Monitoring & Modeling Stream Temperatures: Lessons Learned in the Rocky Mountains with Utility for Alaska?

Dan Isaak, US Forest Service

001-5000 0.0 0.0

General outline:

1) Relevance of climate change and temperature to aquatic biotas

2) Trends in stream/lake temperatures

- 3) Stream temperature monitoring & sampling designs
- 4) Extracting climate relevant information from stream temperature data

5) Possible next steps & stream temperature resources

Global Trends in Air Temperatures

Western Trout Climate Assessment

Wenger et al. 2011. PNAS 108:14175-14180

Spatial Variation in Future Changes

Spatial Air Pattern ≠ Stream Temp

Changing Fast in Rocky Mountains & Northern 48 (1951 – 2002)

Climate Wizard Tool

(www.climatewizard.org)

Girvetz et al. 2009. PLoS ONE **4**(12): e8320.

1960

1970

1980

1990

2000

Warming Trends Will Continue (& Accelerate?)

Mote et al. 2005; 2008

There's A Lot on the Line...

Climate Boogeyman

Recreational Fisheries

Low Flows Prompt Fishing Closure On Upper Beaverhead River And Reduced Limits On Clark Canyon Reservoir

Wednesday, September 29, 2004 Fishing

High Water Temperature In Grande Ronde Kills 239 Adult Spring Chinook Columbia Basin Bulletin, August 14, 2009 (PST)

Land Use & Water Development

ESA Listed Species

Temperature is Primary Control for Aquatic Ectotherms Metabolism

McMahon et al. 2007

Temperature Regulation - Life Cycle

Incubation length -Spawn timing - Chinook salmon Chinook salmon Beaver ■ Marsh ▲ Sulphur – Big × Camas • Loon 350 r²= 0.98 i = a + b(inx)Median Redd Completion Date 8/14 8/14 300 250 200 Days 150 100 50 8/4 9 11 13 15 7 2 12 14 Mean Stream Temperature (C) Mean temperature (°C) Thurow, unpublished Brannon et al. 2004 Migration timing -Growth sockeye salmon 13-Jul -Arctic grayling 8-Jul 3-Jul 28-Jun Length-at-day (mm) 23-Jun 18-Jun -July stream temp 13-Jun mean temperature 1920 20 200 400 600 800 1000 1200 July mean temperature, 0.05 days/yr, P <<< 0 VINC Growing degree-day (°C•day) 1940 1960 2000 Dion and Hughes 1994

Crozier et al. 2008

Observed Trends - Lake Temperatures

Individual Lake Temperature Trends

Schneider & Hook 2010. Geophysical Research Letters 37 doi:10.1029/2010GL045059

Global Trends in River Temperatures

Moatar and Gailhard 2006

Danube River, Austria (1901 – 2000)

Webb and Nobilus 2007

Regional Trends In Northwest Rivers

Morrison et al. 2002

Snake River, ID - Summer

Missouri River, MT - Summer

Isaak et al. 2012. Climatic Change 113:499-524.

30+ Year Monitoring Sites in NW U.S. USGS NWIS Monitoring Sites (1980 – 2009) \triangle = regulated (11) • = unregulated (7)

Seasonal Trends In Temperatures (1980-2009)

Isaak et al. 2012. Climatic Change 113:499-524.

Attribution of Stream Warming Trends Inter-annual variation ~ environmental noise

Year

Attribution of Stream Warming Trends Inter-annual variation ~ environmental noise Air Temperature Discharge

Spring Summer Fall Winter

Attribution of Stream Warming Trends Long-term trend ~ environmental signal

Attribution of Stream Warming Trends Long-term trend ~ environmental signal

Air Temperature Discharge

Spring Summer Fall Winter

Streams Track Air Temperature Trends

Air Trends as Stream Trend Surrogates? Mean Summer Air Temp Trends (1980 – 2009)

OWSC Climate Tool map

http://www.climate.washington.edu/trendanalysis/

Long-term Stream Temperature Data? 764 USGS gages in lower 48 have some data USGS NWIS Database (http://waterdata.usgs.gov/nwis)

Easy Method for Full Year Monitoring Underwater Epoxy Protocol Annual Flooding

Underwater epoxy

\$130 = 5 years of data

Data retrieved

from underwater

Detti bali

Sensors or PVC housings glued to large boulders

Isaak & Horan 2011. NAJFM 31:134-137

Big Boulders & Small Sensors

Bridge pilings, roadbed riprap...

