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Abstract

The SSN package for R provides a set of functions for modeling stream network data.
The package can import geographic information systems data or simulate new data as a
SpatialStreamNetwork, a new object class that builds on the spatial sp classes. Functions
are provided that fit spatial linear models (SLMs) for the SpatialStreamNetwork object.
The covariance matrix of the SLMs use distance metrics and geostatistical models that
are unique to stream networks; these models account for the distances and topological
configuration of stream networks, including the volume and direction of flowing water. In
addition, traditional models that use Euclidean distance and simple random effects are
included, along with Poisson and binomial families, for a generalized linear mixed model
framework. Plotting and diagnostic functions are provided. Prediction (kriging) can be
performed for missing data or for a separate set of unobserved locations, or block prediction
(block kriging) can be used over sets of stream segments. This article summarizes the
SSN package for importing, simulating, and modeling of stream network data, including
diagnostics and prediction.

Keywords: spatial statistics, network graphs, geostatistics, generalized linear mixed models.

1. Introduction

New spatial statistical methods were recently developed to fit models to data collected on
stream (river) networks (Ver Hoef and Peterson 2010). Stream networks, in our usage, are
based on a mathematical topology that represents streams as line segments that converge
downstream, or viewed conversely, that create dichotomous branching when moving upstream
from an outlet (the most downstream location in the network). A number of packages 1 have
been written in R to fit spatial statistical models that use geostatistical autocovariance func-
tions (based on Euclidean distance), but they are not guaranteed to produce positive-definite
covariance matrices when using an alternative distance measure, such as stream distance

1Including, but not limited to, geoR (Ribeiro and Diggle 2001), spatial (Venables and Ripley 2002), geoRglm
(Christensen and Ribeiro 2002), gstat (Pebesma 2004), fields (Fields Development Team 2006), spBayes (Finley,
Banerjee, and Carlin 2007), and ramps (Smith, Yan, and Cowles 2008).
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(Ver Hoef, Peterson, and Theobald 2006). In this paper, we present the R package SSN,
which allows users to fit autocovariance functions developed for stream networks (Ver Hoef
and Peterson 2010). These models are unique because they use distance measured along the
network, they incorporate flow direction, and they allow covariance weighting when segments
converge (e.g., by volume of flowing water). We develop two classes of covariance models
based on moving average constructions that we call the tail-up and tail-down models. These
models may also be combined in a mixed model strategy that includes models based on Eu-
clidean distance. Such geostatistical mixed models are important because they can account
for multiple processes of spatial autocorrelation in stream systems, including those that occur
within the stream and others that result from the straight-line distances due to the terrestrial
environment (Ver Hoef and Peterson 2010). We note that there is another package Rtop for
spatial prediction along stream networks (Skøien, Laaha, Koffler, Blöschl, Pebesma, Parajka,
and Viglione 2012). After describing SSN, we make some comparisons to Rtop in Section 7.

The SSN package is available on CRAN, with more information and data sets available at
http://www.fs.fed.us/rm/boise/AWAE/projects/SpatialStreamNetworks.shtml, which
contains additional documentation, tutorials and example data sets. Windows and Linux
binaries are provided, as well as the source code. After installation, the package is ready for
use in an R session after typing

library("SSN")

## Loading required package: RSQLite

## Loading required package: DBI

## Loading required package: methods

## Loading required package: sp

at the R prompt. To ensure that you have full read and write permissions, and that you do
not leave stray files on your computer, use the following

file.copy(system.file("lsndata/MiddleFork04.ssn", package = "SSN"),

to = tempdir(), recursive = TRUE, copy.mode = FALSE)

## [1] TRUE

setwd(tempdir())

The rest of the paper is organized as follows: Section 2 provides a brief overview of spa-
tial statistical modelling on stream networks. Section 3 provides an overview of the S4

SpatialStreamNetwork object, while Section 4 describes how to set up and manipulate the
object. Section 5 describes the main statistical capabilities provided by the package, including
exploratory data analysis, model fitting, model evaluation and diagnostics, as well as predic-
tion. Section 6 shows how to simulate stream network data. Finally, Section 7 provides a
brief discussion of future developments.

This document was compiled on 2016-03-16 using R version 3.2.4 (2016-03-10).

http://www.fs.fed.us/rm/boise/AWAE/projects/SpatialStreamNetworks.shtml
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2. Spatial statistical models on stream networks

Some new models for stream networks, based on moving average constructions, were initially
described by Ver Hoef et al. (2006) and Cressie, Frey, Harch, and Smith (2006). The models
used stream distance measures (e.g., Dent and Grimm 1999), where stream distance is defined
as the shortest distance between two locations computed only along the stream network. This
work was summarized by Ver Hoef and Peterson (2010), which provides more technical details.
Here, we give a brief summary.

2.1. Background

The fact that streams are dichotomous and have flow creates a rich set of models not seen in
either time-series or spatial statistics. The models are created using moving average construc-
tions. If a moving average function starts at some location and is non-zero only upstream of
that location, we call them “tail-up” models. Due to the dichotomous nature of streams, the
moving average function may need to split as it goes upstream in order to produce stationary
models, so some weighting must occur. If a moving average function starts at some location
and is non-zero only downstream of that location, we call them “tail-down” models. A full
development of these models is given in Ver Hoef and Peterson (2010). Consider two pairs of
sites that have the same stream distance between them, but one pair is connected by flow-
ing water (i.e., flow-connected), and the other pair is not connected by flowing water (i.e.,
flow-unconnected); in general the amount of autocorrelation will be different between them.
For the following development, let ri and sj denote two locations on a stream network, and
let h be the stream distance between them. Then the following covariance models have been
developed and implemented in the SSN package.

2.2. Tail-up models

The moving average construction as described by Ver Hoef et al. (2006) is

Cu(ri, sj |θu) =

{
πi,jCt(h|θu) if ri and sj are flow-connected,
0 if ri and sj are flow-unconnected,

(1)

where πi,j are weights due to branching characteristics of the stream, and the function Ct(h|θu)
can take the following forms:

• Tail-up Linear-with-Sill Model,

Ct(h|θu) = σ2u

(
1− h

αu

)
I

(
h

αu
≤ 1

)
,

• Tail-up Spherical Model,

Ct(h|θu) = σ2u

(
1− 3

2

h

αu
+

1

2

h3

α3
u

)
I

(
h

αu
≤ 1

)
,

• Tail-Up Exponential Model,

Ct(h|θu) = σ2u exp(−3h/αu),
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• Tail-up Mariah Model,

Ct(h|θu) =

{
σ2u

(
log(90h/αu+1)

90h/αu

)
if h > 0,

σ2u if h = 0,

• Tail-up Epanechnikov Model (Garreta, Monestiez, and Ver Hoef 2009),

Ct(h|θu) =
σ2u(h− αu)2feu(h;αu)

16α5
u

I

(
h

αu
≤ 1

)
.

where feu(h;αu) = 16α2
u + 17α2

uh − 2αuh
2 − h3, I(·) is the indicator function (equal to one

when the argument is true), σ2u > 0 is an overall variance parameter (also known as the
partial sill), αu > 0 is the range parameter, and θu = (σ2u, αu)>. Note the factors 3, and 90
for the exponential and mariah models, respectively, which cause the autocorrelation to be
approximately 0.05 when h equals the range parameter. This helps compare range parameters
(αu) across models. (The distance at which autocorrelation reaches 0.05 is sometimes called
the effective range when models approach zero asymptotically.)

2.3. Weights for tail-up models

For the weights, πi,j , consider the following example. First associate a weight of 1 with
each source (upper-most) segment in a stream network. When two segments converge at a
junction the weight for the segment downstream of the junction is the sum of the two upstream
weights, creating an additive function when moving downstream. Segment weights formed in
this manner are known as Shreve’s stream order (Shreve 1967). These additive weights are
a property of whole stream segments, creating a step function along a stream network. Any
point on a stream network has an additive function value obtained from the stream segment
where it occurs. If we denote the value of the additive function as Ω(x) for some point x on
the stream network, then for two flow-connected points where ri is downstream from sj ,

πi,j =

√
Ω(sj)

Ω(ri)
.

More details can be found in Ver Hoef and Peterson (2010), including ways to create an
additive function from arbitrary values associated with stream segments, such as flow volume
or a proxy for flow volume (e.g., basin area).

2.4. Tail-down models

For tail-down models, we distinguish between the flow-connected and flow-unconnected situ-
ation. When two sites are flow-unconnected, let b denote the longer of the distances to the
common downstream junction, and a denote the shorter of the two distances. If two sites are
flow-connected, again use h to denote their separation distance via the stream network. The
following are tail-down models:

• Tail-Down Linear-with-Sill Model, b ≥ a ≥ 0,

Cd(a, b, h|θd) =

 σ2d

(
1− h

αd

)
I
(
h
αd
≤ 1

)
if flow-connected,

σ2d

(
1− b

αd

)
I
(
b
αd
≤ 1

)
if flow-unconnected,
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• Tail-Down Spherical Model, b ≥ a ≥ 0,

Cd(a, b, h|θd) =

 σ2d(1−
3
2
h
αd

+ 1
2
h3

α3
d
)I
(
h
αd
≤ 1

)
if flow-connected,

σ2d

(
1− 3

2
a
αd

+ 1
2
b
αd

) (
1− b

αd

)2
I
(
b
αd
≤ 1

)
if flow-unconnected,

• Tail-down Exponential Model,

Cd(a, b, h|θd) =

{
σ2d exp(−3h/αd) if flow-connected,
σ2d exp(−3(a+ b)/αd) if flow-unconnected,

• Tail-down Mariah Model,

Cd(a, b, h|θd) =


σ2d

(
log(90h/αd+1)

90h/αd

)
if flow-connected, h > 0,

σ2d if flow-connected, h = 0,

σ2d

(
log(90a/αd+1)−log(90b/αd+1)

90(a−b)/αd

)
if flow-unconnected, a 6= b,

σ2d

(
1

90a/αd+1

)
if flow-unconnected, a = b,

• Tail-down Epanechnikov Model, b ≥ a ≥ 0,

Cd(a, b, h|θd) =


σ2
d(h−αd)

2feu(h;αd)

16α5
d

I
(
h
αu
≤ 1

)
if flow-connected,

σ2
d(b−αd)

2fed(a,b;αd)

16α5
d

I
(
b
αu
≤ 1

)
if flow-unconnected,

where fed(a, b;αd) = 16α3
d + 17α2

db− 15α2
da− 20αda

2 − 2αdb
2 + 10αdab + 5ab2 − b3 − 10ba2,

σ2d > 0 and αd > 0, and θd = (σ2d, αd)
>. Although not necessary to maintain stationarity,

the weights used in the tail-up models can be applied to the tail-down models as well. Note
that h is unconstrained, because for model-building we imagine that the headwater and outlet
segments continue to infinitiy, as first described by Ver Hoef et al. (2006). Also note that
a does not appear in the tail-down linear-with-sill model, but is used indirectly because the
model depends on the point that is farthest from the junction; i.e., b, and so a is the shorter
of the two distances.

