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Abstract. Spatial autocorrelation is an intrinsic characteristic in freshwater stream
environments where nested watersheds and flow connectivity may produce patterns that are
not captured by Euclidean distance. Yet, many common autocovariance functions used in
geostatistical models are statistically invalid when Euclidean distance is replaced with
hydrologic distance. We use simple worked examples to illustrate a recently developed
moving-average approach used to construct two types of valid autocovariance models that are
based on hydrologic distances. These models were designed to represent the spatial
configuration, longitudinal connectivity, discharge, and flow direction in a stream network.
They also exhibit a different covariance structure than Euclidean models and represent a true
difference in the way that spatial relationships are represented. Nevertheless, the multi-scale
complexities of stream environments may not be fully captured using a model based on one
covariance structure. We advocate using a variance component approach, which allows a
mixture of autocovariance models (Euclidean and stream models) to be incorporated into a
single geostatistical model. As an example, we fit and compare ‘‘mixed models,’’ based on
multiple covariance structures, for a biological indicator. The mixed model proves to be a
flexible approach because many sources of information can be incorporated into a single
model.
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INTRODUCTION

Tobler’s first law of geography states that ‘‘Everything

is related to everything else, but near things are more

related than distant things’’ (Tobler 1970). In the field of

geostatistics, this phenomenon is referred to as spatial

autocorrelation or spatial autocovariance, which quan-

titatively represents the degree of statistical dependency

between random variables using spatial relationships

(Cressie 1993). Geostatistical models are somewhat

similar to the conventional linear statistical model; they

have a deterministic mean function, but the assumption

of independence is relaxed and spatial autocorrelation is

permitted in the random errors. For example, in a

universal kriging model the deterministic mean is

assumed to vary spatially and is modeled as a linear

function of known explanatory variables (in contrast to

ordinary kriging where the mean is unknown, but

constant). Local deviations from the mean are then

modeled using the spatial autocorrelation between

nearby sites. Thus, geostatistical models are typically

able to model additional variability in the response

variable and make more accurate predictions when the

data are spatially autocorrelated. For detailed informa-

tion about geostatistical methods, please see Cressie

(1993) or Chiles and Delfiner (1999).

Spatial autocorrelation is particularly relevant in

freshwater stream environments where nested water-

sheds and flow connectivity may produce patterns that

are not captured by Euclidean distance (Dent and

Grimm 1999, Torgersen and Close 2004, Ganio et al.

2005, Monestiez et al. 2005, Peterson et al. 2006, Ver

Hoef et al. 2006; Ver Hoef and Peterson, in press). Thus,

aquatic ecologists may have been hesitant to use

traditional geostatistical methods, which depend on

Euclidean distance, because they did not make sense

from an ecological standpoint. Covariance matrices

based on Euclidean distance do not represent the spatial

configuration, longitudinal connectivity, discharge, or

flow direction in a stream network. In addition to being

ecologically deficient, many common autocovariance

functions are not generally valid when Euclidean

distance is simply replaced with a hydrologic distance

measure (Ver Hoef et al. 2006). A generally valid

autocovariance function is guaranteed to produce a

covariance matrix that is symmetric and positive-

definite, with all nonnegative diagonal elements, regard-

less of the configuration of the stream segments or

sample sites. If these conditions are not met, it may

result in negative prediction variances, which violates

the assumptions of geostatistical modeling. These issues
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made it necessary to develop new geostatistical meth-

odologies for stream networks, which permit valid

covariances to be generated based on a variety of

hydrologic relationships (Cressie et al. 2006, Ver Hoef et

al. 2006; Ver Hoef and Peterson, in press). Our goal is to

introduce these new autocovariance models to ecolo-

gists.

