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Spatial sampling on streams: principles for
inference on aquatic networks

Nicholas A. Som**, Pascal Monestiez’, Jay M. Ver Hoef, Dale L. Zimmerman*
and Erin E. Peterson®

For ecological and environmental data, prior inquiries into spatial sampling designs have considered two-dimensional
domains and have shown that design optimality depends on the characteristics of the target spatial domain and intended
inference. The structure and water-driven continuity of streams prompted the development of spatial autocovariance
models for stream networks. The unique properties of stream networks, and their spatial processes, warrant evaluation
of sampling design characteristics in comparison with their two-dimensional counterparts. Common inference scenarios
in stream networks include spatial prediction, estimation of fixed effects parameters, and estimation of autocovariance
parameters, with prediction and fixed effects estimation most commonly coupled with autocovariance parameter estima-
tion. We consider these inference scenarios under a suite of network characteristics and stream-network spatial processes.
Our results demonstrate, for parameter estimation and prediction, the importance of collecting samples from specific net-
work locations. Additionally, our results mirror aspects from the prior two-dimensional sampling design inquiries, namely,
the importance of collecting some samples within clusters when autocovariance parameter estimation is required. These
results can be applied to help refine sample site selection for future studies and further showcase that understanding the
characteristics of the targeted spatial domain is essential for sampling design planning. Published 2014. This article has
been contributed to by US Government employees and their work is in the public domain in the USA.
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1. INTRODUCTION

Efficient management and monitoring of natural resources requires informative data (Mahjouri and Kerachian, 2011), with inferences for
spatial data affected substantially by the spatial configuration of sampled sites (Zimmerman, 2006); hence, a common issue in spatial
statistics is how to choose an “optimal” set of sample locations (Zhu and Stein, 2006). Optimality for spatial sampling designs depends on
the characteristics of the target spatial domain and intended inference. Regardless of the inference goal, estimation of spatial autocorrelation
is among the essential steps in any geostatistical analysis (Gascuel-Odoux and Boivin, 1994), and poorly constructed sampling designs
can lead to data lacking sufficient practical value (Strobl et al., 2006). This is as true for stream and river networks as it is for the two-
dimensional domain usually considered by geostatistics. Recently, new classes of geostatistical models for stream networks have been
developed (summarized by Ver Hoef and Peterson, 2010), but the development of optimal stream-network designs under these models has
received little attention. The overall goal of this manuscript is to study optimal spatial-sampling designs for the class of stream network
models described in Ver Hoef and Peterson (2010).

There is a substantial and coherent body of work evaluating sampling designs for geostatistical data, which are commonly used for
monitoring population status and trend, estimating relationships between ecological phenomena, and predicting values at unobserved loca-
tions. Sampling design optimality varies by these inference scenarios (Zhu and Stein, 2005), prior knowledge of the covariance parameters
(Zimmerman, 2006), and the strength of spatial autocorrelation, among other factors. Characteristics of optimal designs for estimation of a
constant mean with known covariance parameters include some samples uniformly spaced throughout the domain and the rest focused near
domain boundaries (Xia et al., 2006). To estimate spatial trend, clusters are needed in areas of high leverage, as well as samples near domain
boundaries (Miiller, 2005). When covariance parameters are also estimated, high densities of samples near the boundary are replaced with
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samples distributed throughout the domain with some clusters, and fewer samples at high leverage locations (Miiller and Stehlk, 2010). Sim-
ilarly, the best designs for prediction with known covariance parameters and a constant mean are uniformly distributed across the domain,
while locations are allocated to high leverage areas when trend is estimated. These cases contrast with optimal designs developed specifi-
cally for the estimation of covariance parameters, which include a distribution of locations with many small and large separation distances
(Zimmerman, 2006; Zhu and Zhang, 2006; Irvine et al., 2007).

The results described in the preceding paragraph rely on “model-based” inference, which assumes that the data are generated by a spatial
stochastic process. In contrast, “design-based” inference assumes that the data are fixed, and all inference relies on random properties of the
design (Ver Hoef, 2002; Stevens Jr., 2006). Sample designs for monitoring and inference in aquatic networks have been commonly chosen
with design-based inference in mind, where the inference goals include estimation of population means or totals, and designs commonly
include spatially balanced samples that broadly cover the domain (Al-Chokhachy et al., 2011). Samples of this type result in more efficient
samples (under the design-based paradigm) through less redundant information (Stevens Jr. and Jensen, 2007) and maintain randomness to
avoid biases (Herlihy et al., 2000). They are broadly similar to those outlined for model-based inference, except where fine-scale clustering
is indicated to better estimate spatial autocorrelation.

The aforementioned results are satisfactory for estimation and prediction in the traditional geostatistical, two-dimensional setting. They
may not, however, be sufficient for spatial processes on stream networks. Each stream network consists of a set of linear segments that are
connected by flowing water. The direction of water flow and the branching structure of the network strongly influence the spatial relationships
within a stream network. This branching structure forms distinctly different network shapes, from linear trellis networks to oval-shaped,
pear-shaped, or heart-shaped dendritic networks, depending on the topography and geology of the region (Benda, 2008). The shape and
complexity of the network controls the spatial configuration of confluences (i.e., locations where stream segments converge), which strongly
influences the heterogeneity of chemical, physical, and biological processes throughout the network (Fagan, 2002; Benda et al., 2004;
Labonne et al., 2008). For example, the diversity of instream habitat such as flow characteristics, woody debris, or substrate size is expected
to be higher near confluences within a dendritic network compared with a trellis network because segments of similar size converge causing
disturbance and heterogeneity in the environment (Benda, 2008).

These traits have led to further developments in the study of covariance models for stream networks. Ver Hoef et al. (2006) utilized
moving-average constructions to develop spatial covariance models for stream networks based on stream distance. These models also account
for the relative flow contribution between segments at confluences and are discussed in more detail in the succeeding text. Stream-network
moving-average models allow for the modeling of a broad suite of stream network-based spatial processes. Thus, their unique properties
warrant an evaluation of sampling design characteristics in comparison with their traditional geostatistical counterparts.

In this work, we consider optimal sampling designs for stream networks in the context of common inference scenarios, more specifically,
fixed effects estimation and prediction (each with known and unknown covariance parameter values), and the estimation of only covariance
parameters. We pay particular attention to the role that confluences, flow connectivity, and directionality might play in regards to sample
site selection. In Section 2, we begin with an introduction to spatial moving-average models for stream networks. In Section 3, we first
define our sampling design criterion, and then use a small “toy” stream network to find locally optimal sampling designs under a suite of
spatial stream-network covariance processes, spatial autocorrelation strengths, fixed effects structures, and segment weighting schemes. In
Section 4, results from the toy networks are then pursued in larger simulated networks to explore the relative merits of sampling design
choice and the potential impacts of contrasting stream-network shapes. We conclude with a discussion of the results and sampling design
recommendations for the most common inference scenarios.