2.5. Euclidean distance models

The 2-D coordinate system is used to include Euclidean distance models, which are de-
scribed in many textbooks (e.g., Cressie 1993; Chiles and Delfiner 1999). We include four
models and show their parameterization in the SSN package. If site ri has x,y-coordinates
(xi, yi) and site sj has x,y-coordinates (xj , yj), then the Euclidean distance is defined as

d =
√

(xi − xj)2 + (yi − yj)2, and we have the following models:

• Euclidean Distance Cauchy Model,

Ce(d|θe) = σ2e

(
1 + 4.4(d/αe)

2
)−1

,

• Euclidean Distance Spherical Model,

Ce(d|θe) = σ2e

(
1− 3

2

d

αe
+

1

2

d3

α3
e

)
I

(
d

αe
≤ 1

)
,



6 Spatial Modeling on Stream Networks

• Euclidean Distance Exponential Model,

Ce(d|θe) = σ2e exp(−3d/αe),

• Euclidean Distance Gaussian Model,

Ce(d|θe) = σ2e exp(−3(d/αe)
2).

Note the factors 3, 3, and 4.4 for the exponential, Gaussian, and Cauchy models, respectively,
which cause the autocorrelation to be approximately 0.05 when d equals the range parameter.

2.6. Random effects models

The SSN package provides the functionality to fit random effect models associated with factor
variables. Let γk(x) denote the factor level at location x. Each level of γk is assumed to be
a random quantity with mean 0 and variance σ2k and these are independently and identically
distributed. As such, sites with the same level of γk are correlated, and sites with different
levels of γk are uncorrelated,

Ck(ri, sj) =

{
σ2i if γk(ri) = γk(sj),
0 if γk(ri) 6= γk(sj).

(2)

2.7. Spatial linear mixed models

The most general linear model that the SSN package considers is

Y = Xβ + zu + zd + ze + W1γ1 + . . .+ Wpγp + ε, (3)

where X is a design matrix of fixed effects, β are parameters, the vector zu contains spatially-
autocorrelated random variables with a tail-up autocovariance, with var(zu) = σ2uR(αu) and
R(αu) is a correlation matrix that depends on the range parameter αu as described in Sec-
tion 2.2; zd contains spatially-autocorrelated random variables with a tail-down autocovari-
ance, var(zd) = σ2dR(αd) as described in Section 2.4; ze contains spatially-autocorrelated
random variables with a Euclidean distance autocovariance, var(ze) = σ2eR(αe) as described
in Section 2.5; Wk is a design matrix for random effects γk; k = 1, . . . , p with var(γk) = σ2kI,
and ε contains independent random variables with var(ε) = σ20I. When used for spatial pre-
diction, this model is referred to as “universal” kriging (Le and Zidek 2006, p. 107) , with
“ordinary” kriging being the special case where the design matrix X is a single column of ones
(Cressie 1993, p. 119). The most general covariance matrix considered by the SSN package
is of the form

cov(Y) = Σ = σ2uR(αu) + σ2dR(αd) + σ2eR(αe) + σ21W1W
>
1 + . . .+ σ2pWpW

>
p + σ20I. (4)

The SSN package uses either maximum likelihood (ML) or restricted maximum likelihood
(REML) to estimate β and some subset of the possible covariance parameters
θ = (θ>u ,θ

>
d ,θ

>
e , σ

2
1, . . . , σ

2
p, σ

2
0)>, as specified by the user.

2.8. Spatial generalized linear mixed models
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The SSN package estimates parameters for generalized linear mixed models using pseudo-
models as described by Wolfinger and O’Connell (1993). For time series and other spatial
covariance structures, pseudo-models are implemented in the glmmPQL function in the MASS
package (Venables and Ripley 2002). At present, only binomial and Poisson distributions are
supported in the SSN package. Consider the expectation of the response variable as a linear
mixed model through a link function,

E(Y|γ) = g−1(Xβ + Wγ) = g−1(η) = µ, (5)

where g is the link function. Suppose that we have a current estimates of β and γ; call
them β̃ and γ̃. Initial estimates could be obtained using the glm() function, which assumes
independence among data. Then pseudo-data are formed as

Ỹ ≡ ∆̃
−1

(Y− g−1(Xβ̃ + Wγ̃)) + Xβ̃ + Wγ̃, (6)

where

∆̃ ≡ ∂g−1(η)

∂η

is a diagonal matrix evaluated at β̃ and γ̃. Then the pseudo-model is

Ỹ = Xβ + Wγ + ε. (7)

Note that the left-hand side of Equation 7 depends on β̃ and γ̃, so that suggests an itera-
tive procedure for updating β and γ. The covariance matrix specification of pseudo-data is
assumed to be

var(ε) = ∆̃
−1

A
1
2σ2RA

1
2 ∆̃
−1
,

where A is a diagonal matrix and contains the variance functions of the model (e.g., McCullagh
and Nelder 1989, Table 2.1). The matrix R is a correlation matrix as in Equation 4. The most
general covariance matrix of the linear mixed pseudo-model considered by the SSN package
is

cov(Ỹ) = ∆̃
−1

A
1
2 [σ2uR(αu) + σ2dR(αd) + σ2eR(αe) + σ20I]A

1
2 ∆̃
−1

+

σ21W1W
>
1 + . . .+ σ2pWpW

>
p .

(8)

The iterative algorithm of Wolfinger and O’Connell (1993) is implemented as the following
steps: 1) the parameters β̃ and γ̃ and pseudo-data Ỹ are updated using an iteratively weighted
least squares algorithm (e.g., McCullagh and Nelder 1989, pg. 40) for a fixed covariance model
(Equation 8), and then 2) the covariance parameters θ of Equation 8 are updated using ML
or REML for fixed Ỹ.

3. The S4 SpatialStreamNetwork object

3.1. Input data

The spatial data needed to fit a stream network model are non-trivial. Much of the spatial
data editing, information generation, and formatting take place in ArcGIS version 9.3.1 using
the Spatial Tools for the Analysis of River Systems (STARS) toolset (Peterson and Ver Hoef
in review). When this pre-processing is complete, a new directory is created to store the data,
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.ssn 

edges.shp 

sites.shp 

net1.dat 

net2.dat 

net3.dat 

net4.dat 

net5.dat 

preds.shp 

Figure 1: The .ssn directory contains the spatial, attribute, and topological information
needed to create a SpatialStreamNetwork object in R. The *.shp files are of stream reaches
(edges.shp), observed points on the stream (site.shp), and prediction points on the stream
(preds.shp)(optional). The *.dat files contain topological relationship information for each
distinct network; in this example, there are 5 networks.

hereafter referred to as the .ssn directory, which can then be imported into R. These data
include the feature geometry, attribute data, and topological relationships of each point and
line data set, see Figure 1.

The .ssn directory will always contain two shapefiles: edges and sites, which contain the
geometry and attribute information for the stream network and the observed data locations.
Multiple comma-delimited text files containing the topological information for each stream
network within the edges data set will also be included. Here, a network is defined as a set
of connected, directed line segments that share a common junction somewhere downstream.
Note that the naming conventions for these files are implemented by the STARS toolset and
must be preserved. Multiple shapefiles representing the prediction locations may also be
included in the .ssn directory; however, the naming conventions for these data sets will vary.
Please see Peterson and Ver Hoef (in review) for a detailed description of the STARS toolset,
the methods used to generate the .ssn directory, and data therein.

3.2. Object structure

The SpatialStreamNetwork class is an S4 object (Figure 2), which is the foundational spatial
data class in the SSN package. Its structure adheres to the conventions for spatial data classes
set out by Bivand, Pebesma, and Gomez-Rubio (2008). Yet, the SpatialStreamNetwork is
unique because it contains both point and line features within the same S4 object. It directly
extends class SpatialLinesDataFrame, with additional slots included to store the spatial
point data SSNPoints, a matrix containing information about the network coordinates of each
line segment network.line.coords, as well as a string representing the filepath to the .ssn
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directory. A new class, SSNPoint, has been defined and created to store spatial point data for
observation and prediction locations. This class is similar to class SpatialPointsDataFrame,
but is not a direct extension of it since common slot names contain the prefix “point.” An
additional matrix containing network coordinates, network.point.coords, has also been
included. The object SSNPoints is a list of class SSNPoints that stores objects of class
SSNPoint. It also contains a slot named ID, which holds a string identifier for each SSNPoint

object.This allows identification within the SpatialStreamNetwork object when multiple data
sets of prediction sites are included.

The purpose of the .ssn directory is to store information about spatial relationships generated
in R, in addition to holding the input data. When the SpatialStreamNetwork class is created,
the topological information contained in text files is imported into a SQLite database using
the RSQLite package (James 2011). This database is named binaryID.db and contains a
separate table for each network, which holds the topological information of the network,
including reach identifiers (rid) and binary identifiers (ID). The rids are unique to each line
segment in the entire edges data set, while binary IDs are unique to each line segment within
a network, see Figure 2.

SpatialLinesDataFrame
SSNPoints
SSNPoints
path
network.line.coords

SpatialStreamNetwork

SSNPoint
ID

SSNPoints

data.frame

SpatialLines
coords
data

SpatialLinesDataFrame

lines
Spatial

SpatialLines

coords

Line

bbox
proj4string

Spatial

Lines
ID

Lines

network.point.coords
point.coords
point.data
points.bbox
proj4string

SSNPoint

Figure 2: The SpatialStreamNetwork class and slots; arrows with small heads show sub-class
extensions and arrows with large heads show the inclusion of lists of objects.

Peterson and Ver Hoef (in review) give additional details about the binary IDs and how they
are used to assess spatial relationships within a network.



10 Spatial Modeling on Stream Networks

4. Manipulating the SpatialStreamNetwork object

The SSN package provides functions to import and export SpatialStreamNetwork objects.
These objects may be created using the STARS ArcGIS custom toolbox for version 9.3.1
(Peterson and Ver Hoef in review). It is also possible to simulate a SpatialStreamNetwork

with both observed and prediction locations in R. Regardless of the way the object is gener-
ated, it contains important spatial information about feature geometry, attribute data, and
topological relationships. These relationships must be represented in R to create the spatial
information needed to fit a spatial statistical model. These capabilities are further explored
below.

4.1. Data available in the SSN package

A data set is included in the SSN package as well as code to simulate data on simulated
stream networks. The data set is from the Middle Fork, a stream in Idaho, United States,
and is a subset of a larger data set than can be freely accessed at http://www.fs.fed.us/

rm/boise/AWAE/projects/SpatialStreamNetworks.shtml. The data set consists of two
stream networks with 45 total observations, 220 prediction locations on a 1 km spacing, 1273
prediction locations densely packed on a single stream called the Knapp, and another 654
prediction locations densely packed on a single stream called CapeHorn.