There are currently two types of distance measures

that can be used to produce valid covariance matrices

for geostatistical modeling in stream networks (when

used with the appropriate autocovariance function):

Euclidean distance and hydrologic distance. Euclidean

distance is the straight-line distance between two

locations and all locations within a study area have

the potential to be spatially correlated when it is used

(Fig. 1A). A hydrologic distance is simply the distance

between two locations when measurement is restricted to

the stream network. In contrast to Euclidean distance,

locations within a study area do not automatically have

the potential to be spatially correlated when a hydro-

logic distance is used. Instead, rules based on network

connectivity and flow direction can be used to prevent

spatial autocorrelation between locations and thus

represent different hydrologic relationships. For exam-

ple, a ‘‘flow-connected’’ relationship requires that water

flow from one location to another for two sites to be

correlated (Fig. 1C). When this condition is not met,

sites have a ‘‘flow-unconnected’’ relationship (Fig. 1B)

and these two sites can be made spatially independent.

Likewise, whole networks (i.e., stream segments that

share a common stream outlet anywhere downstream)

can be made dependent.

Freshwater stream environments are typically consid-

ered open systems (Townsend 1996) with complex

processes and interactions occurring between and within

multiple aquatic and terrestrial scales. As a result,

multiple patterns of spatial autocorrelation may be

present in freshwater ecosystems (Peterson et al. 2006;

Ver Hoef and Peterson, in press). The strength of each

pattern may also vary at different spatial scales since the

influence of environmental characteristics has been

shown to vary with scale (Sandin and Johnson 2004).

Consequently, we believe that a geostatistical model

based on a mixture of covariances (i.e., multiple spatial

relationships) may better fit the data than a model based

on a single covariance structure.

Geostatistical models for stream network data are

relatively new and may be unfamiliar to aquatic

scientists. Here we review the current state of geo-

statistical modeling techniques for stream networks. A

model-based biological indicator collected by the

Ecosystem Health Monitoring Program (Bunn et al.,

in press) is used as a case study to demonstrate the

approach. Simple worked examples and more details are

given in the on-line appendices.

Stream network models

The stream network models of Ver Hoef et al. (2006)

and Cressie et al. (2006) are based on moving-average

(MA) constructions. MA constructions are flexible and

can be used to create a large number of autocovariance

functions (Barry and Ver Hoef 1996). They are

developed by creating random variables as the integra-

tion of a MA function over a white noise random

process. For our purposes, the key point is that spatial

autocorrelation occurs when there is overlap between

the MA function of one random variable and that of

another, which we explain in greater detail for two

classes of models.

Tail-up models

Models that are based on hydrologic distance and

only allow autocorrelation for flow-connected relation-

ships are referred to as ‘‘tail-up’’ (TU) models (Ver Hoef

et al. 2006; Ver Hoef and Peterson, in press) because the

tail of the MA function points in the upstream direction.

There are a large number of TU MA functions that one

could use such as the exponential, spherical, linear-with-

sill, or mariah models (Ver Hoef et al. 2006), and each

has a unique shape, which determines a unique

autocorrelation function. Autocorrelation occurs when

MA functions overlap among sites, with greater

autocorrelation resulting from greater overlap. For

example, in Fig. 2A, B, the shape of the TU MA

FIG. 1. The distance, h or h¼ aþ b, between locations (black circles) is represented by a dashed line. (A) Euclidean distance is
used to represent Euclidean relationships. Hydrologic distance can be used to represent both (B) flow-unconnected and (C) flow-
connected relationships in a stream network. Water must flow from one site to another in order for the pair to be considered flow
connected (C). In contrast, flow-unconnected sites do not share flow but do reside on the same stream network (B).
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function (shown in gray) dictates the relative influence of

upstream values when the random variable for a specific

location is generated. Values at short upstream hydro-

logic distances have a larger influence because there is a

greater amount of overlap in the MA functions and this

influence tends to decrease with distance upstream.

To better understand how the TU MA function is

applied to the unique conditions of a stream network,

imagine applying the function to a small network,

moving upstream segment by segment. When two

locations are flow-unconnected the tails of the MA

functions do not overlap (Fig. 2B) and the locations do

not have the potential to be spatially correlated. When

two locations are flow-connected, the MA functions

may overlap and one location has the potential to be

spatially correlated with another location (Fig. 2A).