2. MOVING AVERAGE AUTOCOVARIANCE MODELS FOR STREAM NETWORKS

Mathematically, we envision a stream network as a set of lines (stream segments) that branch upstream from the most downstream segment
on the network (outlet segment) to the most upstream segments on the network (headwater segments; Figure 1). We assume that the branching
is binary (i.e., three or more segments never branch upstream from the same confluence). Observations are represented by points on the
network, which have two coordinate systems (Peterson et al., 2013); one is the usual two-dimensional coordinate system and the other is
based on the network topology (i.e., branching structure and connectivity of segments). Note that separation distance between two locations
along the network is the shortest distance between them when movement is confined to the network (e.g., stream distance; Dent and Grimm,
1999). If water flows from an upstream location to a downstream location, we refer to these locations as flow-connected (Figure 1, A and C,
B and C) and refer to two locations within the same network not connected by flowing water as flow-unconnected (Figure 1, A and B).

Some new models for stream networks, based on moving average constructions, were initially described by Ver Hoef et al. (2006) and
Cressie et al. (2006). In these models, the observed values measured at points are assumed to come from one realization of a continuous
spatial random field on the network (i.e., samples could be collected continuously along the network). The models summarized in Ver Hoef
and Peterson (2010) use a spatial moving-average approach to construct Gaussian random fields based on the network topology, rather than
the usual two-dimensional coordinate system commonly used in geostatistics. This approach yields random processes that are similar to
typical geostatistical models; they can be described by a mean function that depends on the location within the network, and a second-order,
stationary covariance function that depends on the separation distance between two locations.

The fact that streams are branching and have flow creates a rich set of models not seen in either time series analysis or spatial statistics.
Using the moving average constructions, if a moving average function starts at some location and is non-zero only upstream of that location,
it is called a “tail-up” model. The function must split at confluences as it goes upstream to maintain stationarity of variances, so some
weighting of segments must occur. If a moving average function starts at some location and is non-zero only downstream of that location, it is
called a “tail-down” model. Consider two pairs of sites that have the same stream distance between them, but one pair is flow-connected and
the other pair is flow-unconnected; in general, the amount of autocorrelation will be different between them. For the following development,
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Figure 1. Toy network with seven stream segments and 21 potential sampling locations. Dashed lines represent headwater segments, the dotted line represents

the outlet segment, and solid lines represent segments in the network between the outlet and headwater segments. Black circles represent sampling locations

at 0.01, 0.50, and 0.99 units along each segment. The arrow shows the direction of flowing water within the network. A, B, and C represent three network
locations. In this network, C is flow-connected to both A and B, but A and B are flow-unconnected

let r; and s; denote two locations on a stream network, and let h be the stream distance between them. Then, the following models have
been developed to describe different forms of covariance of the response at locations r; and s ;.
The moving average construction for tail-up models, as described by Ver Hoef et al. (2006), is

7;,jCr(h|0y) if r; and s; are flow-connected

Cy(ri,si|0y) = .
u(ri;sj10u) 0 if r; and s are flow-unconnected

1)

where Cy(ri,s;]0y) is the spatial autocovariance between r; and s, u denotes a tail-up model, @, is the set of covariance function
parameters, Cy (/|6,) is the value of a covariance function based on /, 6, and a selected covariance model (e.g., exponential), and 7; ; are
weights to account for the branching characteristics of the stream and maintain variance stationarity.

For the weights, 7 ;, consider the following. First, associate a value of 1 with each headwater segment in a stream network. When two
segments join at a confluence, the value for the segment downstream of the confluence is the sum of the two upstream values, and this
summation continues downstream until the network outlet is reached. Segment values formed in this manner are known as Shreve’s stream
order (Shreve, 1967) and are an example of an additive function. These additive values are a property of whole stream segments and are
applied to any point along a particular segment. If we denote the value of the additive function as €2(x) for some point x on the stream
network, then the weight for two flow-connected points where r; is downstream from s is

Q(s5)
wi,j = 79(”) VT € (0, 1)

The weights reflect the relative shared flow among locations, and again, serve to maintain stationary variances. More details can be found
in Ver Hoef and Peterson (2010), including ways to create an additive function from values associated with stream segments, such as flow
volume, a proxy for flow volume (e.g., basin area), or any other ecologically relevant variable.

Herein, we feature the exponential stream-network covariance function because its geostatistical counterpart is frequently applied by
practitioners and has been featured in previous optimal sampling design work in the two-dimensional setting (e.g., Zimmerman (2006) and
Xia et al. (2006)). For the exponential stream-network covariance function, C; (k|6 ) has the following form (Ver Hoef et al., 2006):

Ci(h|0y) = o exp(—3h/o,) @)

where o,f > 0 is an overall variance parameter (also known as the partial sill), r, > 0 is the range parameter, and 6,, = (03, (xu)/. Via (1),
spatial autocorrelation is only permitted between flow-connected locations in the tail-up model.

For tail-down models, spatial autocorrelation is permitted between both flow-connected and flow-unconnected locations, but we generally
distinguish between the two cases. When two sites are flow-unconnected, there will always be at least one common confluence (i.e., a
downstream confluence that receives water from each of the two upstream sites). Let b denote the longer of the two distances to the closest
common downstream confluence, and a denote the shorter of the two distances. If two sites are flow-connected, again use 4 to denote their
stream distance. Again, the only tail-down model we consider is the exponential, defined as follows:

05 exp(—3h/ay) if flow-connected

Cy(a.b.hl8y) = 3)

(75 exp(—3(a + b)/ay) if flow-unconnected

Environmetrics (2014) Published 2014. This article has been contributed to by US Government wileyonlinelibrary.com/journal/environmetrics
employees and their work is in the public domain in the USA.



Environmetrics N. A. SOM ET AL.
|

where Cj(a,b,h|0 ;) is the spatial autocovariance between r; and s, 05 > 0 is an overall variance parameter, oy > 0 is the range
parameter, 8 ; = (05, oed)/, and d denotes a tail-down model. We note, for the exponential model, that when a + b = h, the flow-connected
and flow-unconnected models are equivalent, and stress is a unique property of the exponential form of tail-down covariance models (Garreta
et al., 2010). A full development and more detail regarding the suite of stream-network moving-average models can be found in Ver Hoef
and Peterson (2010).