4.2. Importing and subsetting the SpatialStreamNetwork object

The function to import the data from the .ssn directory and create a SpatialStreamNetwork

object is:

importSSN(Path, predpts = NULL, o.write = FALSE)

The only compulsory argument is Path, which is a string describing the filepath and basename
of the .ssn directory. Documentation describing the input arguments is given by the command
help(importSSN). For example, to import the MiddleFork04 data set provided in the SSN
package:

mf04p <- importSSN("./MiddleFork04.ssn",

predpts = "pred1km")

## binaryID.db already exists - no changes were made to binaryID.db table

Note that binaryID.db already existed, so it was not recomputed (because o.write = FALSE

by default). The point.data data.frame (residing under SSNPoint in Figure 2) contains 45
observed data (rows) and 35 variables (columns). Using help("MiddleFork04.ssn") provides
a description of each column in the point.data data.frames. The importSSN function allows
one set of prediction points to be imported at a time into the SpatialStreamNetwork object,
called pred1km in this example. It may be useful to have more than one prediction point
data set associated with the SpatialStreamNetwork object and this is accomplished with the
importPredpts function:

http://www.fs.fed.us/rm/boise/AWAE/projects/SpatialStreamNetworks.shtml
http://www.fs.fed.us/rm/boise/AWAE/projects/SpatialStreamNetworks.shtml
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mf04p <- importPredpts(mf04p, "Knapp", "ssn")

mf04p <- importPredpts(mf04p, "CapeHorn", "ssn")

The real data sets have many lines so it is difficult to view the whole object using the str

function on the SpatialStreamNetwork object. In Section 6, we show how to simulate very
small, simple networks that can easily show a SpatialStreamNetwork object structure.

The subsetSSN function can be used to subset an existing SpatialStreamNetwork object from
within the R environment. The subset selection is based on a logical expression, indicating
which observed sites to keep, with an additional argument specifying whether the logical
expression should also be applied to the edges and prediction locations. A new .ssn directory
(Figure 1) is created, where the subset of spatial information is stored.

4.3. Generating an additive function value

When fitting tail-up models the moving average function “splits” at every junction, and this
requires the computation of the values πi,j listed in Section 2.2. Recall that these are defined
as

πi,j =

√
Ω(sj)

Ω(ri)
, (9)

where typically

Ω(x) =
∏
k∈Dx

ωk (10)

for some attribute ωk of stream segment k (i.e., the data data.frame, contained within the
SpatialLinesDataFrame in Figure 2), and Dx comprises all stream segments downstream
of point x, including the segment containing x itself. The calculated values Ω (·), known
as additive function values, are then included as an additional column to the point.data

data.frames. These values are computed based on the observed covariate values for the line
segments, and so they are highly dependent on the structure of the underlying network. This
computation can be performed in ArcGIS, which is proprietary software that is not accessible
to all end-users, using the STARS toolset. Additive function values can also be computed by
additive.function provided by the SSN package:

additive.function(mf04p, VarName, afvName)

The function returns a SpatialStreamNetwork object, which is a modified version of the
input object ssn. The modified object has an additional covariate named afvName, which
contains the additive function values based on the covariate named VarName. A column names
afvName is added to the data data.frame, contained within the SpatialLinesDataFrame and
the point.data data.frames contained in each SSNpoint within SSNpoint. The included
data set can be used to demonstrate this. The additive-function-value column afvArea was
pre-computed and included in the data set, based on h2oAreaKm2. First, notice the attributes
for the line segments in the network:

names(mf04p@data)
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## [1] "COMID" "FDATE" "RESOLUTION" "GNIS_ID" "GNIS_NAME"

## [6] "LENGTHKM" "REACHCODE" "FLOWDIR" "WBAREACOMI" "FTYPE"

## [11] "FCODE" "CUMdrainAG" "MAXELEVSMO" "AREAWTMAP" "SLOPE"

## [16] "HUC3" "HUC4" "h2oAreaKm2" "Shape_Leng" "rid"

## [21] "areaPI" "afvArea" "upDist" "Length" "netID"

and the values for h2oAreaKm2 and afvArea in the point data.frame:

head(mf04p@data[, c("h2oAreaKm2", "afvArea")])

## h2oAreaKm2 afvArea

## 0 1970.558 0.3792740

## 1 1799.024 0.3792740

## 2 1620.071 0.3764886

## 3 10671.358 1.0000000

## 4 10180.870 1.0000000

## 5 9603.091 0.9896855

Now, use additive.function to compute the additive function value based on h2oAreaKm2,
and name it computed.afv:

mf04p <- additive.function(mf04p, "h2oAreaKm2", "computed.afv")

Notice that the computed.afv column has been added to mf04p@data:

names(mf04p@data)

## [1] "rid" "COMID" "FDATE" "RESOLUTION"

## [5] "GNIS_ID" "GNIS_NAME" "LENGTHKM" "REACHCODE"

## [9] "FLOWDIR" "WBAREACOMI" "FTYPE" "FCODE"

## [13] "CUMdrainAG" "MAXELEVSMO" "AREAWTMAP" "SLOPE"

## [17] "HUC3" "HUC4" "h2oAreaKm2" "Shape_Leng"

## [21] "areaPI" "afvArea" "upDist" "Length"

## [25] "netID" "computed.afv"

and values from the stream segments are passed to points on each segment:

head(mf04p@data[, c("h2oAreaKm2",

"afvArea", "computed.afv")])

## h2oAreaKm2 afvArea computed.afv

## 0 1970.558 0.3792740 0.3792740

## 1 1799.024 0.3792740 0.3792740

## 2 1620.071 0.3764886 0.3764886

## 3 10671.358 1.0000000 1.0000000

## 4 10180.870 1.0000000 1.0000000

## 5 9603.091 0.9896855 0.9896855
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head(getSSNdata.frame(mf04p)[, c("afvArea", "computed.afv")])

## afvArea computed.afv

## 1 0.6234092 0.6234092

## 2 0.1509203 0.1509203

## 3 0.1509203 0.1509203

## 4 0.1509203 0.1509203

## 5 0.1509203 0.1509203

## 6 0.1502166 0.1502166

where the computed.afv column replicated the existing afvArea column.

4.4. Calculating distance matrices

The covariance models of Sections 2.2 and 2.4 are based on network distance. Fitting these
models requires a symmetric matrix Do,o, containing the network distances between all pairs
of observed points. In fact for tail-down models we need more detailed information for every
pair of observed points ri and sj , including the distance downstream from ri to the first
junction that connects it to sj . This second set of distances can be organised into another
matrix No,o that is not symmetric because it contains the distances from i to the junction with
j, and from j to the junction with i as off-diagonal elements. If i and j are flow-connected
sites, one of No,o[i, j] and No,o[j, i] is equal to zero (the one farther downstream; i.e., it is the
common junction). Consequently, Do,o = No,o+N>o,o, so that it is sufficient to compute No,o.

Network distances between observation and prediction points are needed for prediction. These
are computed as two matrices No,p and Np,o, corresponding to downstream distances from
observed to prediction points and prediction to observed points, respectively. For block krig-
ing and simulations (that include simulations of prediction points), a matrix of downstream
distances between pairs of prediction points, Np,p, is also needed. If we denote the collection
of all downstream distances by N, then

N =

(
No,o No,p

Np,o Np,p

)
. (11)

The function createDistMat creates the relevant parts of the matrix N before fitting models
or making predictions:

createDistMat(mf04p, predpts = "Knapp", o.write = TRUE,

amongpreds = TRUE)

createDistMat(mf04p, predpts = "CapeHorn", o.write = TRUE,

amongpreds = TRUE)

The matrix No,o is always computed. The input predpts gives the name of a set of prediction
points; if this input is specified then the rectangular matrices No,p and Np,o are also computed.
A value of predpts = NULL indicates that only No,o should be computed. If amongpreds =

TRUE then in addition the square matrix Np,p is calculated, which is required if the predpts

are used for block prediction, or for simulating at the prediction points as well as the observed
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points. Input o.write determines whether the specified matrices will be recalculated if they
already exist, with the default behaviour being to retain existing computations.

Using the getStreamDistMat function allows accessing the asymmetric stream distance ma-
trix after it is created. In these matrices, the “from” sites are labeled across the top (column
labels) and the “to” sites are labeled along the left (row labels). There may be multiple
matrices if there are multiple networks, labeled sequentially starting with .net1, etc.

distObs <- getStreamDistMat(mf04p)

str(distObs)

## List of 2

## $ dist.net1: num [1:13, 1:13] 0 2491 528 15877 15094 ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:13] "31" "32" "33" "34" ...

## .. ..$ : chr [1:13] "31" "32" "33" "34" ...

## $ dist.net2: num [1:32, 1:32] 0 0 0 0 0 0 0 0 0 0 ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:32] "1" "2" "3" "4" ...

## .. ..$ : chr [1:32] "1" "2" "3" "4" ...

distObs$dist.net1[1:5,1:5]

## 31 32 33 34 35

## 31 0.0000 0.00 0.000 0 0.0000

## 32 2491.3657 0.00 1962.963 0 0.0000

## 33 528.4024 0.00 0.000 0 0.0000

## 34 15876.6936 13385.33 15348.291 0 782.3891

## 35 15094.3044 12602.94 14565.902 0 0.0000

To obtain total in-stream distance, we take the asymmetric matrix plus its transpose.

strDistNet2 <- distObs$dist.net2 + t(distObs$dist.net2)

strDistNet2[5:10,5:10]

## 5 6 7 8 9 10

## 5 0.000 1018.962 2105.652 2345.758 3738.746 2979.006

## 6 1018.962 0.000 1086.690 1326.796 2719.784 3997.968

## 7 2105.652 1086.690 0.000 240.106 1633.094 5084.658

## 8 2345.758 1326.796 240.106 0.000 1392.988 5324.764

## 9 3738.746 2719.784 1633.094 1392.988 0.000 6717.751

## 10 2979.006 3997.968 5084.658 5324.764 6717.751 0.000

Likewise, we can obtain distance between observed sites and prediction locations. Here,
two matrices are required per network, so the label “.a” indicates from prediction sites to
observation sites, and the label “.b” indicates from observation sites to predictions sites.
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distPred1km <- getStreamDistMat(mf04p, Name = "pred1km")

str(distPred1km)

## List of 4

## $ dist.net1.a: num [1:13, 1:57] 0 0 0 1119 336 ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:13] "31" "32" "33" "34" ...

## .. ..$ : chr [1:57] "46" "47" "48" "49" ...

## $ dist.net1.b: num [1:57, 1:13] 14758 15758 13384 11170 9900 ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:57] "46" "47" "48" "49" ...

## .. ..$ : chr [1:13] "31" "32" "33" "34" ...

## $ dist.net2.a: num [1:32, 1:118] 0 0 0 0 0 0 0 0 0 0 ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:32] "1" "2" "3" "4" ...

## .. ..$ : chr [1:118] "74" "75" "76" "77" ...

## $ dist.net2.b: num [1:118, 1:32] 2638 0 0 0 0 ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:118] "74" "75" "76" "77" ...