When the MA function reaches a confluence in the

network, segment weights (called segment PIs in

Appendix A) are used to proportionally (i.e., they must

sum to 1) allocate, or split, the function between

upstream segments (Fig. 2A). The MA function could

simply be split evenly between the two (or more)

upstream branches, but this would not accurately

represent differences in influence related to factors such

as discharge. Instead, segment weights can be used to

ensure that locations residing on segments that have the

strongest influence on conditions at a downstream

location are given greater weight in the model (Ver

Hoef et al. 2006). Thus, autocorrelation in the TU

models depends on flow-connected hydrologic distance.

However, it also depends on the number of confluences

found in the path between flow-connected sites and the

weightings assigned to each of the tributaries. This

feature in particular makes stream network models

different than classical geostatistical models based on

Euclidean distance. It also makes TU models particu-

larly useful for modeling organisms or materials that

move passively downstream, such as waterborne chem-

icals.

The segment weights can be based on any ecologically

relevant feature, such as discharge, which is thought to

represent relative influence in a stream network.

However, discharge data are rarely available for every

stream segment throughout a region. As an alternative,

watershed area is sometimes used as a surrogate for

discharge (Peterson et al. 2007). It is intuitive to think

about a site’s influence on downstream conditions in

terms of discharge or watershed area; stream segments

that contribute the most discharge or area to a

downstream location are likely to have a strong

influence on the conditions found there. However,

spatial weights can be based on any measure as long

as some simple rules are followed during their construc-

tion (see Appendix A for details on how to construct

valid segment weights). The segment weights may also

be based on measures that represent the sum of the

upstream measures (i.e., a segment does not contribute

anything to itself ), such as Shreve’s stream order (Shreve

1966), as used by Cressie et al. (2006). Using segment

weights that are normalized so that they sum to one

ensures that all random variables have a constant

variance (Ver Hoef et al. 2006) if desired, which is

typical in geostatistics. As an aside, the MA construction

could also allow for non-stationary variances, but those

models will not be explored here.

The construction of a TU covariance matrix is based

on the hydrologic distance and a spatial weights matrix

(developed from the segment weights, as illustrated in

Appendix A) between flow-connected locations. Fur-

thermore, all flow-unconnected locations are uncorre-

lated. Additional details and a simple worked example

are provided in Appendix A to more clearly illustrate the

construction of a TU covariance matrix.

Tail-down models

Tail-down (TD) models allow autocorrelation be-

tween both flow-connected and flow-unconnected pairs

of sites in a stream network (Ver Hoef and Peterson, in

press). The MA function for a TD model is defined so

that it is only non-zero downstream of a location. In

other words, the tail of the MA function points in the

downstream direction (Fig. 2C, D). Spatial autocorrela-

tion is modeled somewhat differently in a flow-

connected vs. flow-unconnected situation due to the

way the overlap occurs in the MA functions (Fig.

2C, D). Notice also that the input data requirements are

unique for each case. The total hydrologic distance, h

(Fig. 1C), is used for flow-connected pairs, but the

FIG. 2. The moving-average functions for the (A,B) tail-up
and (C,D) tail-down models in both (A,C) flow-connected and
(B,D) flow-unconnected cases. The moving-average functions
are shown in gray with the width representing the strength of
the influence for each potential neighboring location. Spatial
autocorrelation occurs between locations when the moving-
average functions overlap (A, C, and D).
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hydrologic distances, a and b, from each site to a

common confluence are used for flow-unconnected pairs

(Fig. 1B). As before, more overlap in the MA function

implies more autocorrelation. Also, segment weights are

not used to model flow-connected relationships since the

MA function points downstream (Fig. 2C) and there is

no need to split the function to maintain constant

variances. Additional details and a simple worked

example showing the TD construction of a covariance

matrix are provided in Appendix A.

Although the TD model allows spatial autocorrela-

tion between both flow-connected and flow-unconnected

pairs, the relative strength of spatial autocorrelation for

each type is restricted (Ver Hoef and Peterson, in press).