A mixed linear model combining tail-up and tail-down components is

Y =XB 4yt +e @)

where Y is the vector of random variables for an observable stream attribute at sampled locations, X is a design matrix of fixed effects,
B contains fixed effects parameters, z;, contains spatially autocorrelated random variables with a tail-up autocovariance (e.g., (2)), with
var(zy) = o,fR(au), and R(ay) is a correlation matrix that depends on the range parameter oy, ; z; contains spatially autocorrelated random
variables with a tail-down autocovariance (e.g., (3)) such that var(z;) = asR(ad); and e contains independent random variables with
var(e) = Ggl. When used for spatial prediction, this model is referred to as “universal” kriging (Le and Zidek, 2006, p. 107), with “ordinary”
kriging being the special case where the design matrix X is a single column of ones (Cressie, 1993, p. 119). This yields a covariance matrix
of the form

var(Y) = ¥ = 0ZR(ow) + 07R(ag) + 0g1 6))

The mixed model in (4) is quite flexible. For example, including both tail-up and tail-down models may be useful for modeling stream-
network attributes of active organisms that also respond to in-stream habitat (e.g., cutthroat trout abundance (Ganio et al., 2005)), where
both variance components might better model the spatial dependence than either model alone.

3. TOY NETWORKS

We next consider the inference scenarios of spatial prediction and fixed effects estimation, each with known and estimated covariance
parameters, and estimation of only the covariance parameters, for stream-network spatial processes. We begin with a small, toy stream
network. This dendritic-shaped network consists of seven unit-length stream segments, each with three potential sampling locations placed
at stream distances of 0.01, 0.50, and 0.99 units along each segment (Figure 1). The network has four headwater segments and a single outlet
segment that drains the entire network. The set W consists of the seven stream segments, and the set S the finite set of 21 points on W.
We wish to find the six-point subset {s1,...,5¢} C S that optimizes the unique design criterion for each inference scenario. We chose a
sample size of six because it was large enough to reveal differences, from clustered to balanced designs, but small enough so that we could
computationally evaluate the optimality criteria for all 54,264 designs. For each inference scenario, we applied tail-up, tail-down, and tail-up
+ tail-down exponential stream-network spatial-covariance functions and assumed that the underlying spatial process in the mixed model (4)
was Gaussian. Segment weights for the tail-up model were apportioned in two ways: equally at each confluence or with the upstream-left
segment receiving a weight of 0.8 and the upstream-right segment receiving 0.2. The range parameters (o, and ¢tz ) were also set in two ways:
at approximately half the maximum stream distance or near the maximum stream distance. We did not alter the values of 03 and 05 , setting
each equal to 1, and set ag = 0 (i.e., not incorporating a “nugget” effect). The nugget effect combines micro-scale variation (i.e., variation at
distances smaller than observed), with measurement error (Schabenberger and Gotway, 2005, p. 139), and can result from unresolved scales
of variability (Cressie and Wikle, 2011, p. 6). No-nugget models were selected to allow, to the maximum extent, the differences in design
criteria to depend on the spatial effects, and note an increasing nugget component approaches the case of independence among sampled
locations. We also note, that for the no-nugget model, changes to 05 and 05 simply scale the criteria values described in the succeeding text,
and do not effect the rankings among designs. Finally, the fixed effects structure was either a constant mean, where X is a single column of
ones, or a spatial trend representing a linear function of stream distance from the outlet, where X is a two-column matrix with the second
column containing distances to the network outlet (Table 1). The vectors of estimated parameters depend on the fixed effects structure and
spatial-covariance function. For the constant-mean case 8 = (B¢) and for the spatial-trend case 8 = (Bo, 81)’. Likewise, § = (0,3,0[,,),
for tail-up covariance function, § = (05, ozd)/ for the tail-down covariance function, and 8 = (02, . 05, ocd)/ for the tail-up + tail-down
covariance function. In general, the optimal design for a given criterion may depend on the covariance parameters; hence, we will use the
term “locally optimal” to indicate optimality under a model having particular values of those parameters.

3.1. Covariance parameter estimation

We begin with the case of covariance parameter estimation. We assume that the covariance function is known only up to a parameter vector
0, and that the elements of @ are unknown and estimated from the observed data. We sought a scalar summary of design quality that
encapsulated the estimation of (potentially) multiple covariance parameters. We followed Zhu and Stein (2005) and Zimmerman (2006) by
considering the inverse of the information matrix, [I(#)] ™1, as a reasonable approximation to the mean squared error matrix

~ ~ !/
M(8) = E[<0—0>(0—0)} 6)
and our measure of design quality was the determinant of the inverse information matrix
CP = |[1(6)] | @
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Table 1. Combinations of stream network covari-
ance functions, segment weighting at each conflu-
ence (7, ), strength of autocorrelation (i.e., range
parameter(s) o, and/or oy), and fixed effects mean
structure (mean) for each inference scenario
Covariance function T, j ®y.d Mean
2 Constant
Trend
0.5/0.5
4 Constant
Trend
Tail-up
) Constant
Trend
0.8/0.2
4 Constant
Trend
2 Constant
. Trend
Tail-down -
4 Constant
Trend
Constant
2,2 Trend
Tail-up + tail-down  0.5/0.5
4.4 Constant
’ Trend

Zhu and Stein (2005) demonstrated that although the approximation of M(#) by [I(#)]~! is poor for small samples sizes, the relationship
between their determinants is approximately monotonic and hence (7) is a suitable design criterion. In our toy examples, we used restricted
maximum likelihood (REML) estimation, so the ijth element of Iz gas7 (0) is

1 X 0%
ztr(QBGiQaﬁj) ®)

where tr represents the matrix trace operator and Q = X~ — X 7I1X(X’Z ~!1X)~!1X’Z ~!. We thus defined the locally CP-optimal six-point
design as that which minimized |[Igz 77 (8)]~!| among all six-point designs.

The results for all locally CP-optimal designs contained at least a portion of samples within “clusters,” defined here as either adjacent
site pairs/triads on the same segment or the triad of sites within stream distance 0.02 of each other at a stream confluence (Figure 2; and
hereafter, the filled black circles represent each locally optimal six-point design). Which of these cluster types occurred, and what their
distribution was within the network, depended considerably on the spatial process, to a lesser extent on the mean function, and little on the
strength of spatial autocorrelation. For the tail-up process, all clusters were adjacent site pairs or triads that occurred on stream segments that
were flow-unconnected yielding highly correlated observations within, but completely uncorrelated observations across, clusters. The tail-
up spatial-trend case favored triads, while the constant-mean case favored pairs, and there was no effect of the segment weighting scheme.
Locally CP-optimal designs for the tail-down process featured one confluence-based cluster plus single samples in headwater segments,
of which at least two were separated from the cluster by distances at or near the maximum distance. In addition, differences due to mean
function appeared to be small. The tail-up + tail-down scenario exhibited attributes of each model: pairs/triads of samples were found within
segments, in some cases accompanied by single samples in locations separated from the clusters by the maximum stream distance (or
nearly so).