## .. ..$ : chr [1:32] "1" "2" "3" "4" ...

distPred1km$dist.net1.a[1:5,1:5]

## 46 47 48 49 50

## 31 0.0000 0.0000 0.000 0.000 0.000

## 32 0.0000 0.0000 0.000 0.000 0.000

## 33 0.0000 0.0000 0.000 0.000 0.000

## 34 1118.5041 118.5041 2492.595 4706.651 5976.436

## 35 336.1149 0.0000 1710.206 3924.262 5194.047

It is also possible to get distances among just the prediction locations.

createDistMat(mf04p, predpts = "CapeHorn", o.write = TRUE,

amongpreds = TRUE)

distCape <- getStreamDistMat(mf04p, Name = "CapeHorn")

str(distCape)

## List of 3

## $ dist.net2.a: num [1:32, 1:654] 3658 2957 1996 966 572 ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:32] "1" "2" "3" "4" ...

## .. ..$ : chr [1:654] "1494" "1495" "1496" "1497" ...

## $ dist.net2.b: num [1:654, 1:32] 0 0 0 0 0 0 0 0 0 0 ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:654] "1494" "1495" "1496" "1497" ...

## .. ..$ : chr [1:32] "1" "2" "3" "4" ...
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## $ dist.net2 : num [1:654, 1:654] 0 10 20 30 40 ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:654] "1494" "1495" "1496" "1497" ...

## .. ..$ : chr [1:654] "1494" "1495" "1496" "1497" ...

distCape$dist.net2[1:5,1:5]

## 1494 1495 1496 1497 1498

## 1494 0.00000 0.000000 0 0.000000 0

## 1495 10.00001 0.000000 0 0.000000 0

## 1496 20.00000 9.999995 0 0.000000 0

## 1497 30.00000 19.999998 10 0.000000 0

## 1498 40.00000 29.999994 20 9.999995 0

5. Data analysis using SSN

In this section, we demonstrate a full data analysis using the SSN package, including ex-
ploratory data analysis, model fitting, model diagnostics, model selection, and prediction.

5.1. Exploratory data analysis

This section gives an example of exploratory data analysis using the Middle Fork data set,
which was imported in Section 4.2, and distance matrices, which were computed in Section 4.4.
Recall that information about the data set can be found by typing help(MiddleFork04.ssn).
The names of the variables in the point.data data.frame for each observed and prediction
data set in mf04 are obtained with:

names(mf04p)

## $Obs

## [1] "rid" "STREAMNAME" "HUC3" "HUC4"

## [5] "COMID" "CUMDRAINAG" "AREAWTMAP" "MAXELEVSMO"

## [9] "SLOPE" "NCEASID_" "ELEV_DEM" "Deployment"

## [13] "SampleYear" "NumberOfDa" "OriginalID" "Source"

## [17] "Summer_mn" "MaxOver20" "C16" "C20"

## [21] "C24" "FlowCMS" "AirMEANc" "AirMWMTc"

## [25] "NEAR_FID" "NEAR_DIST" "NEAR_X" "NEAR_Y"

## [29] "NEAR_ANGLE" "ratio" "afvArea" "upDist"

## [33] "locID" "netID" "pid" "computed.afv"

##

## $pred1km

## [1] "rid" "COMID" "GNIS_NAME" "CUMDRAINAG"

## [5] "HUC3" "HUC4" "AREAWTMAP" "MAXELEVSMO"

## [9] "SLOPE" "COMID_" "ELEV_DEM" "FlowCMS"

## [13] "AirMEANc" "AirMWMTc" "SampleYear" "NEAR_FID"
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## [17] "NEAR_DIST" "NEAR_X" "NEAR_Y" "NEAR_ANGLE"

## [21] "ratio" "afvArea" "upDist" "locID"

## [25] "netID" "pid" "computed.afv"

##

## $Knapp

## [1] "rid" "COMID" "GNIS_NAME" "CUMDRAINAG"

## [5] "HUC3" "HUC4" "AREAWTMAP" "MAXELEVSMO"

## [9] "SLOPE" "COMID_" "ELEV_DEM" "FlowCMS"

## [13] "AirMEANc" "AirMWMTc" "SampleYear" "NEAR_FID"

## [17] "NEAR_DIST" "NEAR_X" "NEAR_Y" "NEAR_ANGLE"

## [21] "ratio" "afvArea" "upDist" "locID"

## [25] "netID" "pid" "computed.afv"

##

## $CapeHorn

## [1] "rid" "COMID" "GNIS_NAME" "CUMDRAINAG"

## [5] "HUC3" "HUC4" "AREAWTMAP" "MAXELEVSMO"

## [9] "SLOPE" "COMID_" "ELEV_DEM" "FlowCMS"

## [13] "AirMEANc" "AirMWMTc" "SampleYear" "NEAR_FID"

## [17] "NEAR_DIST" "NEAR_X" "NEAR_Y" "NEAR_ANGLE"

## [21] "ratio" "afvArea" "upDist" "locID"

## [25] "netID" "pid" "computed.afv"

Any of these data.frames in the SpatialStreamNetwork object can be accessed or stored
as a separate object using getSSNdata.frame(mf04) or getSSNdata.frame(ssn, Name =

preds1km). Then other useful functions can be used, such as generic functions summary,
apply, etc., and exploratory graphical functions like boxplot, hist, qqnorm, etc.

For spatial data, it is useful to see mapped data. The default plotting function for a
SpatialStreamNetwork object is a map (Figure 3):

plot(mf04p, lwdLineCol = "afvArea", lwdLineEx = 10, lineCol = "blue",

pch = 19, xlab = "x-coordinate (m)", ylab = "y-coordinate (m)",

asp = 1)

Complex stream networks make it difficult to find the outlet, to tell which stream segments
lead to other segments, and which segments are small or large. The line width in the plot can
be made proportional to a column in the data data.frame (Figure 2) using the lwdLineCol

and lwdLineEx arguments. The color can also be set with lineCol.

Our example response variable, Summer_mn, is the average summer stream temperature. This
response is plotted across the stream network with observation locations colored by their value
(Figure 4):

brks <- plot(mf04p, "Summer_mn", lwdLineCol = "afvArea",

lwdLineEx = 15, lineCol = "black", xlab = "x-coordinate" ,

ylab = "y-coordinate", asp=1 )



18 Spatial Modeling on Stream Networks

−1530000 −1520000 −1510000 −1500000

25
25

00
0

25
35

00
0

x−coordinate (m)

y−
co

or
di

na
te

 (
m

)

●
●

●
●●

●
●●

●

●

●●
●

●
●

●

●● ● ●● ●

● ● ●●

●

●
●

●
●

●

●

●
●

●●

●●●
●

●●

●

●

Figure 3: A plot of the Middle Fork stream network. The locations of observed data are
shown as black points. The blue lines indicate the river network and the thickness of these
lines indicates the size of the river for each segment.

The arguments color.palette, breaktype and brks control color scheme and break points.
The plotting command returns a matrix of break points that can be used later for consistency
of color meaning across multiple images.

It is also possible to use the plotting feature of the sp package by using the as.SpatialLines,
as.SpatialPoints, and as.SpatialPointsPolygons, and the results are shown in Figure 5.

#plot the stream lines

plot(as.SpatialLines(mf04p), col = "blue")

# add the observed locations with size proportional

# to mean summer temperature

plot(as.SpatialPoints(mf04p), pch = 19,

cex = as.SpatialPointsDataFrame(mf04p)$Summer_mn/9 , add = TRUE)

# add the prediction locations on the 1 km spacing

plot(as.SpatialPoints(mf04p, data = "pred1km"), cex = 1.5, add = TRUE)

# add the dense set of points for block prediction on Knapp segment

plot(as.SpatialPoints(mf04p, data = "Knapp"), pch = 19, cex = 0.3,

col = "red", add = TRUE)

Many users of spatial statistics are familiar with empirical semivariogram plots, which are
used to understand how covariance changes with Euclidean distance. A new but similar
graphic, called a Torgegram, is used for stream network data. The Torgegram computes
average squared-differences like an empirical semivariogram, except that it is based on stream
distance with the semivariance plotted separately for flow-connected and flow-unconnected
pairs (see Figure 6, where the size of the circles are proportional to the number of pairs for
each binned distance class). Such figures were given in (Ver Hoef et al. 2006; Ver Hoef and
Peterson 2010). The rationale behind a Torgegram is that autocorrelation may be evident
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Figure 4: The generic plotting function of the SpatialStreamNetwork object for the Middle
Fork data set. The observed values are represented by colored points and the stream network
is shown in black, with the width of the lines proportional to the afvArea column.
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Figure 5: Plotting using sp classes.
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only between flow-connected sites (e.g., for passive movement of chemical particles), while
in other cases autocorrelation may be evident between flow-unconnected sites (e.g., for fish
abundance because fish can move up-stream). Moreover, Section 2 showed models that are
more natural for autocorrelation among flow-connected sites only (Subsection 2.2), those
that also allow autocorrelation among flow-unconnected sites (Subsection 2.4), and variance
component approaches that combine them, along with models based on Euclidean distance
(Subsection 2.7). The Torgegram is a visual tool for evaluating autocorrelation separately
for flow-connected and flow-unconnected sites, and can help inform the selection of candidate
models for fitting. Further examples and discussion of the Torgegram are given in Peterson,
Ver Hoef, Isaak, Falke, Fortin, Jordan, McNyset, Monestiez, Ruesch, Sengupta, Som, Steel,
Theobald, Torgersen, and Wenger (2013).

Figure 6 is a plot of the Torgegram for the mean summer stream temperature:

mf04.Torg <- Torgegram(mf04p, "Summer_mn", nlag = 20, maxlag = 50000)

plot(mf04.Torg)
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Figure 6: Torgegram of the mean summer temperature for the Middle Fork data set.

Close inspection of Figure 4 shows that neighboring locations on the stream network have very
similar temperature values. Figure 6 shows that flow-connected sites have higher autocorre-
lation (lower semivariance) than flow-unconnected sites for the same distance when distances
are short; however, both show high autocorrelation at short lags. Note that, for a stream
network, there are longer in-stream distances when going from a head water to an outlet,
and then back to a headwater (two flow-unconnected sites) than between a headwater and
an outlet (two flow-connected sites). The availability of longer flow-unconnected distances is
shown in Figure 4, where there are no flow-connected distances beyond 30000 m. In Figure 4,
the semivariances increase to around 6 for flow-unconnected sites, and then start decreasing.
Flow-unconnected distances of near 50000 are from headwater to outlet to headwater, and
the Torgegram shows more similarity for these sites than those separated by 30000 m. This
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suggests including a covariate such as elevation, or simply distance upstream. This makes
sense for temperature which will be colder at the higher elevations of the headwaters. In
summary, the Torgegram in Figure 6 suggests inclusion of elevation or distance upstream as
a covariate in the linear model to account for an upstream trend in temperature, and based
on the behavior of the Torgegram near the origin, both a tail-up and tail-down model will be
necessary to capture the range of autocorrelation (Ver Hoef and Peterson 2010). Later, the
Torgegram will be used on residuals for model diagnostics.