Large Scale Field Durability Assessment

•300 sensors deployed in 2010 •Stream slopes ranging from 0.1% - 16%

Year 1 retention: 85% (64/75) retained in stream slopes <3%

Year 2 retention: >90% retention

Rock Heat Conduction Effect? No

Se	ns	or	

Stream site name	Minimum	Mean	Maximum	
Canyon Creek	0.10	0.00	-0.06	
Grimes Creek, rock 1	-0.01	-0.02	-0.08	
Grimes Creek, rock 2	0.06	0.02	-0.03	
Little Rattlesnake Creek	0.07	0.02	-0.15	
Mores Creek, rock 1	0.11	0.07	0.16	
Mores Creek, rock 2	-0.11	-0.07	-0.02	
Mores Creek, rock 3	-0.13	0.10	0.31	
Mores Creek, rock 4	-0.03	0.01	0.16	
No Name Creek	0.13	0.09	0.03	
Rattlesnake Creek	0.02	0.00	0.00	
Average difference ¹ = 🧲	0.02 (-0.05, 0.09)	0.02 (-0.02, 0.06)	0.03 (-0.07, 0.13)	
¹ = values after the average difference are 95% confidence intervals				

Direct Sunlight Effect? Yes Solar Shields are Mandatory

Sunlight biases measurements ~0.2 – 0.5 C

Solar Shield Alternatives...

Neoprene flap & directly glue sensor to rock

PVC housing protects sensor & easy to retrieve data or replace sensor (preferred method)

Large Rivers and Streams as a Monitoring Priority

NoRRTN: Northern Rockies River Temperature Network

Cost = \$50,000;
n = 210 sites;
3 replicates/river;
70 rivers;

2 technicians;
1 summer of work;
1,000 years of data

100

Time

Trans-Alaskan Pipeline River Temperature Network? Backbone of statewide monitoring network?

Instrument rivers
 @ road crossings
 & easy access
 points

•Continue building from there...

Full Year Stream Temperature Monitoring Becoming Popular... 2,761 Current full-year monitoring sites ~1,000 New deployments last year

A GoogleMap Tool for Dynamic Queries of Temperature Monitoring Sites Regional Sensor Network

Site Information

Stream name

•Data steward contact information

AgencySite Initiation Date

Show search others

Google maps

Get Directions My Maps

Montana Annual Stream Temperature ints available www.fb.fad.us/m/boise/AWAE/projects

Save to My Mar

ram Temperature Points available by Agency

202/2011 60 views - Public Created on Fiels 2 - Updated 13 hours ago 70

Rate this map - Write a comment

Adur Creek Thermograph Location: Adair Creek Contact: Clint Muhfeld - cmuhfeld@usgs.gov (405-868-7926) USGS.NOROCK

Agassiz Creek Thermograph Location: Agassiz Creek Contact: Clint Muhifeld - cmuhifeld@usgs.gov (406-868-7926) USGS.NOROCK

 <u>Akokala Cresk</u> Thermograph Location: Akokala Creek Contact: Clint Mulfied - cmuhfel@guege.gov (406-886-7926) USGS, NOROCK

Query Individual Sites

Contourwood-Chyde Park: Creek Updatod 2 days ago Thermograph Lacation: Cattorwood-Chyde Park: Creek Contact: Robert Al-Chichshachy - rai-chickhachy@ungs.gov (26-994-7842) USGS, NOROCK: Directions: Search nearby more* If of 2 nearby results Next >

GoogleMap Tool Full Year Stream Temperature Monitoring Sites

To Pair (With Air), or Not to Pair? That is the question...

There are trade-offs, so answer depends...

To Pair (With Air), or Not to Pair? That is the question...

There are trade-offs, so answer depends...

Logistics & Efficient Data Collection

Logistics & Efficient Data Collection Crews deploy multiple sensor types? Integrated terrestrial-aquatic monitoring?

Air sensors (\$20 - \$100)

Miniature sensors & multiyear memory / battery life

Pressure transducers for stream discharge (\$500)

Standardized protocols needed

How Long Should Temperatures be Monitored?

Long-term records are rare...

So some sites should be monitored indefinitely

Webb and Nobilus 2007

... but spatial variation among sites contains majority of "information" about thermal regimes

So some sites could be monitored for short periods (2 - 3) years) & sensors rotated to new sites.

Other Reasons for Temperature Monitoring Ecological Temperature Sensor Networks

Other Reasons for Temperature Monitoring Describing Network Scale Spatial Heterogeneity

Pick few key watersheds

Stratify network (easy with GIS) & densely sample to represent strata

Information from Data:

1) Basic descriptors of stream climate

Spatial Patterns

Seasonal/Temporal Relationships

	Fall mean	Fall SD	Winter Mean	Winter SD	Spring mean	Spring SD	Summer Mean
Fall SD	0.87						
Winter Mean	0.50	0.02					
Winter SD	0.70	0.35	0.83				
Spring mean	0.95	0.76	0.51	0.78			
Spring SD	0.69	0.77	-0.05	0.29	0.74		
Summer Mean	0.91	0.92	0.23	0.45	0.88	0.87	
Summer SD	0.62	0.77	-0.02	0.15	0.48	0.49	0.65

Stream-Specific Predictions of Isotherm Shifts Add Precision

Stream temperature lapse rate (°C / 100 m)
 Long-term stream warming rate (°C / decade)
 Stream slope (degrees)
 Stream sinuosity

Stream Distance

A Use for High School Trigonometry!

