Building a Stream InterNet for Enhanced Conservation & Management of Aquatic Resources

Dave Nagel, Dona Horan, Sharon Parkes, Gwynne Chandler, Sherry Wollrab

Erin Peterson, Jay Ver Hoef











Army in the woods

100's of partner –ologists



## Better Information Enables Better Decisions, Efficiency, & Resource Stewardship



#### 2012: HOTTESTYEAR ON RECORD Average Annual Temperature in Contiguous U.S. 55° 53° 53° 53° 518° 50° 195 196 121 193 194 197 19 • Source Horstee Certaic complete from NOAd's National Circuits Charles Charles

Invest Here

estimate of the Normal distribution of temperatures for the last 2



### Not here



Sorry Charlie

### **More Pressure, Fewer Resources**



Shrinking Budgets



**Urbanization &** 

**Population Growth** 

Need to do more with less

# Development of (& Open Access to) Good Information is Critical

"Internet": A networked system capable of transferring massive amounts of information among many participants simultaneously



Key feature: information flows in many directions

# Key Ingredient #1: Geospatial Tools for Accurate Regional Scale Stream



# Key Ingredient #2: Spatial Statistical Models for Stream Networks

Environ Ecol Stat (2006) 13:449-464 DOI 10.1007/s10651-006-0022-8

ORIGINAL ARTICLE

#### Spatial statistical models that use flow and stream distance

Jay M. Ver Hoef • Erin Peterson • David Theobald

Freshwater Biology (2007) 52, 267-279

doi:10.1111/j.1365

Geostatistical modelling on stream networks: developing valid covariance matrices based on hydrologic distance and stream flow

ERIN E. PETERSON,\* DAVID M. THEOBALD<sup>†</sup> AND JAY M. VER HOEF<sup>‡</sup>

#### Functional Linkage of Water basins and Streams (FLoWS) v1 User's Guide:

ArcGIS tools for Network-ba

Authors: David M. Theobald John B. Norman E. Peterson S. Ferraz A. Wade M.R. Sherburne Spatial modelling and prediction on river networks: up n odel, down model or hybrid?

Vincent Garreta<sup>1\*,†</sup>, Pascal Monestiez<sup>2</sup> and Jay M. Ver Hoef<sup>3</sup>

<sup>1</sup>CEREGE, UMR 6635, CNRS, Université Aix-Marseille, Europôle de l'Arbois, 13545 Aix-en-Provence, France <sup>2</sup>INRA, Unité de Biostatistique et Processus spatiaux, Domaine St Paul, Site Agroparc, 84914 Avignon Cedex 9, France <sup>3</sup>NOAA National Marine Mammal Lab, Alaska Fisheries Science Center, 7600 Sand Point Way NE, Seattle, WA 98115, USA

## Spatial Statistical Network Models Work the Way that Streams Do...

SO₄ level

4.40 - 5.80

5.81 - 6.30 6.31 - 6.92

6.93 - 8.58 8.59 - 10.72

Portray spatial differences in prediction precision related to the amount of local empirical support...

... & represent changes in attributes that occur at tributary confluences



... & are significantly better mousetraps

## Stream Models are Generalizable...



# Spatial Statistical Models are Dot Connectors

![](_page_8_Picture_1.jpeg)

CLEAN WATER IS WHAT WE WISH FOR KEEPING HEALTHY ALL THE

#### Valid interpolation on networks

![](_page_8_Figure_4.jpeg)

Advantages: <u>& aggregation of datasets</u> -flexible & valid covariance structures by accommodating network topology -weighting by stream size -improved predictive ability & parameter estimates relative to non spatial models Peterson et al. 2006; Ver Hoef et al. 2006; Ver Hoef and Peterson 2010

# **Stop Viewing Streams as Dots**

![](_page_9_Picture_1.jpeg)

# **Stop Viewing Streams as Dots**

![](_page_10_Picture_1.jpeg)

# "Smart" Maps Developed from Data

#### Good Maps Significantly Reduce Uncertainty

We need to make this generation's maps showing aquatic resource status

# Consistent, Accurate Information Needed Across Broad Areas

#### Lands Administered by USFS

![](_page_12_Picture_2.jpeg)

![](_page_12_Picture_3.jpeg)

•193 Million Acres

(10% of US)

•155 National Forests
•500,000 stream

kilometers

#### **Diverse streams**

![](_page_12_Picture_6.jpeg)

![](_page_12_Picture_7.jpeg)

![](_page_13_Picture_0.jpeg)

# Consistent, Accurate Information Needed Across Agencies

![](_page_14_Figure_1.jpeg)

#### Key Ingredient #3: Existing Databases Water Quality/Chemistry Information (Nitrates, alkalinity, ph, DOC, conductivity, etc.)