5.2. Model fitting

The glmssn function fits a spatial linear model (Equation 3) to a SpatialStreamNetwork

object with a covariance structure shown in Equation 4. The ML or REML equations we
optimized using the Nelder-Mead algorithm (Nelder and Mead 1965) in the optim function.
Covariance matrices are inverted numerically, which means that the computing time for n
observations increases proportionally to n3, and is performed for each iteration of the ML or
REML estimation method. This limits the size of data sets that can be fit by the glmssn

function, and for most computing systems today we suggest sample sizes of less than 1000
observations.

An example of the glmssn function uses Summer_mn (mean summer stream temperature) as a
response variable from in the Middle Fork data set. We include the covariates elevation and
slope and various spatial covariance components. The response and fixed effects are specified
using the formula argument, similar to lm and glm. The input data set is specified with the
data argument, which must be a SpatialStreamNetwork object. The CorModels argument is
a list of correlation models. These models should be of different types; i.e., at most one tail-up
model, one tail-down model, and one Euclidean distance model. The addfunccol argument
is the name of an additive function column, which is required if a tail-up correlation model is
included in CorModels. More details can be found using help(glmssn). A non-spatial model
is fitted:

mf04.glmssn0 <- glmssn(Summer_mn ~ ELEV_DEM + SLOPE, mf04p,

CorModels = NULL, use.nugget = TRUE)

summary(mf04.glmssn0)

##

## Call:

## glmssn(formula = Summer_mn ~ ELEV_DEM + SLOPE, ssn.object = mf04p,

## CorModels = NULL, use.nugget = TRUE)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.3835 -1.1704 0.6205 0.9088 2.1930

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 62.839372 10.654190 5.898 < 2e-16 ***

## ELEV_DEM -0.024955 0.005379 -4.639 3e-05 ***

## SLOPE -88.019985 31.991343 -2.751 0.00872 **
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## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Covariance Parameters:

## Covariance.Model Parameter Estimate

## Nugget parsill 1.81

##

## Residual standard error: 1.344093

## Generalized R-squared: 0.5625148

which can be compared to:

summary(lm(Summer_mn ~ ELEV_DEM + SLOPE, getSSNdata.frame(mf04p)))

##

## Call:

## lm(formula = Summer_mn ~ ELEV_DEM + SLOPE, data = getSSNdata.frame(mf04p))

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.3835 -1.1704 0.6205 0.9088 2.1930

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 62.839372 10.654207 5.898 5.57e-07 ***

## ELEV_DEM -0.024955 0.005379 -4.639 3.40e-05 ***

## SLOPE -88.019985 31.991395 -2.751 0.00872 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.344 on 42 degrees of freedom

## Multiple R-squared: 0.5625,Adjusted R-squared: 0.5417

## F-statistic: 27 on 2 and 42 DF, p-value: 2.886e-08

A spatial model, including a mixture of tail-up, tail-down, and Euclidean covariance models
is fitted:

mf04.glmssn1 <- glmssn(Summer_mn ~ ELEV_DEM + SLOPE, mf04p,

CorModels = c("Exponential.tailup", "Exponential.taildown",

"Exponential.Euclid"), addfunccol = "afvArea")

summary(mf04.glmssn1)

##

## Call:

## glmssn(formula = Summer_mn ~ ELEV_DEM + SLOPE, ssn.object = mf04p,

## CorModels = c("Exponential.tailup", "Exponential.taildown",
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## "Exponential.Euclid"), addfunccol = "afvArea")

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.1839 -1.8289 -0.4117 0.2991 1.3447

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 64.817126 10.793922 6.005 <2e-16 ***

## ELEV_DEM -0.025756 0.005405 -4.765 2e-05 ***

## SLOPE -27.325550 14.868674 -1.838 0.0732 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Covariance Parameters:

## Covariance.Model Parameter Estimate

## Exponential.tailup parsill 1.49392

## Exponential.tailup range 117789.73261

## Exponential.taildown parsill 0.00675

## Exponential.taildown range 117751.99113

## Exponential.Euclid parsill 0.07162

## Exponential.Euclid range 38068.34362

## Nugget parsill 0.01818

##

## Residual standard error: 1.261142

## Generalized R-squared: 0.4579287

It appears that slope is no longer a significant covariate when comparing fits of the indepen-
dence model to that with spatial covariance. It is often true that autocorrelated models yield
fewer factors with significant departures from zero.

The variable MaxOver20 is a binary variable indicating if a stream temperature value was over
200 C. Here is an example of fitting a spatial generalized linear model (Section 2.8) to the
binary data by using the family = "binomial" argument:

mf04.glmssnBin <- glmssn(MaxOver20 ~ ELEV_DEM + SLOPE, mf04p,

CorModels = c("Mariah.tailup", "Spherical.taildown"),

family = "binomial", addfunccol = "afvArea")

summary(mf04.glmssnBin)

##

## Call:

## glmssn(formula = MaxOver20 ~ ELEV_DEM + SLOPE, ssn.object = mf04p,

## family = "binomial", CorModels = c("Mariah.tailup",

## "Spherical.taildown"),

## addfunccol = "afvArea")

##
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## Residuals:

## Min 1Q Median 3Q Max

## -3.001 -1.287 -1.070 1.312 11.614

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 59.16088 31.72727 1.865 0.0692 .

## ELEV_DEM -0.02988 0.01607 -1.859 0.0701 .

## SLOPE -74.43428 117.48688 -0.634 0.5298

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Covariance Parameters:

## Covariance.Model Parameter Estimate

## Mariah.tailup parsill 0.29556

## Mariah.tailup range 0.00213

## Spherical.taildown parsill 0.39666

## Spherical.taildown range 9627.05141

## Nugget parsill 0.29981

##

## Residual standard error: 0.9960069

## Generalized R-squared: 0.09534395

The variable C16 represents the number of summer days when the stream temperature was
greater than 16o C. Here is an example of fitting a spatial generalized linear model (Section 2.8)
to these count data by using the family = "poisson" argument:

mf04.glmssnPoi <- glmssn(C16 ~ ELEV_DEM + SLOPE, mf04p,

CorModels = c("LinearSill.tailup", "LinearSill.taildown"),

family = "poisson", addfunccol = "afvArea")

summary(mf04.glmssnPoi)

##

## Call:

## glmssn(formula = C16 ~ ELEV_DEM + SLOPE, ssn.object = mf04p,

## family = "poisson", CorModels = c("LinearSill.tailup",

## "LinearSill.taildown"),

## addfunccol = "afvArea")

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.00000 -0.18684 -0.01077 0.29539 1.25389

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 20.288563 6.763316 3.000 0.00453 **
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## ELEV_DEM -0.008512 0.003430 -2.482 0.01715 *

## SLOPE -12.198263 12.545956 -0.972 0.33647

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Covariance Parameters:

## Covariance.Model Parameter Estimate

## LinearSill.tailup parsill 6.71742619

## LinearSill.tailup range 19572.57825779

## LinearSill.taildown parsill 0.98255198

## LinearSill.taildown range 216.29881981

## Nugget parsill 0.00000203

##

## Residual standard error: 2.774884

## Generalized R-squared: 0.179287

As one might expect, more high-temperature days are associated with lower elevations and
lower slopes, although the slope covariate is not very significant.

5.3. Residuals and diagnostics

The residuals function computes a collection of residual diagnostics, including raw, stan-
dardized and Studentized residuals, as well as fitted values and spatial versions of leverage
and Cook’s D (Cook and Weisberg 1982). For all computations other than raw residuals,
residual diagnostics use a modification of the classical formulas developed for independent
data. Standard independence formulas are used for the linear model y∗ = X∗β+ε∗, where ε∗

are independent errors, after fitting the covariance matrix Σ and then “creating” independent
data as y∗ = Σ−1/2y with a modified design matrix X∗ = Σ−1/2X, where Σ was defined
in Equation 4. The result of the residuals function is an influenceSSN object, which is
an exact copy of the glmssn object, except that residual diagnostics are appended as new
columns to the point.data data.frame containing the observed data. The default plotting
method for an influenceSSN object is a map with color-coded raw residuals:

mf04.resid1 <- residuals(mf04.glmssn1)

names( getSSNdata.frame(mf04.resid1) )

## [1] "pid" "rid" "STREAMNAME"

## [4] "HUC3" "HUC4" "COMID"

## [7] "CUMDRAINAG" "AREAWTMAP" "MAXELEVSMO"

## [10] "SLOPE" "NCEASID_" "ELEV_DEM"

## [13] "Deployment" "SampleYear" "NumberOfDa"

## [16] "OriginalID" "Source" "Summer_mn"

## [19] "MaxOver20" "C16" "C20"

## [22] "C24" "FlowCMS" "AirMEANc"

## [25] "AirMWMTc" "NEAR_FID" "NEAR_DIST"

## [28] "NEAR_X" "NEAR_Y" "NEAR_ANGLE"
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## [31] "ratio" "afvArea" "upDist"

## [34] "locID" "netID" "computed.afv"

## [37] "obsval" "_fit_" "_resid_"

## [40] "_resid.stand_" "_resid.student_" "_leverage_"

## [43] "_CooksD_"

plot(mf04.resid1)
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Figure 7: Plot of the raw residuals from fitting a model to the Middle Fork stream network.
The legend on the right-hand side hints at the existence of residuals whose value are less than
−3.

Columns added by the residuals function have names of the form _*_. Maps of other
diagnostics computed by residuals can be plotted by using the inflcol argument.

Figure 7 indicates that there might be an outlier with a residual less than −3. Histograms
can be plotted of the raw response variable and residuals. (Figure 8):

par(mfrow = c(1, 2))

hist(mf04.resid1)

hist(mf04p, "Summer_mn")

Let us treat the residual that is less than −3 as an outlier. We handle outliers by replacing
their values with NA, which will allow us to predict it later. First extract the data.frame

of observed data and identify the record associated with the outlier, insert an NA in the
appropriate position for the response variable, and then put the data.frame back into the
spatial stream network object:
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Figure 8: Histogram of the residuals (on the left) and a histogram of the average summer
temperature values (on the right).