3.2. Prediction with known covariance parameters

We next consider spatial prediction, commonly referred to as kriging, and begin by assuming that the covariance function and parameter
vector @ are known. Under model (4), the best linear unbiased predictor (BLUP) of an unobserved value of Y at a stream network location
so € S is

Y(s0) = [e+XX'EZIX)I(xog - X' 1oz lY )
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Figure 2. Locally CP-optimal toy network designs for estimation of covariance parameters. All circles represent potential sampling locations, and filled black

circles are locations included in the locally optimal six-point designs. Rows, from top to bottom, correspond to tail-up covariance process with equal segment

weighting (0.5/0.5), tail-up covariance process with unequal segment weighting (0.8/0.2), tail-down covariance process, and tail-up + tail-down covariance

process with equal segment weighting for the tail-up component. Columns, from left to right, correspond to constant mean with o & 2, constant mean with
o & 4, spatial trend mean structure with o = 2, and spatial trend mean structure with o ~ 4

where c is the vector of covariances between Y and Y (sg), Xo is the design vector of fixed effects values at 59, and X and X are as in (4) and
(5), respectively. The kriging variance, var[f’(so) —Y(so) |, is

02(s50) =C — T e+ (X—X'E_lc)/ (X’z—lx)_1 (x—x’):—lc) (10)

where C is the var(sg) and the K subscript denotes kriging. Given our finite set of points, an appropriate design criterion was the maximum
kriging variance (Zimmerman, 2006), given by

K = max o2 (s 11
max ok (5) (1)

although the average (over ) kriging variance would also be an acceptable design criterion (Zhu and Zhang, 2006). We defined the locally
K-optimal six-point stream-network design as that which minimized (11) among all six-point designs.

All results for locally K-optimal designs exhibited spatially balanced patterns, with no clustering (in the sense defined in the previous
section) whatsoever (Figure 3). There was no effect of mean function and only minor effects of segment weighting scheme and spatial
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Figure 3. Locally K-optimal toy network designs for prediction with known covariance parameters. All circles represent potential sampling locations, and

filled black circles are locations included in the locally optimal six-point designs. Rows, from top to bottom, correspond to tail-up covariance process with

equal segment weighting (0.5/0.5), tail-up covariance process with unequal segment weighting (0.8/0.2), tail-down covariance process, and tail-up + tail-down

covariance process with equal segment weighting for the tail-up component. Columns, from left to right, correspond to constant mean with o ~ 2, constant
mean with & & 4, spatial trend mean structure with @ ~ 2, and spatial trend mean structure with o« ~ 4

autocorrelation strength. For the tail-up process, nearly all samples occurred in the outlet and headwater segments. For the tail-down process,
stronger spatial autocorrelation led to more points at uppermost locations on headwater segments. Results for the tail-up + tail-down processes
matched those for the tail-up processes exactly. In all cases, at least one sample was located in the outlet segment, and in nearly all cases, a
sample was located at the most downstream location in the outlet segment.

3.3. Prediction with estimated covariance parameters

We continue with kriging but under the more common scenario of estimating both the fixed effects and covariance function parameters. The
predictor of Y (sg) depended on 6, a vector of estimated covariance parameters, and is expressed similarly to (9), but with X evaluated at 0.
This is known as the empirical best linear unbiased predictor (E-BLUP) of Y (s¢). Although the E-BLUP remains unbiased under a weak set
of regularity conditions met by both ML and REML, exact expressions for other moments of the E-BLUP’s prediction error are not known.
Nevertheless, reasonable approximations to the E-BLUP’s prediction error variance exist. Building on the prior work of Kackar and Harville
(1984), Harville and Jeske (1992) and Zimmerman and Cressie (1992) proposed

o2 (so; é) = 02 (s) +tr {A(o)[l(o)]—l} (12)
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as an approximation to the prediction error variance, where

A(0) = var |:8Y8§:0):|

As for our criterion for kriging with known 6, we relied on the maximum prediction-error variance among all stream network locations in §
to rank the sampling designs,

EK = max (a,z((s) +tr {A(O)[I(O)]fl}) (13)

and defined the locally empirically K-optimal (EK-optimal) six-point stream-network design as that which minimized (13) among all six-
point designs.

The results for locally EK-optimal designs were “hybrids,” of a sort, of the corresponding locally CP-optimal and K-optimal designs,
exhibiting some characteristics of each. As such, the result figure can be found in the online appendix (Figure A.1). A portion of the samples
occurred in pairs at adjacent sites within the same segment, and these occurred predominantly in headwater and outlet segments. For the
tail-up process, stronger correlation and unequal segment weighting favored regular spacing among samples in lieu of any clustering, and
there was a preference for lower-weighted segments. Differences in mean function had little impact on overall design characteristics. For
the tail-down process, stronger autocorrelation resulted in samples separated by the maximum stream distance, in contrast to the weak
autocorrelation scenario, which produced a design with a broader distribution of inter-point distances due to the presence of some within-
segment pairs. Interestingly, all samples lay within the headwater and outlet segments. The tail-up + tail-down process, like each on its own,
had more samples within clusters when the autocorrelation was weak, all of which were found within headwater and outlet segments.

3.4. Fixed effects estimation with known covariance parameters

Next, we consider estimation of B from (4) given observed X, Y, and known covariance parameters. The best linear unbiased estimator
(BLUE) (e.g., Schabenberger and Gotway, 2005, p. 134) of B is the generalized least squares estimator

Bois = (X’Z_IX)_IX’E_IY (14)
where X is defined by (5), and [9 gls has covariance matrix

var (ﬁgls) = (X’Z_IX)_I (15)
We employed a standard measure of a design’s quality for estimating f} gls» known as D-optimality (Kiefer, 1958) and defined as

D= ‘(X/Z_IX)_I (16)

which is the determinant of var (ﬁ gl s). A locally D-optimal six-point stream-network design was one that minimized (16) among the set of
all six-point designs.

The locally D-optimal results varied by spatial process and mean function, but less so by spatial autocorrelation strength and segment
weighting (Figure 4). For the tail-up process, all locally optimal designs for the constant mean scenarios had a striking pattern in which
all samples occurred in two confluence-based clusters, with sites in different clusters flow-unconnected. For the spatial-trend case, locally
optimal designs usually contained a single confluence-based cluster at the upstream terminus of the outlet segment. This cluster was accom-
panied by single samples at locations of highest leverage under weak spatial autocorrelation but not at highest leverage locations under
stronger spatial autocorrelation. For weaker spatial autocorrelation with spatial trend, the results suggested that samples need to be located
in segments across the spectrum of segment weightings. For the tail-down process, samples were allocated to areas of high leverage and
greatest stream distance, regardless of spatial autocorrelation strength or mean function. The tail-up + tail-down results aligned very closely
with those of the tail-down process.

