots of Summer Temp Data Out There...

Website Distributes Scenarios & Temperature Data as GIS Layers

1) GIS shapefiles of stream temperature scenarios

Regional Database and Modeled Stream Temperatures

3) Temperature data summaries

2) GIS shapefiles of stream temperature model prediction precision

+ = Thermograph = Prediction SE

Google "NorWeST" or go here... http://www.fs.fed.us/rm/boise/AWAE/projects/NorWeST.shtml

Clearwater-Nez Temperature Dataset is <u>World Class!</u>

Selway R.

Salmon R

Clearwater R.

Clearwater-Nez River Temp Model

Covariate Predictors

Elevation (m)
 Canopy (%)
 Stream slope (%)
 Ave Precipitation (mm)
 Latitude (km)
 Lakes upstream (%)
 Baseflow Index
 Watershed size (km²)

9. Discharge (m³/s)
USGS gage data
10. Air Temperature (°C)
RegCM3 NCEP reanalysis
Hostetler et al. 2011

Mean August Temperature

Models Enable Climate Scenario Maps Many possibilities exist...

Adjust...

- Air
- Discharge
- %Canopy
- ... values to create scenarios

Clearwater-Nez Stream Temp Scenarios Historic (1993-2011 Average August)

1 kilometer model resolution

Clearwater-Nez Stream Temp Scenarios +1.00°C Stream Temp (~2040s)

Clearwater-Nez Stream Temp Scenarios +2.00°C Stream Temp (~2080s)

Future Stream Temperature Increases Scenario: A1B ensemble averages from CIG (delta-hybrid) Baseline: 1980s (1970-1999) period

Differential Stream Temperature Warming Cold streams warm slower (data are Clearwater monitoring data referenced to NorWeST predictions)

"Balance of Nature" Paradigm no Longer Valid

There Will be Winners & Losers

Western US Trout Climate Assessment

Historic Distributions

GCM

Fish survey database ~10,000 sites

~50% reduction by 2080 under A1B

Wenger et al. 2011. PNAS 108:14175-14180

Species Vary in Climate Response

Wenger et al. 2011. PNAS 108:14175-14180

Spatial Variation in Habitat Loss

NorWeST Scenarios Increase Accuracy Species-Specific Thermal Criteria

Climate Effects on Cutthroat Thermal Habitat Historic (1993-2011 Average August)

Climate Effects on Cutthroat Thermal Habitat +1.00°C Stream Temp (~2040s)

Climate Effects on Cutthroat Thermal Habitat +2.00°C Stream Temp (~2080s)

Climate Effects on Bull Trout Thermal Habitat Historic (1993-2011 Average August)

Climate Effects on Bull Trout Thermal Habitat +1.00°C Stream Temp (~2040s)

Climate Effects on Bull Trout Thermal Habitat +2.00°C Stream Temp (~2080s)

Spatial Variation in Habitat Loss Historical scenario EFK. Salmon Clouds White

Difference Map Shows Vulnerable Habitats +1°C stream temperature scenario Where to invest?

Climate-Smart Strategic Prioritization of Restoration •Maintaining/restoring flow...

Maintaining/restoring flow...
Maintaining/restoring riparian...
Restoring channel form/function...
Prescribed burns limit wildfire risks...
Non-native species control...

Improve/impede fish passage...

High Low Priority **Priority**

Additional Prioritization Tools...

The Geomorphic Road Analysis and Inventory Package (GRAIP)

How do we Bring it All Together? What is "Optimal" Management? What are our Goals?

Reeves et al. 1995; Rieman et al. 2010.

Significant Unknown: Where Do We Level Off (+1C, +3C, etc.) & How Fast do We Get There?

IPCC 2007

The Clock is Ticking... Distribution Shifts Already in Many Species

Average distribution shift 6.1 km/decade poleward OR 6.1 m/decade higher elevation

Parmesan and Yohe. 2003. Nature 421:37-42.

Distribution Shifts in Montana Bull Trout Populations

- Resurveyed Rich et al. 2003 sites 20 years later
- 77 sites, 500 m in length
- Modeled extirpations/colonizations accounting for detection efficiency

Eby et al. In Review. Evidence of climate-induced range contractions for bull trout to cooler, higher elevation sites in a Rocky Mountain watershed, U.S.A. Global Change Biology

Distribution Shifts in Montana Bull Trout Populations

More Resurveys Needed to Understand Potential Breadth of Declines

Do "Climate-Proof" Habitats Exist for Key Species in Some Areas? If Not, Can Targeted Restoration Create Them?

Feature: FISHERIES MANAGEMENT

Native Fish Conservation Areas: A Vision for Large-Scale Conservation of Native Fish Communities Williams et al. 2011. Fisheries **36**: 267-277.

Monitoring Data are Key to Reducing Uncertainty Temperature, streamflow, species distributions

Short communication

Design and evaluation of an inexpensive radiation shield for monitoring surface air temperatures

Zachary A. Holden^{a,*}, Anna E. Klene^b, Robert F. Keefe^c, Gretchen G. Moisen^d

A Simple Protocol Using Underwater Epoxy to Install Annual Temperature Monitoring Sites in Rivers and Streams

Daniel J. Isaak Dona L. Horan Sherry P. Wollrab

Genetic Monitoring... Fun, Easy & Powerful

Tissue

Samples

A Rather Important Monitoring Record The Keeling Curve

The Better Information we Have, The Better we can Manage, Conserve, & Have a Long-

USFS Lands Are Steep, Which Provides a Buffer Important 21st Century Biodiversity Reserves

Slow Climate "Velocities"