ObsDFr <- getSSNdata.frame(mf04.resid1)

ObsDF <- getSSNdata.frame(mf04p)

indOutlier <- ObsDFr["_resid_"] < -3

ObsDF[indOutlier, "Summer_mn"] <- NA

mf04c <- putSSNdata.frame(ObsDF, mf04p)

The new SpatialStreamNetwork object was renamed mf04c. Note that the outlier has been
replaced in the SpatialStreamNetwork object, but not in the original data set in the .ssn

directory. Having dealt with the outlier we refit the basic spatial model to the mean summer
temperature, this time using ML rather than REML. We use ML because later we will use
AIC for model selection, and REML cannot be used with AIC when fixed effects are changing
(Verbeke and Molenberghs 2000, p. 75).

mf04c.glmssn0 <- glmssn(Summer_mn ~ ELEV_DEM + SLOPE, mf04c,

CorModels = c("Exponential.tailup", "Exponential.taildown",

"Exponential.Euclid"), addfunccol = "afvArea", EstMeth = "ML")

summary(mf04c.glmssn0)

##

## Call:

## glmssn(formula = Summer_mn ~ ELEV_DEM + SLOPE, ssn.object = mf04c,

## CorModels = c("Exponential.tailup", "Exponential.taildown",

## "Exponential.Euclid"), addfunccol = "afvArea", EstMeth = "ML")

##

## Residuals:

## Min 1Q Median 3Q Max
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## NA -1.7829 -0.3289 0.3392 NA

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 64.29461 10.31964 6.230 <2e-16 ***

## ELEV_DEM -0.02551 0.00517 -4.934 1e-05 ***

## SLOPE -23.25010 15.03325 -1.547 0.13

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Covariance Parameters:

## Covariance.Model Parameter Estimate

## Exponential.tailup parsill 1.3481

## Exponential.tailup range 110976.5015

## Exponential.taildown parsill 0.0485

## Exponential.taildown range 117357.4743

## Exponential.Euclid parsill 0.0180

## Exponential.Euclid range 23667.8553

## Nugget parsill 0.0177

##

## Residual standard error: 1.196797

## Generalized R-squared: 0.4416391

The partial sill associated with the exponential Euclidean model is quite low compared to the
partial sills for the tail-up and tail-down models, as well as the nugget effect, and the fixed
effect for SLOPE is also not significant, so they are dropped when refitting the model:

mf04c.glmssn1 <- glmssn(Summer_mn ~ ELEV_DEM, mf04c,

CorModels = c("Exponential.tailup", "Exponential.taildown"),

addfunccol = "afvArea", EstMeth = "ML")

summary(mf04c.glmssn1)

##

## Call:

## glmssn(formula = Summer_mn ~ ELEV_DEM, ssn.object = mf04c,

## CorModels = c("Exponential.tailup", "Exponential.taildown"),

## addfunccol = "afvArea", EstMeth = "ML")

##

## Residuals:

## Min 1Q Median 3Q Max

## NA -1.9503 -0.4230 0.0913 NA

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 69.876077 10.001403 6.987 <2e-16 ***

## ELEV_DEM -0.028273 0.005004 -5.650 <2e-16 ***
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## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Covariance Parameters:

## Covariance.Model Parameter Estimate

## Exponential.tailup parsill 1.815899

## Exponential.tailup range 117791.352999

## Exponential.taildown parsill 0.000795

## Exponential.taildown range 226.290371

## Nugget parsill 0.004710

##

## Residual standard error: 1.349594

## Generalized R-squared: 0.420658

Leave-one-out cross validation (LOOCV) provides a good diagnostic for evaluating model
performance. The function CrossValidationSSN computes LOOCV predictions and stan-
dard errors for a fitted glmssn object. The LOOCV predictions and standard errors are
included by default when using the residual function; column names _CrossValPred_ and
_CrossValStdErr_ are added to the observed point.data data.frame, in addition to the col-
umn _resid.crossv_ which is the observed value subtracted from _CrossValPred_. These
variables can be mapped as well. Figure 9 plots these LOOCV predictions and prediction
standard errors against the observed data.

cv.out <- CrossValidationSSN(mf04c.glmssn1)

par(mfrow = c(1, 2))

plot(mf04c.glmssn1$sampinfo$z,

cv.out[, "cv.pred"], pch = 19,

xlab = "Observed Data", ylab = "LOOCV Prediction")

abline(0, 1)

plot( na.omit( getSSNdata.frame(mf04c)[, "Summer_mn"]),

cv.out[, "cv.se"], pch = 19,

xlab = "Observed Data", ylab = "LOOCV Prediction SE")

The function CrossValidationStatsSSN both computes and summarises the cross-validation
statistics for a particular glmssn object. Bias, root-mean-squared prediction error, and con-
fidence interval coverage are computed.

CrossValidationStatsSSN(mf04c.glmssn1)

## bias std.bias RMSPE RAV std.MSPE cov.80

## 1 0.07892529 0.07445568 0.5467495 0.3680389 1.180716 0.7954545

## cov.90 cov.95

## 1 0.8409091 0.9090909

The GR2 function computes a generalised R-squared for the fitted glmssn object by computing
the classical R-squared on the y∗ = X∗β + ε∗ model.
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Figure 9: Leave-one-out cross validation predictions (on the left) and prediction standard
errors (on the right) plotted against the observed response values.

The varcomp function takes the proportion of variation not explained by the fixed effects
(covariates) in GR2, and apportions it by the partial sill of each spatial covariance component.

GR2(mf04c.glmssn1)

## [,1]

## [1,] 0.420658

varcomp(mf04c.glmssn1)

## VarComp Proportion

## 1 Covariates (R-sq) 0.420658045

## 2 Exponential.tailup 0.577590714

## 3 Exponential.taildown 0.000252963

## 4 Nugget 0.001498278

Here the fixed effects explains about 42% of the variation in the data, with the tail-up model
contributing 57% and very little from the tail-down and independent nugget component.

5.4. Model selection

Prior knowledge on the best model is rarely available, especially for covariance structures,
and so we often fit several and then compare them in various ways. We fit mf04c.glmssn0

and mf04c.glmssn1 using ML so that they could be compared using the Akaike Information
Criteria (AIC):
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AIC(mf04c.glmssn0)

## [1] 72.24983

AIC(mf04c.glmssn1)

## [1] 66.74482

It is clear that SLOPE is not a significant covariate. Here, we re-fit mf04c.glmssn0 with
REML (the default, so the EstMeth = "ML" argument can be dropped), along with a few
more covariance structures:

mf04c.glmssn1 <- glmssn(Summer_mn ~ ELEV_DEM, mf04c,

CorModels = c("Exponential.tailup", "Exponential.taildown"),

addfunccol = "afvArea")

mf04c.glmssn2 <- glmssn(Summer_mn ~ ELEV_DEM, mf04c,

CorModels = c("LinearSill.tailup", "Mariah.taildown"),

addfunccol = "afvArea")

mf04c.glmssn3 <- glmssn(Summer_mn ~ ELEV_DEM , mf04c,

CorModels = c("Mariah.tailup", "LinearSill.taildown"),

addfunccol = "afvArea")

mf04c.glmssn4 <- glmssn(Summer_mn ~ ELEV_DEM, mf04c,

CorModels = c("Spherical.tailup", "Spherical.taildown"),

addfunccol = "afvArea")

mf04c.glmssn5 <- glmssn(Summer_mn ~ ELEV_DEM, mf04c,

CorModels = "Exponential.Euclid",

addfunccol = "afvArea")

Several different spatial models can be compared using the InfoCritCompare command. This
function extracts the AIC from each model fit, evaluates the cross validation statistics for each
model and presents the results in table format:

options(digits = 4)

InfoCritCompare(list(mf04c.glmssn1, mf04c.glmssn2,

mf04c.glmssn3, mf04c.glmssn4, mf04c.glmssn5))

## formula EstMethod

## 1 Summer_mn ~ ELEV_DEM REML

## 2 Summer_mn ~ ELEV_DEM REML

## 3 Summer_mn ~ ELEV_DEM REML

## 4 Summer_mn ~ ELEV_DEM REML

## 5 Summer_mn ~ ELEV_DEM REML

## Variance_Components neg2LogL AIC

## 1 Exponential.tailup + Exponential.taildown + Nugget 62.68 72.68

## 2 LinearSill.tailup + Mariah.taildown + Nugget 56.07 66.07

## 3 Mariah.tailup + LinearSill.taildown + Nugget 86.78 96.78
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## 4 Spherical.tailup + Spherical.taildown + Nugget 57.42 67.42

## 5 Exponential.Euclid + Nugget 126.54 132.54

## bias std.bias RMSPE RAV std.MSPE cov.80 cov.90 cov.95

## 1 0.0703594 0.0661302 0.5300 0.3865 1.0445 0.7955 0.8864 0.9318

## 2 0.0759843 0.0680604 0.5042 0.3797 0.9103 0.7955 0.9091 0.9318

## 3 0.0570522 0.0569083 0.5053 0.5044 0.7416 0.8409 0.9318 0.9545

## 4 0.0786681 0.0713283 0.5262 0.3668 1.1189 0.7727 0.8182 0.9091

## 5 -0.0008186 -0.0004457 0.7863 0.8548 0.9261 0.8864 0.9091 0.9318

options(digits = 7)

Note that AIC can be used with REML here because the fixed effects are not changing
among models. The comparisons show that all pure stream network models do much better
than one based on Euclidean distance. Based on the low AIC value and the low root-mean-
square prediction error we decide on a final model that uses linear-with-sill tailup and mariah
taildown covariance structures. Sample sizes are rather low, but prediction intervals seem
appropriate. Here is summary of the final fitted model:

summary(mf04c.glmssn2)

##

## Call:

## glmssn(formula = Summer_mn ~ ELEV_DEM, ssn.object = mf04c,

## CorModels = c("LinearSill.tailup", "Mariah.taildown"),

## addfunccol = "afvArea")

##

## Residuals:

## Min 1Q Median 3Q Max

## NA -2.06272 -0.55153 -0.01528 NA

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 69.500614 9.110772 7.628 <2e-16 ***

## ELEV_DEM -0.028026 0.004546 -6.166 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Covariance Parameters:

## Covariance.Model Parameter Estimate

## LinearSill.tailup parsill 2.55170

## LinearSill.tailup range 116389.88234

## Mariah.taildown parsill 0.00145

## Mariah.taildown range 54764.16600

## Nugget parsill 0.02348

##

## Residual standard error: 1.605188
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## Generalized R-squared: 0.5012196

In addition to outliers from a fitted model (i.e., global outliers), outliers may exist with respect
to predictions that do not appear as large deviations from the fit. A histogram of standardized
LOOCV prediction residuals can identify local prediction outliers (Figure 10):

mf04c.resid2 <- residuals(mf04c.glmssn2,

cross.validation = TRUE)

mf04c.resid2.cv.std <-

getSSNdata.frame(mf04c.resid2)[, "_resid.crossv_"] /

getSSNdata.frame(mf04c.resid2)[, "_CrossValStdErr_"]

hist(mf04c.resid2.cv.std)

Histogram of mf04c.resid2.cv.std

mf04c.resid2.cv.std
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Figure 10: Histogram of standardized cross-validation residuals for model mf04c.glmssn2
of mean summer stream temperature for the Middle Fork stream network with ELEV_DEM

covariate and spherical tail-up, spherical tail-down and nugget covariance components.

When fitting covariates, spatial autocorrelation is modeled on the errors, so a Torgegram of
the residuals helps visualize the spatial pattern after fitting the fixed effects. Note that this
is imperfect because the fitted model is not a simple function of distance; it is complicated
by weighting for tail-up models, and by asymmetry in distances for tail-down models (see
Ver Hoef and Peterson 2010, Figure 7). A Torgegram on the residuals of mf04c.glmssn2 is
given in Figure 11:

plot(Torgegram(mf04c.resid2, "_resid_", nlag = 8, maxlag = 25000))

Figure 11 shows apparent autocorrelation for both flow-connected and flow-unconnected sites,
although flow-unconnected sample sizes are small for short lags, supporting the decision to use
both tail-up and tail-down models, even though the partial sill for tail-down model contributes
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Figure 11: Torgegram of residuals for model mf04c.glmssn2 of mean summer temperature
in the Middle Fork stream network with ELEV_DEM covariate and spherical tail-up, spherical
tail-down and nugget covariance components.

little to the overall variability of the error. The overall sill is modeled to be slightly greater
than 2.5.