3.5. Fixed effects and covariance parameters estimation

Finally, we extend the inference scenario of Section 3.4 to that in which both @ and B are unknown and estimated from the observed data,
probably the most common scenario for scientists and managers. Again, our scalar measure of design quality needed to incorporate both
parameter vectors and does so by extending the development of our criterion from Section 3.3. When covariance parameters are estimated,
the empirical-best linear-unbiased estimator for 6 is the estimated generalized least-squares estimator, obtained by evaluating (14) at the
estimated parameter vector @,

Begis = (X’ [z (é)]_l X)_l X/ [z (é)]_l Y (17)
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Figure 4. Locally D-optimal toy network designs for fixed effects estimation with known covariance parameters. All circles represent potential sampling

locations, and filled black circles are locations included in the locally optimal six-point designs. Rows, from top to bottom, correspond to tail-up covariance

process with equal segment weighting (0.5/0.5), tail-up covariance process with unequal segment weighting (0.8/0.2), tail-down covariance process, and tail-

up + tail-down covariance process with equal segment weighting for the tail-up component. Columns, from left to right, correspond to constant mean with
o & 2, constant mean with o & 4, spatial trend mean structure with @ ~ 2, and spatial trend mean structure with o ~ 4

where the elements of § are estimated using REML or ML, and other terms are as in (14). Incorporating 6 to (14) again complicates
the sampling distribution of B¢/, and we thus turned to an approximation derived in a similar fashion to that for (12). Specifically, we

approximated the variance of 8,475 by

L (T AR@EOI e {Am@)I6)] )

var (Beets) = (X [2 (8)] %)+

where

: - : (18)
tr {Am1 (O)LO)] 7} ... tr {Amm(6)1(6)] 1}

3B (0) 3B;(6)
Akj(0)=cov( ﬂgo , 8]0 )

Bk (0) is the kth element of 3(0), m indexes the length of ﬁ(0), k=1,...,m,and j = 1,...,m. We again relied on the determinant of
(18) as our design criterion,

ED = \Var (ﬁeg,s)\ (19)
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and defined a six-point stream-network design as locally empirically D-optimal (ED-optimal) if it minimized (19).

For the locally ED-optimal results, the general distribution of samples was often similar to those of locally D-optimal designs, including
clusters and an indication that samples from the spectrum of segment weights was important. Given the similarity to the D-optimal designs,
the results figure can be found in the online appendix (Figure A.2). For the tail-up process with constant mean and stronger spatial autocor-
relation, the best designs consisted of confluence-based clusters. All other conditions produced optimal designs without confluence-based
clusters and samples at highest leverage locations for the spatial-trend case. The results from the tail-down and tail-up + tail-down pro-
cesses were quite similar. All locally optimal designs for these latter processes included samples at the headwater and outlet segments of the
network, and all contained an adjacent pair in either a headwater or outlet segment.

3.6. Conclusions from toy networks

The toy network results matched patterns for optimal designs from the traditional geostatistical realm and highlighted the unique aspects of
sampling spatial processes in stream networks. Similarities included the importance of sampling at areas of high leverage when spatial trend
is present, general spatial balance among samples for prediction with known covariance parameters, designs consisting predominantly of
clusters for only estimating covariance parameters, and some samples within clusters for fixed effects estimation and prediction when covari-
ance parameters are also estimated. Most striking was that for each inference scenario, the locally optimal designs often differed between
the tail-up and tail-down processes. The toy results also highlighted the importance of sampling the outlet segment for both prediction (with
and without estimation of covariance parameters) and tail-down spatial processes (alone or in conjunction with tail-up), regardless of mean
function. Finally, several of the locally optimal designs included confluence-focused clusters, which occurred more commonly for the tail-up
spatial processes.

4. SIMULATED STREAM NETWORKS

We next explore the prevalent design themes from the toy networks with larger, simulated networks. We chose two contrasting network
shapes: dendritic and trellis. Dendritic-shaped networks have a tree-like appearance and are more space-filling. Trellis-shaped networks
are more linear and have a higher proportion of headwater segments. To create the simulated networks, we developed a function using
R statistical software (R Development Core Team, 2011) that builds and branches the networks. Differing network shapes are created by
altering the probabilities with which new upstream segments are added to existing segments (e.g., a higher probability of adding a new
segment to the most recently created segment will lead to trellis-shaped networks). Examples of the simulated network shapes can be found
in the subsequent sections describing the results of the inference scenarios, and the function used to simulate the networks is available from
the authors upon request. For both shapes, 1000 stream networks were simulated with 101 segments each, a number of segments sufficient
to create ample confluences and headwater segments for evaluating the merits of sampling from these network locations. In each simulated
network, every segment’s length was drawn from a uniform(0.5, 2.5) distribution to further induce variation in the shape and structure of
the networks. A dense grid of potential sampling locations was placed along each simulated network. The two network shapes produced
differences in the maximum distances among flow-connected and flow-unconnected locations. For example, the maximum flow-unconnected
distances among all simulations averaged 31 units for dendritic networks (maximum = 36 units) and 55 units for trellis networks (maximum
= 63 units). Values of 0,3 and 03 were the same as in the toy examples (noting that changes to o,f and 03 simply scale the criteria scores),
and we again set (73 = 0. Two range parameter values (oy, &¢g) of 18 and 36 units were used to represent relatively weak and strong spatial
autocorrelation. For the segment weights, we again applied two differing methods, an equal segment weighting above each confluence and
Shreve stream order. These weighting schemes were selected because they were applicable to our simulated network topologies, in contrast
to simulating flow volumes or catchment areas.

For the larger networks and sample sizes, an exhaustive search for the best design is not possible (as it was for the toy networks), and the
number of sampling designs to consider becomes enormous. Instead, we used what we learned from the toy networks to create sampling
designs for the larger networks that preserved important characteristics observed from the toy-network results. These designs, and the toy-
network designs that inspired them, are given in Table 2. In addition to the design patterns that emerged as locally optimal for the toy
networks, we created several hybrid designs by combining the beneficial characteristics among multiple designs to evaluate their potential
merits. For each simulated network, we applied an example of each sampling design with a sample size (n) of 40, which is a sample size
consistent with those applied in previous spatial sampling design work (e.g., Zhu and Stein (2005, n = 30); Zimmerman (2006, n = 50);
Miiller and Stehlk (2010, n = 36)). For presentation ease, we assigned a name abbreviation to each class of sampling design characteristic
(Table 2) where “H” indicates designs with headwater and outlet segment clusters, “U” refers to sample clusters from mutually flow-
unconnected stream segments, “C” indicates designs containing confluence-based clusters, “G” indicates spatially balanced designs, and
“SRS” denotes simple random sampling. The numerals that follow each letter simply label designs within each class.