For example, consider the situation where there are two

pairs of locations, one pair is flow-connected and the

other flow-unconnected, and the distance between the

two pairs is equal, aþ b¼ h. In this case, the strength of

spatial autocorrelation is generally equal or greater for

flow-unconnected pairs (Ver Hoef and Peterson, in

press) in the TD models. In fact, none of the current

models are able to generate a TD model with

significantly stronger spatial autocorrelation between

flow-connected pairs (Ver Hoef and Peterson, in press)

than flow-unconnected pairs for an equal hydrologic

distance. These restrictions on spatial autocorrelation in

the TD model may make sense for fish populations that

have the tendency to invade upstream reaches, such as

nonnative brook trout (Salvelinus fontinalis; Peterson

and Fausch 2003). Yet, there are other situations where

it would be useful to generate a model with stronger

spatial autocorrelation between flow-connected pairs

than flow-unconnected pairs. Peterson and Fausch

(2003) also studied the movement characteristics of

native cutthroat trout (Oncorhynchus clarki ) and found

that they moved downstream much more often than

upstream. Here, a model with stronger spatial autocor-

relation between flow-connected locations, which also

allows for some spatial autocorrelation between flow-

unconnected locations, might best fit the data. Yet,

neither the TU or TD model can be used to represent

this particular covariance structure. Therefore, another

modeling solution is required. Here we turn to the mixed

model, which is a very general approach, to address

these issues.

Mixed models

The mixed model is closely related to the basic linear

model:

y ¼ Xbþ e ð1Þ

where the matrix X contains measured explanatory

variables and the parameter vector b establishes the

relationship of the explanatory variables to the response

variable, contained in the vector y. The random errors

are contained in the vector e, and the general

formulation is var(e) ¼ R where R is a matrix. The

mixed-model is simply a variance component approach,

which allows the error term to be expanded into several

random effects (z.):

y ¼ Xbþ rEUCzEUC þ rTDzTD þ rTUzTU þ rNUGzNUG

ð2Þ

where cor(zEUC) ¼ REUC, cor(zTD) ¼ RTD, cor(zTU) ¼
RTU are matrices of autocorrelation values for the

Euclidean (EUC), TD, and TU models, cor(zNUG) ¼ I

where NUG is the nugget effect, I is the identity matrix,

and r2
EUC, r2

TD, r2
TU, and r2

NUG are the respective

variance components. The mixed-model construction

implies that covariance matrices based on different types

of models, such as the EUC, TU, and TD are combined

to form a valid covariance mixture:

R ¼ r2
EUCREUC þ r2

TDRTD þ r2
TUCTU �WTU þ r2

NUGI

ð3Þ

where we have further decomposed RTU¼ CTU � WTU

into the Hadamard product of the flow-connected

autocorrelations CTU (unweighted) and the spatial

weights matrix WTU.

The variance component model is attractive for

several reasons. First, it solves the problem mentioned

in the previous section; namely that the combination of

the TU covariance matrix and TD covariance matrix

allows for the possibility of more autocorrelation among

flow-connected pairs of sites, with somewhat less

autocorrelation among flow-unconnected pairs of sites.

Secondly, the multiple range parameters can capture

patterns at multiple scales. Generally, large scale

patterns are the most obvious and explanatory variables

are incorporated to help explain them. Spatial patterns

of intermediate scale, which have not been measured

with explanatory variables, are captured by the range

parameters for the EUC, TU, and TD models and the

relative strength of each model is given by its variance

component. The spatial weights are used to capture the

influence of branching in the network, flow direction,

and discharge. Finally, some spatial variation occurs at

a scale finer than the closest measurements; these are

modeled as independent error, which is represented by

the nugget effect. We now turn to an example to make

these concepts clearer.

Example

The Ecosystem Health Monitoring Program (EHMP)

has been collecting indicators of biotic structure and

ecosystem function throughout South East Queensland

(SEQ), Australia (Fig. 3A) since 2002 (Bunn et al., in

press). The program aims are to evaluate the condition

and trend in ecological health of freshwater environ-

ments and to guide investments in catchment protection

and rehabilitation. Metrics based on freshwater fish

assemblages are commonly used as indicators of

ecological health because they are thought to provide a

holistic approach to assessment across broad spatial and

temporal scales (Harris 1995). In this example, we used a
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model-based biological indicator, the proportion of