5.5. Prediction

Two functions for prediction are included in the SSN package: predict and BlockPredict,
which are also known as (universal) kriging and (universal) block kriging, respectively.

As a first example, we predict at point locations in the pred1km data set (Figure 12). The
size of the prediction points indicates the prediction standard errors; larger points have lower
prediction standard errors, so if we are more confident in a point it stands out more in the
graphic. Previously defined breakpoints are used here, so the colours in Figure 12 match
those found earlier in Figure 4.

mf04c.pred1km <- predict(mf04c.glmssn4, "pred1km")

plot(mf04c.pred1km, SEcex.max = 1, SEcex.min = .5/3*2,

breaktype = "user", brks = brks)

The second prediction data set is made up of a dense set of points along a single tributary,
called Knapp Creek, of the Middle Fork river. We predict all points using the predict

function. In Figure 13 we first plotted the observed values with large open circles in the vicinity
of the Knapp tributary, with values color-coded. We then added the Knapp predictions, which
use the same break points as the first plot. Note that text is automatically added for the
lowest and highest predicted values:
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Figure 12: Predictions of mean summer temperature values for the Middle Fork stream net-
work. Predicted values are indicated by the color of the circles. The size of the circles is
inversely related to the prediction standard error.

plot(mf04c, "Summer_mn", pch = 1, cex = 3,

xlab = "x-coordinate", ylab = "y-coordinate",

xlim = c(-1511000,-1500000), ylim = c(2525000,2535000))

mf04c.glmssn4.Knapp <- predict(mf04c.glmssn4, "Knapp")

plot(mf04c.glmssn4.Knapp, "Summer_mn", add = TRUE,

xlim = c(-1511000,-1500000), ylim = c(2525000,2535000))

By using matching break points for observed data and predicted data, we can see that pre-
dictions seem reasonable given the observed data.

The prediction sites are on a dense evenly-spaced grid because they are used to approximate
the integrals involved with block prediction:

mf04c.glmssn4.BPKnapp <- BlockPredict(mf04c.glmssn4, "Knapp")

mf04c.glmssn4.BPKnapp

## BlockPredEst BlockPredSE

## 1 12.3197 0.09913953

We can repeat this for another set of spatially dense locations on the Cape Horn tributary of
the Middle Fork river:

mf04c.glmssn4.BPCapeHorn <- BlockPredict(mf04c.glmssn4, "CapeHorn")

mf04c.glmssn4.BPCapeHorn

## BlockPredEst BlockPredSE

## 1 10.02122 0.0477452
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Figure 13: Predictions of mean summer stream temperature values along Knapp Creek. Pre-
dicted values are filled circles and observed data are large open circles. Color breaks are based
on the full data set, but the map is zoomed-in to Knapp Creek.

The predicted block average values, along with the standard errors of block prediction, allow
comparison between these two reaches.

Finally, recall that we replaced an outlier value with NA when creating mf04c from mf04.
When fitting a model with glmssn, records with NA response values are used to create a new
prediction data set, called _MissingObs_, in the fitted glmssn object. _MissingObs_ is like
any other prediction data set and can be used to predict the NAs. We compare the original
outlier value with this prediction:

mf04c.missingobs <- predict(mf04c.glmssn4, "_MissingObs_")

getPreds(mf04c.missingobs, pred.type = "pred")

## pid Summer_mn Summer_mnPredSE

## [1,] 29 9.668828 0.7183271

with(getSSNdata.frame(mf04p), Summer_mn[pid==29])

## [1] 8.75

Notice that the original value is within the 95% prediction interval at that point, so it probably
was not an outlier.

6. Simulating stream network data

The SSN package can be used to simulate stream network data, which involves two steps:
1) creating a SpatialStreamNetwork object, and 2) simulating an autocorrelated response
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variable for a SpatialStreamNetwork object. These functions can be used for testing meth-
ods, comparing sampling methods, etc., and were used extensively for testing functions when
developing the SSN package.

6.1. Creating a SpatialStreamNetwork object

The SSN package provides the function createSSN for constructing SpatialStreamNetwork

objects based on randomly generated networks, with randomly generated observation and
prediction points. There are two approaches to generating a random network. First, notice
that stream networks are tree structures that are a special type of graph, so random graph
functions in R can be used to generate such a structure. However, these functions are not
spatially explicit so every vertex requires a position in the plane for a graph-drawing algorithm,
which is an additional step. The second approach is to write more customised code that
generates a network and assigns positions to vertices while generating the network.

The first approach has several downsides; few of the methods for generating random graphs
can be used to generate tree structures, and existing graph-drawing algorithms tend to give
a highly regular network structure or a structure with self-intersections, which we do not
consider in our models of river systems. The second approach has none of these downsides
but may be slower computationally. Both approaches are implemented in the SSN package.

The createSSN function has the form

createSSN(n, obsDesign, predDesign = noPoints, path,

importToR = FALSE, treeFunction = igraphKamadaKawai)

The argument n is a integer vector where the length of the vector is the number of networks
and each integer is the number of stream segments per network. The path argument gives
the full path name where the .ssn directory associated with the new SpatialStreamNetwork

object will be stored, and importToR determines whether the created object will be loaded
and returned directly from this function. The arguments obsDesign and predDesign specify
sampling design functions that allow the user to control how the observation and prediction
points are generated. The simplest input is a single point for obsDesign and no prediction
points predDesign = noPoints, which generates no points.

The argument treeFunction controls how the random tree structure is generated. There
are currently two possible values, with the default of igraphKamadaKawai taking the first
approach above and using random graph methods. We use the igraph package and the
Kamada-Kawai graph drawing algorithm from the same package (Csardi and Nepusz 2006).
The second possible value is iterativeTreeLayout which can produce more realistic networks
and is guaranteed not to create any self-intersections. An example of the types of networks
generated by this layout is given in Figure 14.

set.seed(12)

iterative.ssn <- createSSN(n = c(30, 10),

obsDesign = binomialDesign(c(10,10)),

importToR = TRUE, path = "./SimIterative.ssn",

treeFunction = iterativeTreeLayout)

plot(iterative.ssn, lwdLineCol = "addfunccol", lwdLineEx = 8,
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lineCol = "blue", cex = 2, xlab = "x-coordinate",

ylab = "y-coordinate", pch = 1)
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Figure 14: The network is generated using iterativeTreeLayout and the points are gener-
ated using the hardCoreDesign function.

A number of design functions are provided, including

• poissonDesign(lambda)

• hardCoreDesign(n, inhibition_region)

• systematicDesign(spacing)

• binomialDesign(n).

Input lambda is a numeric vector specifying (on a per-network basis) the rate of occurance of
points for the Poisson process, while for the binomial design n specifies the number of points
to be generated from a uniform distribution across each network. The systematicDesign

function is more complicated, and is intended to generate a set of regular points, especially
useful for block prediction. Note that in our implementation for networks this means every
point is a constant distance from the next most downstream point, so points just upstream of
a junction may be very close to each other, and on visual inspection the points may not appear
to be equally spaced. This constant spacing is specified by the input inhibition_region.
The hardCoreDesign generates n randomly distributed points on each network, and then
removes points until the remainder are all at least inhibition_region distant from each
other. Examples of systematicDesign and hardCoreDesign are given in Figures 15 and 16
respectively.
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set.seed(101)

raw.ssn <- createSSN(n = c(10, 10, 10),

obsDesign = binomialDesign(c(40, 40, 40)),

predDesign = systematicDesign(c(0.2, 0.4, 0.8)), importToR = TRUE,

path = "./raw.ssn")

plot(raw.ssn, lwdLineCol = "addfunccol", lwdLineEx = 8,

lineCol = "blue", cex = 2, xlab = "x-coordinate",

ylab = "y-coordinate", pch = 1)

plot(raw.ssn, PredPointsID = "preds", add = TRUE, cex = .5, pch = 19,

col = "green")

set.seed(13)

hardcore.ssn <- createSSN(n = c(10, 10),

obsDesign = hardCoreDesign(c(200, 200), c(0.2, 0.4)),

importToR = TRUE, path = "./SimHardcore.ssn")

plot(hardcore.ssn, lwdLineCol = "addfunccol", lwdLineEx = 8,

lineCol = "blue", cex = 2, xlab = "x-coordinate",

ylab = "y-coordinate", pch = 1)

plot(hardcore.ssn, PredPointsID = NULL, add = TRUE, cex = .5,

pch = 19, col = "green")
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Figure 15: Three simulated stream networks. The blue lines get thinner farther up-stream.
The open black circles are observed locations, and the smaller solid green points are prediction
locations generated by systematicDesign.

While there are only four design functions built into the package, it is possible for the user
to construct their own sampling design functions, and then generate location data using the
createSSN function.
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Figure 16: Points generated by hardCoreDesign, with varying inhibition regions. The blue
lines get thinner farther up-stream. The open black circles are simulated locations, which
have a more regular pattern than the spatially random locations shown by the open circles
in Figure 15.

6.2. Simulating data on the SpatialStreamNetwork object

After creating a SpatialStreamNetwork object (e.g., Figure 15), we may want to simulate
on both observed and prediction locations. This functionality is useful for developing and
testing new statistical methods and code, as well as for model diagnostics for real data, such
as examining realized patterns of hypothetical or fitted models. First, the distance matrices
among all points is created:

createDistMat(raw.ssn, "preds", o.write=TRUE, amongpred = TRUE)

Note the amongpred argument. For simulation, we need a covariance matrix (computed from
the distance matrix) among prediction locations, which is typically not needed for spatial
modeling of observed locations or predicting at prediction locations. This matrix can be
quite large so some care should be taken about its size, otherwise R will run out of memory
or predictions will take a long time to compute. The first step is to extract the point.data

data.frames for the observed and prediction locations from the SpatialStreamNetwork ob-
ject:

rawDFobs <- getSSNdata.frame(raw.ssn, "Obs")

rawDFpred <- getSSNdata.frame(raw.ssn, "preds")

Continuous covariates are created in each data.frame:



Jay M. Ver Hoef, Erin E. Peterson, David Clifford, Rohan Shah 41

rawDFobs[,"X1"] <- rnorm(length(rawDFobs[,1]))

rawDFpred[,"X1"] <- rnorm(length(rawDFpred[,1]))

rawDFobs[,"X2"] <- rnorm(length(rawDFobs[,1]))

rawDFpred[,"X2"] <- rnorm(length(rawDFpred[,1]))

Categorical covariates can also be created:

rawDFobs[,"F1"] <- as.factor(sample.int(4,length(rawDFobs[,1]),

replace = TRUE))

rawDFpred[,"F1"] <- as.factor(sample.int(4,length(rawDFpred[,1]),

replace = TRUE))

Random effects are created just like a categorical covariates; in this example one is created
with three levels and another with four levels:

rawDFobs[,"RE1"] <- as.factor(sample(1:3,length(rawDFobs[,1]),

replace = TRUE))

rawDFobs[,"RE2"] <- as.factor(sample(1:4,length(rawDFobs[,1]),

replace = TRUE))

rawDFpred[,"RE1"] <- as.factor(sample(1:3,length(rawDFpred[,1]),

replace = TRUE))

rawDFpred[,"RE2"] <- as.factor(sample(1:4,length(rawDFpred[,1]),

replace = TRUE))

The list of column names for the data.frames now includes the new covariates:

names(rawDFobs)

## [1] "locID" "upDist" "pid" "netID" "rid"

## [6] "ratio" "shreve" "addfunccol" "NEAR_X" "NEAR_Y"

## [11] "X1" "X2" "F1" "RE1" "RE2"

names(rawDFpred)

## [1] "locID" "upDist" "pid" "netID" "rid"

## [6] "ratio" "shreve" "addfunccol" "NEAR_X" "NEAR_Y"

## [11] "X1" "X2" "F1" "RE1" "RE2"

For prediction, it is important to make sure that the observed and prediction data.frames
have the same set of columns for any specification of random or fixed effects.