To implement the network-based sampling designs from Table 2, we first selected segments based on the intended network characteristics,
and then selected sampling locations within the segments. For all sampling designs that included a single sample from the outlet segment, we
selected the location at the very bottom of the network. To select segments for same-segment clusters, we first found the set of all segments
that matched the necessary characteristics (e.g., all headwater segments), and then randomly selected the required number. We next added
size-2 clusters to these segments by first choosing a random location in the segment. We then drew a distance value from a uniform (0, 0.5)
distribution (noting 0.5 units was the minimum segment length) and selected a clustered neighbor randomly from the set of locations within
the drawn stream distance value. For the confluence-based clusters of size-3, we randomly selected the necessary number of confluences from
each network and selected the location from each of the three adjoining stream segments closest to the confluence. Spatially balanced samples
were generated using generalized random tessellation stratified (GRTS) sampling. GRTS samples rely on quadrant-recursive addressing and
hierarchical randomization to choose samples that are generally spatially balanced (Stevens Jr. and Olsen, 2004) and are commonly applied in
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Table 2. The suite of sampling designs applied to all simulated networks
Clusters Singles
Source Number  Size Source Number Toy Abbrv.
Outlet 1 2

H ED, EK H1
Headwater 1 2 cadwater 36 ’
Outlet 1 2

Headwat 2 ED, EK H2
Headwater 9 2 cadwatet 0 ’
Outlet 1 2
Headwater 18 ) Headwater 2 ED, EK H3
Outlet 1 2

Middl EK H4
Headwater 9 2 iddle 36
Outlet 1 2

Middl 2 EK H
Headwater 18 2 iddle >
Unconnected 20 2 — — CP Ul
Unconnected 10 4 — — CP U2
Confluence 7 3 Headwater 19 D, ED Cl1

Headwater 18
Confluence 7 3 D Cc2

Outlet 1
Confluence 13 3 Headwater 1 D, ED, CP C3
Confluence 13 3 Outlet 1 Hybrid Cc4
— — — SRS 40 SRS
— — —  GRTS 40 K, EK Gl
— — —  GRTS 39
o . — Outlet 1 Hybrid G2
GRTS 20 2 — — Hybrid G3
GRTS 5 2 GRTS 30 Hybrid G4
The “Toy” column indicates which toy-network inference-scenario results prompted
adesign’s inclusion, and a “hybrid” label denotes that prevailing characteristics from
multiple toy network results were combined. The abbreviations column (“Abbrv.”)
provides a condensed label for reference ease in figures, tables, and text: “H” indi-
cates designs with headwater and outlet segment clusters; “U” refers to sample
clusters from mutually flow-unconnected stream segments; “C” indicates designs
containing confluence-based clusters; “G” indicates spatially balanced designs; and
“SRS” denotes simple random sampling. For designs that include clustered sam-
ples, the “Number” column indicates how many clusters the design contains, and the
“Size” column indicates the number of samples in each cluster. “Source” indicates
from which network features the samples were selected. Total sample size for all
designs is 40.

aquatic systems. We selected GRTS samples via the R package spsurvey (Kincaid et al., 2008). To obtain samples weighted toward the middle
portions of networks, a weighted random sample was selected with weights assigned inversely proportional to each location’s distances from
the outlet and most upstream location. We also selected SRS samples as a relative baseline regarding design choice. The SRS samples were
selected by randomly selecting 40 locations from the dense grid of potential sampling locations on each simulated network. To efficiently
create samples with stream network-based characteristics (i.e., simulated random variables with appropriate covariance properties), we relied
on functions from the R package SSN (Ver Hoef et al., 2014).

Design performance was evaluated in two ways. First, we ranked the criteria scores of each sampling design for each simulated network
and calculated the proportion of times a design ranked best (i.e., had the best criteria score among all sampling designs), or among the two
best scoring designs. Next, we computed the mean and standard deviation of the criteria scores for each sampling design across all simulated
networks of each shape. The ranking of designs within each simulation aided in determining best designs when there was overlap in the
distributions of criteria scores over the 1000 simulations for each network shape. The mean criteria scores revealed the relative performance
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Table 3. Summaries of criteria scores from the simulated networks

Inference Spatial Mean
scenario process function Range Weights Shape Design  Best Toptwo Mean SD

H1 0.000  0.000 1.028  9.6e-4
Cl 0.000  0.000 1.023  59e-4
EK Tail-up Constant 18 Equal Dendritic C3 0.454 0.999 1.018  7.0e-4
C4 0.545 1.00 1.018  1.0e-3
SRS 0.000  0.000 1.046  3.6e-3

H1 0.730 0923 1.097  0.017
H2 0.058 0.325 1.130  0.023

EK Tail-up Trend 36 Shreve Trellis Gl 0.040 0.102 1174 0.050
SRS 0.022 0.062 1.197  0.061

H1 0.199 0.419 0.445  0.072

. . Gl 0.320 0.540 0.427  0.063

EK Tail-down Constant 36 — Trellis G2 0297 0.542 0425  0.061
SRS 0.021 0.067 0.554 0.110

H1 0.323 0.520 0461  0.087

. - Gl 0.258 0.493 0462  0.072

EK Tail-down  Constant 36 Dendritic G2 0.224 0451 0473 0.087
SRS 0.027 0.070 0.587  0.103

H1 0.000 0.000 0.029 3.1e4

. - C3 0.517 0916 0.023  1.7e-3

ED Tail-up Constant 18 Shreve Dendritic ca 0.449 0.909 0023  17¢-3
SRS 0.000 0.000 0.048  3.9e-3

H1 0.882 0.977 0.027 1.4e-4

: . H2 0.000 0.038 0.034 1.7e-4

ED Tail-up Constant 18 Shreve Trellis cl 0.048 0.454 0031 0.002
SRS 0.000 0.000 0.051  0.005

H1 0.963 0.998 32e-6 8.7e-7

ED Tail-up Trend 18 Shreve  Trellis H2 0.000 0290 5.0e-6  1.4¢-6

C1 0.022 0.419 49e-6 1.4e-6
SRS 0.000  0.000 I.1e-5 3.8e-6

H1 0.773 0.971 0.137  0.007
ED Tail-down  Constant 18 — Trellis H2 0.202 0.792 0.141 0.007
SRS 0.001 0.017 0.155  0.009

H1 0.323 0.593 2.1e-4  5.8e-5
H2 0.312 0.551 2.2e-4  6.0e-5
H3 0.171 0.312 23e-4  6.8e-5
SRS 0.009 0.037 2.6e-4  8.0e-5

ED Tail-down  Trend 36 — Trellis

Summaries include the proportion of 1000 simulations where each sampling design had the best criteria score (“Best”),
were within the best two scoring designs (“Top two”), the mean value of a design’s criteria scores (“Mean”), and the
standard deviation of a design’s criteria scores (“SD”). Inference scenarios include prediction (EK) and fixed effects
estimation (ED), both with estimated covariance parameters. The simple random sampling (SRS) design is included for
reference along with best-performing designs, and poorer preforming designs are omitted. Table 2 contains the sampling
design abbreviations.

of designs, and the potential to discover designs that might commonly be near-optimal among the set of inference scenarios. They also
allowed for clear “winners”, where a sampling design’s criteria scores were markedly lower than other designs despite the added randomness
injected via the simulated networks and specific placement of sample points as described previously.