![](_page_15_Picture_1.jpeg)

### Harnessing Existing Databases Stream Temperatures

![](_page_16_Figure_1.jpeg)

### Harnessing Existing Databases Distribution & abundance of critters

Rocky Mountain Trout database (n ~ 10,000)

Boise basin fish database (n ~ 2,000)

![](_page_17_Figure_3.jpeg)

![](_page_17_Picture_4.jpeg)

USFS PIBO – Macroinvertebrates

WY

### Lots of Genetic Data Coming...

![](_page_18_Figure_1.jpeg)

Young et al. 2013; Schwartz et al. 2007; Campbell et al. 2012

## Where Data are Sparse, Spatial Models Can Guide Efficient Monitoring Design

![](_page_19_Figure_1.jpeg)

Distance between samples (km)

#### Sampling distribution Too many...

![](_page_19_Picture_4.jpeg)

![](_page_19_Picture_5.jpeg)

# **A Stream InterNet is Possible**

**Technology exists.** Spatial stream models, computing horsepower, & geospatial technologies provide the basic "routers, switches, servers, and search algorithms" to develop & transfer massive amounts of accurate information about stream resources.

**Needed.** All agencies experiencing declining budgets & need to do more with less. Also have mandates to address overarching, cross-boundary threats posed by climate change & human population growth.

Phone

Computer

Phone

Internet

**Scalable.** Nationally available geospatial data, growing aquatic databases, & large customer base comprised of natural resource stewards from dozens of resource organizations across the country.

**Wanted.** New & useful information developed from data that local resource stewards collected. "Killer Apps" can be designed to translate information into formats that empower local decision makers.

#### **Costs.** Minimal

Value. Priceless. How do you value good information?

# **NorWeST:** A Regional Stream Temperature Database & Model for High-Resolution Climate Vulnerability Assessments

Dan Isaak, Seth Wenger<sup>1</sup>, Erin Peterson<sup>2</sup>, Jay Ver Hoef<sup>3</sup> Charlie Luce, Steve Hostetler<sup>4</sup>, Jason Dunham<sup>4</sup>, Jeff Kershner<sup>4</sup>, Brett Roper, Dave Nagel, Dona Horan, Gwynne Chandler, Sharon Parkes, Sherry Wollrab

![](_page_21_Figure_2.jpeg)

![](_page_22_Picture_0.jpeg)

WA

DR

UTBI-00

onset

# >60 agencies \$10,000,000

HENRY'S FORK

**JSGS** 

**VOAA** Fisheries

CO

WY

MT

![](_page_22_Picture_2.jpeg)

# **Regional Temperature Model**

![](_page_23_Picture_1.jpeg)

# **Example: Clearwater River Basin**

![](_page_24_Figure_1.jpeg)

# Example: Clearwater River Basin Data extracted from NorWeST

![](_page_25_Figure_1.jpeg)

# **Clearwater River Temp Model**

## n = 4,487

#### **Covariate Predictors**

Elevation (m)
 Canopy (%)
 Stream slope (%)
 Ave Precipitation (mm)
 Latitude (km)
 Lakes upstream (%)
 Baseflow Index
 Watershed size (km<sup>2</sup>)

9. Discharge (m<sup>3</sup>/s)
USGS gage data
10. Air Temperature (°C)
RegCM3 NCEP reanalysis
Hostetler et al. 2011

### Mean August Temperature

![](_page_26_Figure_6.jpeg)

# **Example: SpoKoot River Basins**

![](_page_27_Figure_1.jpeg)

# Example: SpoKoot River Basins Data extracted from NorWeST

![](_page_28_Figure_1.jpeg)

# **SpoKoot River Temp Model**

### n = 5,482

#### **Covariate Predictors**

Elevation (m)
 Canopy (%)
 Stream slope (%)
 Ave Precipitation (mm)
 Latitude (km)
 Lakes upstream (%)
 Baseflow Index
 Watershed size (km<sup>2</sup>)

9. Discharge (m<sup>3</sup>/s)
USGS gage data
10. Air Temperature (°C)
RegCM3 NCEP reanalysis
Hostetler et al. 2011

#### **Mean August Temperature** Ú<sup>25</sup> r<sup>2</sup> = 0.90; RMSE = 0.97°C Predicted 15 10 **Spatial Model** 5 10 15 20 25 5 Observed (C)

## Models Enable Climate Scenario Maps Many possibilities exist...

![](_page_30_Figure_1.jpeg)

Adjust air & discharge values to represent scenarios

### Historic Scenario: SpoKoot Unit (S1\_93-11) 1993-2011 mean August stream temperatures

![](_page_31_Figure_1.jpeg)