native fish species expected (PONSE), which is simply

the ratio of observed to expected native freshwater fish

species richness (Kennard et al. 2006). The expected

species composition data were generated using a

referential model and represent the native species that

are expected to be present in a physically similar, but

undisturbed stream (Kennard et al. 2006). The observed

species composition data were collected at 86 survey

sites (Fig. 3B) in the spring of 2005. Hereafter, we will

refer to these as the ‘‘observed sites.’’ PONSE scores at

the observed sites ranged from 0.09 to 1, with a mean of

0.76 and a median of 0.83. We also nonrandomly

selected 137 ‘‘prediction sites’’ where PONSE was not

generated. Additional information about the study area,

the sampling methods, and the predictive model used to

generate the PONSE scores is provided in Appendix B.

We generated the spatial data necessary for geo-

statistical modeling in a geographic information system

(GIS). These included seven explanatory variables

representing watershed-scale land use, land cover, and

topographic characteristics for each observed and

prediction site, as well as the hydrologic distances and

spatial weights, which were based on watershed area.

The EHMP classified streams based on elevation, mean

annual rainfall, stream order, and stream gradient to

create four EHMP regions (Bunn et al., in press), which

we also included as a site-scale explanatory variable.

Additional information about the GIS methodology and

explanatory variables can be found in Appendix B.

We used a two-step model selection procedure to

compare models. First we fixed the covariance structure

and focused on selecting the explanatory variables using

the Akaike information criterion (AIC; Akaike 1974).

During the second phase of model selection we focused

on selecting the most appropriate covariance structure.

We fixed the selected explanatory variables, and then

compared every linear combination of TU, TD, and

EUC covariance structures, where four different auto-

covariance functions were tested for each model type.

This resulted in a total of 124 models, each with a

different covariance structure. In addition, we fit a

classical linear model assuming independence to com-

pare to models that use spatial autocorrelation. Once the

final model was identified, universal kriging (Cressie

1993) was used to make predictions at the 137 prediction

sites. Please see Appendix B for details on the model

selection procedure.

Our results show that a model based on a mixture of

covariances produced more precise PONSE predictions

than models based on a single covariance structure

(Table 1). When more than one covariance structure was

incorporated, mixture models that included the TD

model appeared to outperform other mixture types. In

addition, all of the geostatistical models outperformed

the classical linear model. The lowest RMSPE value was

produced by the exponential TU/linear-with-sill TD

mixture model. Hereafter this will be referred to as the

‘‘final model.’’ The final model only contained one

explanatory variable, mean slope in the watershed,

which was positively correlated with PONSE. This

statistical relationship may represent a physical rela-

tionship between PONSE and an anthropogenic distur-

bance gradient such as land use, water quality, channel

or riparian condition, or in-stream habitat (Kennard et

al. 2006), which is correlated to slope. For example,

watersheds with steeper slopes might be expected to

have less cleared or cropped land and, as a result higher

PONSE scores. More details on the fitted explanatory

variables and diagnostics are given in Appendix B.

We examined the percent of the variance explained by

each of the covariance components to provide more

information about the covariance structure of the

models. In the final model, the TU, TD, and NUG

components explained 22.43%, 64.32%, and 13.25% of

the variance, respectively. Although the full covariance

mixture (TU/TD/EUC) was not the best model in this

example based on the RMSPE (Table 1), the loss in

predictive ability was only 0.34% when it was used

instead of the final model. One of the advantages of a

mixed model is its flexibility; a covariance mixture can

be used to represent the whole range of covariance

structures used in the mixture (i.e., single EUC, TU, or

TD or any combination of the three). Therefore, we

recommend fitting a full covariance mixture; this allows

the data to determine which variance components have

the strongest influence, rather than making an implicit

assumption about the spatial structure in the data by

using a single covariance structure.

The predictions and prediction standard errors

produced by the final model (Fig. 3C–F) exhibit some

of the common characteristics of kriging predictions.

Predictions and their standard errors vary depending on

the estimated regression coefficients and distances to

observed data sites. If the explanatory variables at the

prediction site are not well represented in the observed

data set a large standard error will be assigned to the

prediction. The predictions change gradually along

stream segments (Fig. 3C–F) and the prediction

standard errors tend to be smaller near observed data

and increase as a function of distance (Fig. 3C).