It is most realistic to assume that covariance parameter values are not known a priori (Gilmour and Trinca, 2012). To save space, details
are provided in an online appendix for the scenarios with known covariance parameters (D and K) and only covariance parameter estimation
(CP). However, we summarize those results in the succeeding text, and we also provide detailed tabular and figure results for the scenarios
with estimated covariance parameters (ED and EK). Finally, we remind readers that the design name abbreviations can be found in Table 2.
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Figure 5. The best scoring design for the prediction with estimated covariance parameters (EK) inference scenario for a tail-up spatial process, dendritic-

shaped networks, effective range = 18, equal segment weighting, and constant mean structure. This design, labeled as C4 in Table 2, contains 39 samples

within size-3 clusters at confluences, and a single sample from the outlet segment. The inset figure highlights a size-3 cluster from one of the confluences with
clustered samples

4.1. Prediction with estimated covariance parameters

For the tail-up spatial process, effects of mean function were pronounced, but strength of spatial autocorrelation, segment weighting, and
network shape had minor effects on EK-criteria scores. For the case of the constant mean, the confluence-based designs were clearly best
(Table 3, and Figure 5 demonstrates a best overall scoring design). Note that although the H1 design was never among the two best scoring
designs, its criteria scores were close to those of the confluence-based designs (Table 3). Results not presented in Table 3 include, for the
trellis-shaped networks under weaker spatial autocorrelation and Shreve-based weights, the C1 design scored slightly better than C3 or C4,
and for both network shapes, especially with stronger spatial autocorrelation under equal segment weighting, several GRTS-based designs
performed as well as the confluence-based designs.

For the spatial trend scenarios, scores among designs were generally more homogeneous than the constant-mean case. The best scoring
designs included the H1, G1, and G2 designs with comparable scores. The exception was for the trellis-shaped networks with Shreve-based
weighting where the H1 design ranked better than any of the GRTS-based designs (Table 3).

The results for the tail-down and tail-up + tail-down processes were quite similar, and differences in mean function, spatial autocorrelation
strength, and network shape did not generally affect the set of best designs. The preponderance of the EK scores were best for the H1
and GRTS-based designs (Table 3). The GRTS designs ranked best moderately more frequently for most of the scenarios of trellis-shaped
networks (Table 3), with the exception of a spatial trend and tail-up + tail-down process, and the H1 design ranked best moderately more
frequently in all scenarios for the dendritic-shaped networks (Table 3, and Figure 6 demonstrates an example of a best overall scoring design).

4.2. Estimation of fixed effects and covariance parameters

For the tail-up spatial process, the best ED-scoring designs in all cases included clusters. For all dendritic networks and trellis networks with
equal segment weighting, the confluence-based clusters, particularly C3 and C4, were generally best regardless of mean function or spatial
autocorrelation strength (Table 3, and Figure 7 demonstrates a best overall scoring design). The only deviation from this pattern (and hence
not presented in Table 3) was for the spatial-trend case with &« = 18, where the C1 design scored better than the C3 design. For the trellis
networks with Shreve weighting, the H1 design scored at least as well as the confluence-based designs, and consistently ranked best (Table 3,
and Figure 8 demonstrates a best overall scoring design). The amount of improvement in ED scores for the H1 design over the confluence-
based designs was greater in the spatial-trend case than the constant-mean case (Table 3), but this effect was reduced with stronger spatial
autocorrelation.

For the tail-down spatial process, the ED criteria scores were generally more homogeneous among designs than they were for the tail-up
process, and the C3 design was among the worst. The ranking of criteria scores revealed that designs with outlet and headwater clusters
scored best for both network shapes (Table 3). Stronger spatial autocorrelation or a spatial trend did not alter the rankings of best designs
relative to others but suggested the proportion of headwater and outlet samples within clusters mattered less (Table 3). Results for the tail-up
+ tail-down process were similar to those of the tail-down (hence, tabular summaries are not presented, but Figure 9 demonstrates a best
overall scoring design), with one exception; for the case of a spatial trend and stronger spatial autocorrelation, the C2 design scored nearly
as well as the H1 and H2 designs.

The next three paragraphs provide summaries of the results for the less common scenarios; the interested reader can find associated tabular
and figure details in the online appendix.
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Figure 6. The best scoring design for the prediction with estimated covariance parameters (EK) inference scenario for a tail-up + tail-down spatial process,

dendritic-shaped networks, effective range = 18, equal segment weighting for the tail-up component, and constant mean structure. This design, labeled as H1

in Table 2, contains two samples within a size-2 cluster at the outlet segment, two samples within a size-2 cluster in a headwater segment, and 36 unclustered
samples from individual headwater segments
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Figure 7. The best scoring design for the estimation of fixed effects and covariance parameters (ED) inference scenario for a tail-up spatial process, dendritic-
shaped networks, effective range = 36, Shreve segment weighting, and spatial trend mean structure. This design, labeled as C3 in Table 2, contains 39 samples
within size-3 clusters at confluences, and a single sample from a headwater segment

4.3. Covariance parameter estimation

For the tail-up spatial processes, designs consisting predominantly of clusters had better CP-criteria scores than non-clustered designs,
regardless of mean function, strength of spatial autocorrelation, network shape, or segment weighting. The best scoring design, U1, focused
sample clusters on flow-unconnected segments and ranked as the best design in most of the 1000 simulations from each network shape. For
the tail-down process, the criteria scores among all designs were more homogeneous, and there were no apparent effects of mean function,
strength of spatial autocorrelation, or network shape. The distribution of GRTS design scores were comparable with those containing clusters
at the outlet and headwater segments. The scores for designs based on confluence clusters were markedly worse, a contrast to the toy results.
For the tail-up + tail-down process, there was little effect of spatial autocorrelation strength or mean function. In addition, differing methods
of segment weighting had little effect on the ranking of best designs. The best designs were similar to the tail-up spatial process, where the
best designs were comprised predominantly of flow-unconnected clusters (U1, H3, HS), although for the trellis-shaped networks, the C3
design scored equivalently.
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Figure 8. The best scoring design for the estimation of fixed effects and covariance parameters (ED) inference scenario for a tail-up spatial process, trellis-
shaped networks, effective range = 18, Shreve segment weighting, and spatial trend mean structure. This design, labeled as H1 in Table 2, contains two
samples within a size-2 cluster at the outlet segment, two samples within a size-2 cluster in a headwater segment, and 36 unclustered samples from individual
headwater segments. The inset figure highlights the size-2 cluster in the outlet segment, and 2 of the unclustered samples from individual headwater segments

4.4. Prediction with known covariance parameters

For the tail-up spatial process with constant mean, the confluence-based cluster designs had the best K-criteria scores, followed by HI.
Additionally, for trellis networks with Shreve-based segment weights, the H1 design had better criteria scores than the majority of the
confluence-based designs. For the trend mean structure, results were more homogenous with modestly better scores for the H1 design.
Results were similar for both strengths of spatial autocorrelation, except a less homogenization of criteria scores for the trend mean structure
in trellis-shaped networks. The results for the tail-down and tail-up + tail-down processes were identical. Regardless of mean function, spatial
autocorrelation strength, or network shape, the designs scoring best were the G1 and H1 designs.