Note that the creation of the SpatialStreamNetwork object included Shreve’s stream order,
and the additive function value is based on Shreve’s and is contained in the addfunccol

column for each location, which is required for tail-up models as described in Section 2.2.

To simulate data on the SpatialStreamNetwork object, use the SimulateOnSSN function:
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set.seed(102)

sim.out <- SimulateOnSSN(raw.ssn, ObsSimDF = rawDFobs,

PredSimDF = rawDFpred, PredID = "preds",

formula = ~ X1 + X2 + F1, coefficients = c(10,1,0,-2,0,2),

CorModels = c("LinearSill.tailup", "Mariah.taildown",

"Exponential.Euclid", "RE1", "RE2"), use.nugget = TRUE,

CorParms = c(3, 10, 2, 10, 1, 5, 1, .5, .1),

addfunccol = "addfunccol")

The ObsSimDF argument replaces the observed point.data data.frame in raw.ssn with
rawDFobs. For that reason, it is best to use getSSNdata.frame to extract the original ob-
served point.data data.frame in raw.ssn to make sure it complies with the object structure,
and then modify its covariates if desired. Likewise, the PredSimDF argument replaces the pre-
diction point.data data.frame in raw.ssn with rawDFpred. The function SimulateOnSSN

simulates and stores data in a new column, "Sim_Values" in both point.data data.frames.

The one-sided formula specifies how the fixed effects are computed, which works just like an
R formula in other functions. A design matrix X is created from the formula input, and
the mean value is computed as µ = Xβ. Hence, coefficients β must be specified using the
coefficients argument. Some understanding of how R creates design matrices is necessary in
order to apply the coefficients properly. In our example, the first column of the design matrix
X will be all ones for an overall intercept, as that is the default in a formula specification.
The next two columns will contain the covariate values of X1 and X2. Because there is an
overall intercept, the model is over-parameterized for the categorical covariate and so the first
level of F1 is dropped and 0-1 dummy variables are created for the other three levels. The
column names of the design matrix can be examined

with(rawDFobs, colnames(model.matrix( ~ X1 + X2 + F1)))

## [1] "(Intercept)" "X1" "X2" "F12"

## [5] "F13" "F14"

or the whole matrix can be examined by removing the colnames function. The coefficients
argument creates the β in the order given in the argument and multiplies it with the design
matrix created by the formula argument.

Likewise, the rules for covariance matrix construction require careful consideration. Regard-
less of the order of CorModel specification, the subset of parameters will be in the order of
θ = (σ2u, αu, σ

2
d, αd, σ

2
e , αe, σ

2
1, . . . , σ

2
p, σ

2
0), so the CorParms argument should be used to match

this order. Note that there can only be a single tail-up model, a single tail-down model, and
a single Euclidean distance model. Any factor variable can be used to create random effects,
and the inclusion of the nugget = TRUE argument includes σ20 in the covariance model.

The output of the SimulateOnSSN function is a list with three objects. Two of those objects
simply verify that the coefficients and CorParms were used as intended. For our example:

sim.out$FixedEffects

## Xnames Coefficient
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## 1 (Intercept) 10

## 2 X1 1

## 3 X2 0

## 4 F12 -2

## 5 F13 0

## 6 F14 2

sim.out$CorParms

## CorModel type Parameter

## 1 LinearSill.tailup parsill 3.0

## 2 LinearSill.tailup range 10.0

## 3 Mariah.taildown parsill 2.0

## 4 Mariah.taildown range 10.0

## 5 Exponential.Euclid parsill 1.0

## 6 Exponential.Euclid range 5.0

## 7 RE1 parsill 1.0

## 8 RE2 parsill 0.5

## 9 nugget parsill 0.1

The simulated SpatialStreamNetwork object can be extracted:

sim.ssn <- sim.out$ssn.object

and plotting yields Figure 17:

plot(sim.ssn, "Sim_Values",

xlab = "x-coordinate", ylab = "y-coordinate",

cex = 1.5)

which shows simulated values at the locations created in Figure 15. Note that response values
were also simulated at prediction locations in Figure 15, but are not shown.

To test the function, extract the observed and predicted point.data data frames, which
now contain simulated values:

simDFobs <- getSSNdata.frame(sim.ssn, "Obs")

simDFpred <- getSSNdata.frame(sim.ssn, "preds")

To test prediction, we stored the simulated prediction values and replaced them with NAs:

simpreds <- simDFpred[,"Sim_Values"]

simDFpred[,"Sim_Values"] <- NA

sim.ssn <- putSSNdata.frame(simDFpred, sim.ssn, "preds")

We fit a model to the simulated data to see how well the simulation parameters are estimated:
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Figure 17: Values for the response variable were simulated at the simulated observed locations
shown in Figure 15. The simulated data are colored by their values, showing an autocorrelated
response.

glmssn.out <- glmssn(Sim_Values ~ X1 + X2 + F1, sim.ssn,

CorModels = c("LinearSill.tailup", "Mariah.taildown",

"Exponential.Euclid", "RE1", "RE2"),

addfunccol = "addfunccol")

yielding output:

summary(glmssn.out)

##

## Call:

## glmssn(formula = Sim_Values ~ X1 + X2 + F1, ssn.object = sim.ssn,

## CorModels = c("LinearSill.tailup", "Mariah.taildown",

## "Exponential.Euclid", "RE1", "RE2"), addfunccol = "addfunccol")

##

## Residuals:

## Min 1Q Median 3Q Max

## -6.6141 -1.7957 0.2505 2.3344 7.5919

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 10.79545 1.51982 7.103 <2e-16 ***

## X1 0.94920 0.09305 10.201 <2e-16 ***

## X2 0.04971 0.09882 0.503 0.616

## F11 0.00000 NA NA NA
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## F12 -1.64598 0.25261 -6.516 <2e-16 ***

## F13 0.01331 0.25611 0.052 0.959

## F14 2.13972 0.25468 8.402 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Covariance Parameters:

## Covariance.Model Parameter Estimate

## LinearSill.tailup parsill 3.0408

## LinearSill.tailup range 14.3860

## Mariah.taildown parsill 0.6706

## Mariah.taildown range 0.8563

## Exponential.Euclid parsill 7.0357

## Exponential.Euclid range 7.0363

## RE1 parsill 0.2531

## RE2 parsill 0.1938

## Nugget parsill 0.0660

##

## Residual standard error: 3.355594

## Generalized R-squared: 0.7579625

If we compare the fixed-effects estimates to the coefficients specified in the SimulateOnSSN

function, it appears that they are estimated quite well. The covariance parameters are not
estimated as well. This is not surprising because there are quite a few of them, and even though
they may individually be far from their simulation values, the actual covariance matrix based
on them can be quite close to the original covariance matrix, especially near the origin, which
is most critical (Stein 1988). Finally, the predictions from the fitted model are compared to
the actual values that were simulated:

glmssn.pred <- predict(glmssn.out,"preds")

predDF <- getSSNdata.frame(glmssn.pred, "preds")

plot(simpreds, predDF[,"Sim_Values"], xlab = "True",

ylab = "Predicted", pch = 19)

Figure 18 shows excellent prediction accuracy, which relied on both covariates and autocor-
relation.

7. Discussion and future development

In the Introduction, we noted that the Rtop package can also be used for prediction on
stream networks. The model, called topological kriging, was developed in Skøien, Merz, and
Blöschl (2006). The basic idea is to create random variables as block means of a spatial
random field (with point support) for all basin area above a point on a stream. This will
create nested blocks for locations that share flow and create strong correlation among them,
while locations that do not share flow will be correlated by proximity in the blocks. Because
correlation is based on both nesting and proximity, Laaha, Skøien, and Blöschl (2012) argue
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Figure 18: A comparison of true simulated data and predictions at locations after true values
were removed.

that topological kriging should be better than the methods given in SSN. However, Ver Hoef
and Peterson (2010) and the SSN as demonstrated here advance the idea that the best use of
the models is to combine the tail-up, tail-down, and Euclidean distance models in a variance
component approach. In fact, this approach allows for pure stream-distance models, to pure
Euclidean distance models, and combinations thereof, so it should be more flexible than Rtop.
Also, by using likelihood methods, SSN allows fitting linear models with valid inference on
covariate effects, in addition to spatial prediction. Regardless of any conceptual argument,
the availability of both SSN and Rtop should allow for interesting comparisons between the
methods and hopefully spur development in both areas.

We plan to refine the SSN package, making function calls more flexible, which will give
users more control over how a plot looks or even to define their own functions for parameter
estimation. Currently, we have only implemented the Poisson and binomial families, but plan
to extend this to many more families similar to other generalized linear model fitting functions
in R. Similarly, data transformation such as Box-Cox (Box and Cox 1964) with lognormal and
trans-gaussian kriging (Cressie 1993, p. 135-138) will be implemented, and newer methods
such as nonparametric transformations (Gribov and Krivoruchko 2012) will be investigated.
We also plan to extend the createSSN function so that observed and prediction locations may
be generated on existing stream network shapefiles. Another major goal is to implement more
efficient model-fitting algorithms for data sets with large numbers of observation sites (e.g., >
2000), such as those collected using in-stream sensor networks (Porter, Hanson, and Lin 2012).
The estimation of model parameters currently requires the iterative inversion of a matrix with
dimensions given by the number of observation sites, which can be computationally intensive
when the number of those sites is larger than 2000. R can be compiled with support for
more advanced linear algebra packages such as the Intel Math Kernel Library (MKL) http:

//software.intel.com/en-us/articles/intel-mkl/, and this results in substantial speed
improvements. However, new model-fitting algorithms will be needed before a geostatistical

http://software.intel.com/en-us/articles/intel-mkl/
http://software.intel.com/en-us/articles/intel-mkl/
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model can be fit to data sets on the order of 20000 or more observations. Currently, large
numbers of prediction sites (>50000) are possible because prediction of individual sites only
requires a single inverse of a matrix with dimensions given by the number of observation sites.
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