The predictions and prediction standard errors shown

in Fig. 3 also demonstrate some characteristics that are

unique to geostatistical models for stream networks. For

example, the TU model allows discontinuities in

predictions at confluences, which enables flow-uncon-

nected tributaries to receive markedly disparate PONSE

predictions (Fig. 3D). The effect of the spatial weights

on prediction uncertainty is apparent if upstream

segments have not been sampled (Fig. 3E). In this

situation, uncertainty is relatively high upstream of a

confluence because various combinations of the two

PONSE scores could be contributing to the downstream

observed score. Two sites located on the main stem are

strongly correlated (based on a combination of the tail-

up and tail-down models) and uncertainty in the
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TABLE 1. A comparison of mixture models.

Mixture Model 1 Model 2 Model 3 RMSPE

Nonspatial 0.2573
TU linear-sill 0.2428
TD linear-sill 0.2112
EUC spherical 0.2283
TU/TD exponential linear-sill 0.2088
TU/EUC linear-sill Gaussian 0.2190
TD/EUC linear-sill spherical 0.2103
TU/TD/EUC mariah linear-sill exponential 0.2094

Notes: Models shown represent the best model fit for each mixture type based on the root mean square prediction error
(RMSPE). Models are tail-up (TU), tail-down (TD), and Euclidean (EUC).

FIG. 3. (A, B) The Ecosystem Health Monitoring Program collects a suite of ecological indicators at survey sites located
throughout South East Queensland, Australia. Predictions and prediction variances for the proportion of native fish species
expected (PONSE) were produced using the exponential tail-up/linear-with-sill tail-down model (C–F). Observed sites are
represented by larger squares, and prediction sites are represented by smaller diamonds. Prediction variances are shown in gray and
are sized in proportion to their value (0.124–0.215). Thus, predictions with a large shaded gray area have less precision. Blue line
segments symbolize stream segments, and the width of the line is proportional to the watershed area.
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downstream predictions is low (Fig. 3E). However,

when the spatial weights are based on watershed area,

and one upstream segment dominates a side branch,

uncertainty in the upstream direction may also be low

(Fig. 3C). In contrast, prediction uncertainty in small

upstream tributaries is relatively large (based on the tail-

up model) since the spatial correlation between the

observed and prediction site is weak (Fig. 3F).

Discussion and Conclusions

Spatial autocorrelation is clearly a natural phenom-

enon given the open nature of stream ecosystems

(Townsend 1996) and the complexity of process

interactions occurring within and between the stream

and the terrestrial environment. Observable patterns of

spatial autocorrelation are likely caused by multiple

spatially dependent factors (Wiens 2002). As a result,

conceptualization and modeling in stream ecosystems

requires tools that are able to account for dynamic

multi-scale patterns ranging from the reach to the

network scale (Townsend 1996). Yet many models do

not account for these natural interdependencies. Ignor-

ing spatial autocorrelation makes it possible to use

traditional statistical methods, which rest on the

assumption of independent random errors. Although

convenient, our opinion is that it is better to develop

new statistical methods that represent the unique

ecological conditions found in the environment.

Traditional geostatistical methods account for spatial

correlation in the error term, but they may not fully

capture spatial autocorrelation structures in stream

environments. Euclidean covariance functions, such as

the spherical, cubic, exponential, and Gaussian, are all

strikingly similar (Chiles and Delfiner 1999). As a result,

two sites that are spatially correlated using one function

are likely to be spatially correlated using another

function. In contrast, the stream models have a

markedly different autocovariance structure than the

Euclidean models and represent a true difference in the

way that spatial relationships are represented. The

splitting of the covariance function along a branching

network is also unique to stream models. Previously,

autocorrelation has been restricted to a linear feature or

to two-dimensional space, which cannot be used to

capture hydrologic patterns of spatial autocorrelation in

a branching network. The stream models given here

provide an innovative statistical alternative because they

were specifically developed to represent the spatial

configuration, longitudinal connectivity, discharge, and

flow direction in a stream network.