1. Calculate vertical displacement for a given stream lapse rate and long-term warming rate.

3. Multiply slope distance by stream sinuosity ratio in meandering streams.

Isotherm Shift Rate Curves

Stream lapse rate = 0.8 °C / 100 m

Isaak & Rieman. 2012. Global Change Biology 18, doi: 10.1111/gcb.12073

Mapping Climate Change "Velocity"

sensu Loarie et al. 2009. Nature 462:1052-1055.

Information from Data: 2) Short-term sensitivity analysis

Spatial Variation in Temperature Changes

Different Climate

Or Different Sensitivity?

Mohseni et al. 1998. WRR 34; van Vliet et al. 2011. WRR 47

How Far is Too Far for Air Temperatures?

Mohseni et al. 1998. WRR 34:2685-2692.

How Far is Too Far for Air Temperatures?

Where are best long-term air temperature records?

Long-Term Daily and Monthly Climate **Records from** Stations Across the Contiguous United States UNITED STATES HISTORICAL CLIMATOLOGY NETWORK

M.J. Menne, C.N. Williams, Jr., and R.S. Vose National Climatic Data Center, National Oceanic and Atmospheric Administration

MAP SITES Clear May ABERDEEN, WA (450008)**BELLINGHAM 3 S** WA (450587) **BLAINE, WA (4507** BUCKLEY 1 NE, W (450945)CEDAR LAKE, WA (451233)CENTRALIA, WA (451276)CLEARBROOK, W (451484)

Projecting Temp Increases from Short-Term Records

Maximum Weekly Stream

Temperature Increases

Mantua et al. 2010. Climatic Change 102:187-223.

Information from Data: 4) Stream temperature climate maps **NorWeST:** A Regional Stream Temperature Database & Model for High-Resolution Climate Vulnerability Assessments Dan Isaak, Seth Wenger¹, Erin Peterson², Jay Ver Hoef³ Charlie Luce, Steve Hostetler⁴, Jason Dunham⁴, Jeff Kershner⁴, Brett Roper, Dave Nagel, Dona Horan, Gwynne Chandler, Sharon Parkes, Sherry Wollrab

Regional BioClimatic Assessments

No stream temperature component

Air Temperatures...

- •Meisner 1988, 1990
- •Eaton & Schaller 1996
- •Keleher & Rahel 1996
- •Rahel et al. 1996
- •Mohseni et al. 2003
- •Flebbe et al. 2006
- •Rieman et al. 2007
- •Kennedy et al. 2008
- •Williams et al. 2009
- •Wenger et al. 2011
- •Almodovar et al. 2011

•Etc.

Spatial Air Pattern ≠ Stream Temp

NorWeST ≈≈Stream Temp

45,000,000+ hourly records 45,000+ summers measured 15,000+ unique stream sites

HENRY'S FOR

s

NOAA Fisherid

CO

MT

UT

Stealth Sensor Network

OR

WA

Regional Temperature Model

Consistent datum for strategic assessments across 350,000 stream kilometers

Boise

Bozeman

Logar Ogden

Spatial Statistical Stream Models Valid means of estimation on networks

Advantages: •Flexible & valid covariance structures that accommodate network topology & autocorrelation

•Much improved predictive ability & parameter estimates relative to non spatial models

Ver Hoef et al. 2006; Peterson & Ver Hoef 2010; Ver Hoef & Peterson 2010

Example: Salmon River Basin Data extracted from NorWeST

Climatic Variability in Historical Record Extreme years include late 21st-Century "averages"

Salmon River Temperature Model

n = 4,414

Covariate Predictors

Elevation (m)
 Canopy (%)
 Stream slope (%)
 Ave Precipitation (mm)
 Latitude (km)
 Lakes upstream (%)
 Glaciers upstream (%)
 Baseflow Index
 Watershed size (km²)
 Discharge (m³/s)*
 Air Temperature (°C)[#]

* = USGS gage data
= NCEP RegCM3 reanalysis

Mean August Temperature 25 r² = 0.60; RMSE = 1.68°C 20 15 Predicted (Non-spatial Model 10 15 20 25 r² = 0.89; RMSE = 0.86°C 15 10 **Spatial Model** 5 15 25 10 20 5 Observed (

Climate Scenario Maps Many possibilities once model exists...