4.5. Estimation of fixed effects with known covariance parameters

There was no effect of spatial autocorrelation strength among all spatial processes, and little effect of network shape or mean function on
D-criteria scores. For the tail-up process with constant mean, the confluence-based designs were clearly best, and the H1 design again scored
competitively. The latter scored better on average for the trellis networks with Shreve-based segment weighting, although the best scores
among all designs contained confluence clusters. For the trend mean structure, the H1, H2, C1, and C3 designs were generally best, but C3
was not included in the group of best designs for trellis networks under Shreve-order weighting. For the tail-down process, criteria scores
among designs were generally more homogeneous, with H2 joining H1 as designs with modestly better scores. The H1 and H2 designs had
the best criteria scores for a constant mean and the tail-up + tail-down process. For the spatial trend mean structure, all designs comprised
almost entirely of samples within clusters were among the worst scoring designs, and there was little separation in the criteria scores from
the H1, GRTS, C1, and even SRS designs.
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Figure 9. The best scoring design for the estimation of fixed effects and covariance parameters (ED) inference scenario for a tail-up + tail-down spatial

process, dendritic-shaped networks, effective range = 36, equal segment weighting for the tail-up component, and constant mean structure. This design,

labeled as H1 in Table 2, contains two samples within a size-2 cluster at the outlet segment, two samples within a size-2 cluster in a headwater segment, and
36 unclustered samples from individual headwater segments. The inset figure highlights the size-2 cluster in the outlet segment

S. DISCUSSION

The results from the simulated networks often agreed with the their toy-network counterparts, although an exception is discussed in the
following paragraph. For instance, when only covariance parameters were estimated in a tail-up process, clusters of samples from flow-
unconnected segments were clearly best. When making predictions with known covariance parameters, the spatially balanced GRTS samples
were frequently among the best designs. For fixed effects estimation with known covariance parameters, the designs containing confluence-
based clusters were best for the tail-up spatial process, while the GRTS design scored well for the tail-down process. Finally, for both
prediction and fixed effects estimation with estimated covariance parameters (common scenarios for scientists and managers), clusters and
single samples from the outlet and headwater segments were consistent aspects of the better scoring designs.

Despite the geostatistical evidence for similarities among best designs for estimation and prediction, we were initially surprised that
confluence-based clusters were favored for prediction with a constant mean function and tail-up spatial process for the simulated networks.
In retrospect, this design does contain many of the characteristics of the toy result. In a tail-up process, a confluence-based cluster can
be viewed as two size-2 clusters rather than a size-3 cluster, noting that the two samples on the upstream segments at the confluence
are flow-unconnected. Further, these two clusters characterize the disjunct conditions that occur upstream of the confluences if segment
weightings are unequal. In our simulated networks, confluences were placed at relatively regular distances along the stream network, and
these characteristics match what was observed in the toy network results.

We did expect less homogeneous results among sampling designs for the spatial-trend mean structure in tail-down and tail-up + tail-down
processes and more pronounced differences based on autocorrelation strength. One reason for more homogeneous results among the designs,
in the context of the spatial trend, may be that candidate designs did not allocate enough samples to the downstream portion of the network.
While the suite of designs containing headwater samples and clusters captured one end of the trend leverage, the size-2 outlet cluster was
probably insufficient to capture the other. The lack of strong differences due to spatial autocorrelation strength might also be attributed to the
values of oy, and oy we selected. The “weaker” value of 18 units may have been too large, particularly for the dendritic-shaped networks.
In the toy networks, the larger oy, and «y values led to samples at the most extreme locations in the network (i.e., the most downstream
location of the outlet segment and most upstream locations of the headwater segments).

In addition to more sampling weight in the downstream portion of the network, future work could consider costs associated with sam-
pling various locations of stream networks, in particular, headwater segments. Headwater segments often lie in the most remote and least
accessible sections of stream networks, and difficulties in reaching headwater segments could play a role in sample site choice. Additionally,
investigations regarding the inclusion of nugget effects could be considered. Zimmerman (2006) explored the effects of nugget inclusion and
amount on design optimality in the geostatistical setting, and although effects were observed for estimation of only covariance parameters,
there were not substantive effects on the criteria scores for prediction (with either known or estimated covariance parameters). Given those
findings, and the general similarity of results for covariance parameter estimation paired with prediction or fixed effects estimation, we are
confident in our results for the two most probable inference scenarios extended to cases where nugget effects are considered. Finally, future
work could also focus on an aspect of spatial covariance processes that we assumed known: the form of the covariance function. We opted
to use exponential forms of the covariance functions, but this characteristic is generally not known a priori (Nowak et al., 2010).

It is worth noting that our results are based on a binary branching structure. This assumption is required for the spatial stream-network
models and is also a realistic assumption for many stream ecosystems. There are admittedly situations where the binary assumption does not
apply. For example, an optimal design for a binary branching stream may not be as suitable in large alluvial floodplains, where groundwater
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and braided channel networks would have a strong influence on flow connectivity (Stanford and Ward, 1993). In other cases where braiding
and groundwater influences are less pronounced, it may make sense to focus modeling and prediction on the main channels. Nevertheless,
there may be difference in the optimal designs for stream ecosystems that do not exhibit a binary branching structure.

Our results indicated that, generally, the network shapes did not have substantive impacts on the characteristics of the best sampling
designs. Although we only considered two shapes for our simulated networks, the dendritic and trellis forms represent extremes of naturally
occurring stream-network shapes. However, one interesting shape-based sampling design difference arose for the tail-up spatial process
under the constant mean case of the ED inference scenario. By ranking, the confluence-based cluster designs were clearly preferred for the
dendritic shapes, while the H1 design was best for the trellis case. While being mindful of network shape might be fruitful in design planning
in this case, we also note that the criteria scores indicated that each (either a confluence cluster design or the H1 design) scored nearly as
well as the best for each shape in which they did not rank best.

Our results suggest several key themes for sampling design planning on stream networks. First, there is not a demonstrable difference
in best designs for fixed effects estimation and prediction; a phenomenon also observed by Miiller and Stehlk (2010) and Zimmerman
(2006), who noted the importance of obtaining well-estimated fixed effects parameters to improve prediction. If inference regards estimation
of an overall mean for a tail-up spatial process, then a design with confluence-based clusters is best, and particulary so in the dendritic-
shaped networks. In all other cases considered, a design that includes a small proportion of clustered samples from the outlet and headwater
segments, along with samples from areas of high leverage appears the most prudent choice. Further, given the overall performance of the H1
design, it does indeed seem the most robust when little is known about the fixed effects or covariance structure prior to collecting samples.
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