The mixed model is an extremely flexible approach

because many sources of information can be incorpo-

rated into a single model. The explanatory variables are

used to account for influential factors that can be

measured. However, it is common for other influential

variables to be left unmeasured due to a lack of

resources or an incomplete understanding about the

stream process. In a mixed model, autocorrelated errors

can be modeled at multiple scales using a variety of

distance measures. This produces a rich and complex

covariance structure, that when combined with the

explanatory variables, can be used to account for the

effects of both measured and unmeasured variables at

multiple scales. Given the multi-scale complexities of

stream ecosystems, we expect these models to better

represent the spatial complexity and interdependencies

in a streams data sets.

The flexibility of the mixture model makes the method

suitable for modeling a variety of variables collected

within or near a stream network. Although we used a

Gaussian response in the example, the autocovariance

functions described here can also be used to produce

covariance matrices for kriging Poisson or binomial

variables, such as fish counts or the presence or absence

of species. It may also be possible to model variables

that are present in riparian areas rather than streams,

but are expected to exhibit both Euclidean and

hydrologic patterns of spatial autocorrelation. This

might include riparian plant species that employ

waterborne dispersal strategies or animal species that

migrate along stream corridors. Finally, we chose to use

watershed area to calculate the spatial weights because it

made sense given the response variable, but any

measurement, such as water velocity, stream width, or

discharge, could be used as long as it meets the statistical

requirements set out in Appendix A. In principle,

multiple weighting schemes could be compared as part

of the model selection criteria.

The mixed model is also useful from a management

perspective since predictions with estimates of uncer-

tainty may be generated throughout a stream network

(Fig. 3). This ability provides a way to move from

disjunct stream management, which is traditionally

based on site or reach-scale samples, to a more

continuous approach that yields location specific pre-

dictions and accounts for the network as a whole

(Fausch et al. 2002). For example, the predicted PONSE

values in two small tributaries were relatively high

compared to those found in the main stem (Fig. 3F),

which may indicate that those locations have the

potential to act as natural refugia for native fish residing

in marginally suitable habitats. The potential impor-

tance of these tributaries could go unnoticed without the

ability to evaluate the network as a whole. This quality is

particularly useful because it helps to ensure that

management actions are targeted or scaled appropriately

(Lake et al. 2007). Including estimates of uncertainty

also enables users to gauge the reliability of the

predictions and to target future sampling efforts in

areas with large amounts of uncertainty or a greater

potential for ecological impairment.

Geostatistical modeling in stream networks has the

potential to be a powerful statistical tool for freshwater

stream research and management. It can be used to

capture and quantify spatial patterns at multiple scales,

which may provide additional information about
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ecosystem structure and function (Levin 1992); a key
step in developing new ecological theories. Our goal has

been to make this methodology accessible to ecologists
so that the models can be implemented, modified, and
improved to derive additional information from streams

data sets. We believe that when geostatistical models for
stream networks are used in conjunction with sound
ecological knowledge the result will be a more ecolog-

ically representative model that may be used to broaden
our understanding of stream ecosystems.

ACKNOWLEDGMENTS

We thank the SEQ Healthy Waterways Partnership for
sharing the data set and Beth Gardner, Mark Kennard, Petra
Kuhnert, and an anonymous reviewer for their constructive
comments on the manuscript. This project received financial
support from the National Marine Fisheries Service of NOAA,
the CSIRO Division of Mathematical and Information
Sciences, and the Australian Water for a Healthy Country
Flagship.

LITERATURE CITED

Akaike, H. 1974. A new look at the statistical model
identification. IEEE Transactions on Automatic Control
19(6):716–722.

Barry, R. P., and J. M. Ver Hoef. 1996. Blackbox kriging:
spatial prediction without specifying variogram models.
Journal of Agricultural, Biological, and Environmental
Statistics 1:297–322.

Bunn, S., E. Abal, M. Smith, S. Choy, C. Fellows, B. Harch, M.
Kennard, and F. Sheldon. In press. Integration of science and
monitoring of river ecosystem health to guide investments in
catchment protection and rehabilitation. Freshwater Biology.