Adjust air & discharge values to represent scenarios

Historical Climate Changes...

Summer Air Temperature

Recent Wildfires

14% burned during 93–06 study period 30% burned from 92-08

Summer Stream Flow

Changes in Average Summer Temperatures from 1993-2006

Δ0.38 C Δ0.70 C 0.27°C/10y 0.50°C/10y

Isaak et al. 2010. Ecol. Apps. 20:1350-1371

Effects on Thermal Habitat Define using thermal criteria

Salmon River Bull Trout Habitats

Salmon River Bull Trout Habitats

+1°C Stream Temperature 11.2 °C isotherm Suitable Unsuitable

Salmon River Bull Trout Habitats

+2°C Stream Temperature 11.2 °C isotherm Suitable Unsuitable

Models Developed from Everyone's Data Collaborative Management Responses?

Management

Decisions

GCM

USGS

NOAA Fishe

Data Collected by Local Bios & Hydros

Temperature (°C) • 5.35–7.92 • 7.92–10.5

Observed (°C)

More Precise Bioclimatic Assessments

How Will Global Patterns Affect Temperatures in Aquatic Systems? Global Climate

07.92-10.5

Key Lessons...

- 1)Take stock of existing data. Simple maps showing where data exist are great organizing tools.
- 2) Where data are sparse, be opportunistic & aggressive with establishing new sites (worry about "perfect" later). The world is literally burning after all...
- 3) Use standardized protocols georeference, monitor full year temperatures, use solar shields.
- 4) Long-term stream monitoring records are rare, so commit to some sites indefinitely. Supplement these with many others to describe spatial patterns (first 2 3 years yield most information).
- 5) New data will accumulate quickly, be prepared to organize and archive. Engage the research community to design procedures for extracting relevant information.

Relevant Publications...

Stream Temperature Modeling Approach...

Ecological Applications, 20(5), 2010, pp. 1350–1371 © 2010 by the Ecological Society of America

Effects of climate change and wildfire on stream temperatures and salmonid thermal habitat in a mountain river network

DANIEL J. ISAAK,^{1,3} CHARLES H. LUCE,¹ BRUCE E. RIPMAN,¹ DAVID E. NAGEL,¹ ERIN E. PETIRSON,² DONA L. HORAN,¹ SHARON PARKES,¹ AND GWYNNE L. CHANDLER¹

⁴U.S. Forest Service, Rocky Mountain Research Station, Boise Aquatic Sciences Laboratory, 322 E. Front Street, Suite 401. Roke, Idaho 83702 USA
⁵Communicable Scientific and Industrial Research Organisation (CSIRO), Divition of Mathematical and Information Sciences, Industring PD, Queersland, Autoralia

Regional Stream Temperature Trends...

Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes

D. J. Isaak, S. Wollrab, G. Chandler

Climatic Change

An Interdisciplinary, International Journal Devoted to the Description, Causes and Implications of Climatic Change Co-Editors: MICHAEL OPPENHEMISE Go-Editors: MICHAEL OPPENHEMISE GARAVYOUE

Epoxy field test and validation work ...

An Evaluation of Underwater Epoxies to Permanently Install Temperature Sensors in Mountain Streams

Daniel J. Isaak* and Dona L. Horan

U.S. Forest Service, Rocky Mountain Research Station, B 322 East Front Street, Suite 401, Boise, Idaho 83702, US

Epoxy "How-to" protocol...

A Simple Method Using Underwater Epoxy to Permanently Install Temperature Sensors in Mountain Streams (Version 3.12; updated 2/02/2012)

> Dan Isaak (<u>disaak@fs.fed.us</u>), Dona Horan (<u>dhoran@fs.fed.us</u>), and Sherry Wollrab (<u>sherrywollrab@fs.fed.us</u>)

Resources – Stream Temperature Website Google "Forest Service Stream Temperature"

Rodiv Mountain Research Station Home > <u>Science Program Areas</u> > <u>Air, Water and Aquatics</u> > Boise La Stream Temperature Modeling

Stream Temperature Modeling

modeling Introduction

ocky Hountair

todaling F All Temp Based Hodel F Spetal Statistical Model

Field Locations

Publications

Search

UTBI-001

(010)

onset

Really Science Program

Air, Water and Aquation Science Pringram Research Pringets Mean Temperature

Multiple Regissyon

Thermal regimes are important to aquatic ecosystems because they strongly dictate species distributions, productivity, and abundance. Inexpensive digital temperature log deograph

• Stream temperature publications & project descriptions & recent talks

• Protocols for temperature data collection & demonstration videos

• Processing macro for temperature data

• Dynamic GoogleMap showing current temperature monitoring sites

The End