Chiles, J., and P. Delfiner. 1999. Geostatistics: modeling spatial
uncertainty. John Wiley and Sons, New York, New York,
USA.

Cressie, N. 1993. Statistics for spatial data. Revised edition.
John Wiley and Sons, New York, New York, USA.

Cressie, N., J. Frey, B. Harch, and M. Smith. 2006. Spatial
prediction on a river network. Journal of Agricultural
Biological and Environmental Statistics 11:127–150.

Dent, C. L., and N. B. Grimm. 1999. Spatial heterogeneity of
stream water nutrient concentrations over successional time.
Ecology 80:2283–2298.

Fausch, K. D., C. E. Torgersen, C. V. Baxter, and H. W. Li.
2002. Landscapes to riverscapes: bridging the gap between
research and conservation of stream reaches. BioScience 52:
483–498.

Ganio, L. M., C. E. Torgersen, and R. E. Gresswell. 2005. A
geostatistical approach for describing spatial pattern in

stream networks. Frontiers in Ecology and the Environment
3:138–144.

Harris, J. H. 1995. The use of fish in ecological assessments.
Australian Journal of Ecology 20:65–80.

Kennard, M. J., B. D. Harch, B. J. Pusey, and A. H.
Arthington. 2006. Accurately defining the reference condition
for summary biotic metrics: a comparison of four approach-
es. Hydrobiologia 572:151–70.

Lake, P. S., N. Bond, and P. Reich. 2007. Linking ecological
theory with stream restoration. Freshwater Biology 52:597–
615.

Levin, S. A. 1992. The problem of pattern and scale in ecology.
Ecology 73:1943–1967.

Monestiez, P., J.-S. Bailly, P. Lagacherie, and M. Voltz. 2005.
Geostatistical modelling of spatial processes on directed
trees: application to fluvisol extent. Geoderma 128:179–191.

Peterson, D. P., and K. D. Fausch. 2003. Upstream movement
by nonnative brook trout (Salvenlinus fontinalis) promotes
invasion of native cutthroat trout (Oncorhynchus clarki)
habitat. Canadian Journal of Fisheries and Aquatic Sciences
60:1502–1516.

Peterson, E. E., A. A. Merton, D. M. Theobald, and N. S.
Urquhart. 2006. Patterns of spatial autocorrelation in stream
water chemistry. Environmental Monitoring and Assessment
121:569–594.

Peterson, E. E., D. M. Theobald, and J. M. Ver Hoef. 2007.
Geostatistical modelling on stream networks: developing
valid covariance matrices based on hydrologic distance and
stream flow. Freshwater Biology 52:267–279.

Sandin, L., and R. K. Johnson. 2004. Local, landscape and
regional factors structuring benthic macroinvertebrate as-
semblages in Swedish streams. Landscape Ecology 19:501–
514.

Shreve, R. L. 1966. Statistical law of stream numbers. Journal
of Geology 74:17–37.

Tobler, W. R. 1970. Computer movie simulating urban growth
in Detroit region. Economic Geography 46:234–240.

Torgersen, C. E., and D. A. Close. 2004. Influence of habitat
heterogeneity on the distribution of larval Pacific lamprey
(Lampetra tridentata) at two spatial scales. Freshwater
Biology 49:614–630.

Townsend, C. R. 1996. Concepts in river ecology: pattern and
process in the catchment hierarchy. Archiv für Hydrobiologie
113(Large Rivers Supplement):3–21.

Ver Hoef, J. M., and E. E. Peterson. In press. A moving average
approach for spatial statistical models of stream networks.
Journal of the American Statistical Association.

Ver Hoef, J. M., E. E. Peterson, and D. M. Theobald. 2006.
Some new spatial statistical models for stream networks.
Environmental and Ecological Statistics 13:449–464.

Wiens, J. A. 2002. Riverine landscape: taking landscape ecology
into the water. Freshwater Biology 47:501–515.

APPENDIX A

Formulas and examples for the construction of tail-up and tail-down covariance matrices (Ecological Archives E091-048-A1).

APPENDIX B

Additional details about the collection and analysis of the EHMP PONSE data set (Ecological Archives E091-048-A2).
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