### Historic Scenario: SpoKoot Unit (S1\_93-11) 1993-2011 mean August stream temperatures

| -      | ź       | 4        | K          | ootenai    | P/~      |          | Ro   |            |             | 15°C         |   |
|--------|---------|----------|------------|------------|----------|----------|------|------------|-------------|--------------|---|
| 1      | 5       |          | 1. F       | Que .      | · \$.    | 2        | SC ? |            |             | 12           |   |
| С      | D       | E        | F          | G          | н        | I        | J    | К          | L           | Μ            |   |
| CANOPY | SLOPE   | PRECIP   | CUMDRAINAC | Y_COORD    | NLCD11PC | NLCD12PC | BFI  | Air_August | Flow_August | Stream_Augus | + |
| 2.82   | 0.08857 | 299.6256 | 19.833     | 1623663.32 | 0        | (        | ) 79 | 14.02      | 35.71       | 12.0812903   |   |
| 2.82   | 0.08857 | 299.6256 | 19.833     | 1623663.32 | 0        | (        | ) 79 | 13.20      | 40.52       | 12.333771    |   |
| 2.82   | 0.08857 | 299.6256 | 19.833     | 1623663.32 | 0        | (        | ) 79 | 13.00      | 38.99       | 11.4041581   |   |
| 12.23  | 0.03514 | 242.42   | 69.271     | 1620504.73 | 0.012    | (        | 80   | 15.84      | 18.47       | 12.2216452   |   |
| 12.23  | 12.23   |          |            |            |          |          |      |            |             |              |   |
|        |         |          |            |            |          |          |      |            |             | 12,7445484   |   |

#### **R1 Forests**

#### Completed...

- Nez Perce NF
- Bitterroot NF
- Clearwater NF
- Panhandle NF
- Lolo NF
- •Kootenai NF
- Flathead NF
- Helena NF
- Deerlodge NF

Scenarios coming for ~40 additional forests in R1, 2, 4, and 6

![](_page_32_Figure_14.jpeg)

![](_page_32_Figure_15.jpeg)

### Application: Quantify Thermal Degradation What is the thermal "intrinsic potential" of a stream?

"How much cooler could we make this stream?"

![](_page_33_Figure_2.jpeg)

#### 1) Pick "degraded" and "healthy" streams to compare

![](_page_33_Picture_4.jpeg)

# **Application: Quantify Thermal Degradation**

2) Block-krige estimates of temperature at desired scale

![](_page_34_Figure_2.jpeg)

Temperature (<sup>cC)</sup>

### **Application: Quantify Thermal Degradation**

Block kriging

O Simple random

**Stream** 

3) Compare estimates among streams

![](_page_35_Picture_2.jpeg)

![](_page_35_Figure_3.jpeg)

![](_page_35_Picture_4.jpeg)

- ~2°C cooling is possible

![](_page_35_Picture_6.jpeg)

### Block-Kriging of Fish Populations Population Estimates at Relevant Scales

How Many Fish Live Here? Sample Reach

![](_page_36_Picture_2.jpeg)

Population Estimate

Traditional Estimation Scale = Reach (10's – 100's meters)

### Block-Kriging of Fish Populations Population Estimates at Relevant Scales

![](_page_37_Picture_1.jpeg)

How Many Fish Live Here?

# Population

Estimate

Desired Estimation Scale = Stream & Network (1000's – 10,000's meters)

## Block-Kriging of Fish Populations Population Estimates at Relevant Scales

Environ Ecol Stat (2008) 15:3-13 DOI 10.1007/s10651-007-0035-y

Spatial methods for plot-based sampling of wildlife populations

Jay M. Ver Hoef

11

 Terrestrial applications are common

• Theory now exists for streams

Ectimato

Écoscience

9 (2) : 152-161 (2002)

#### Sampling and geostatistics for spatial data<sup>1</sup>

Jay VER HOEF, Alaska Department of Fish and Game, 1300 College Road, Fairbanks, Alaska 99701, U.S.A., e-mail: jay\_ver\_hoef@fishgame.state.ak.us

#### Desired Estimation Scale = Stream & Network (1000's – 10,000's meters)

#### **Develop Accurate & Consistent Thermal Criteria**

![](_page_39_Figure_1.jpeg)

Wenger et al. 2011a. PNAS 108:14175-14180

Wenger et al. 2011b. CJFAS 68:988-1008; Wenger et al., In Preparation

# Thermal Niches For All Stream Critters Just need georeferenced biological survey data

![](_page_40_Picture_1.jpeg)

# **Salmon River Bull Trout Habitats**

![](_page_41_Figure_1.jpeg)

# **Salmon River Bull Trout Habitats**

11.2 °C isotherm

![](_page_42_Figure_1.jpeg)

### **Suitable** Unsuitable

![](_page_42_Picture_3.jpeg)

# **Salmon River Bull Trout Habitats**

![](_page_43_Picture_1.jpeg)

# +2°C Stream Temperature 11.2 °C isotherm

# SuitableUnsuitable

![](_page_43_Picture_4.jpeg)

![](_page_43_Figure_5.jpeg)

![](_page_44_Picture_0.jpeg)

![](_page_45_Picture_0.jpeg)

### Difference Map Shows Vulnerable Habitats +1°C stream temperature scenario

# Where to invest?

# 2 11.2 °C isotherm

![](_page_46_Picture_3.jpeg)

Precise Information Regarding Potential Species Invasions & Population Extirpations

1) How much time is left on the clock?

# 2) Where & how fast could invasions occur?

![](_page_47_Picture_3.jpeg)

![](_page_47_Picture_4.jpeg)

Small headwater populations may face thermal extirpation this century

![](_page_48_Figure_0.jpeg)

#### ... but shifts are slower than Climate Velocity

Comte & Grenouillet. 2013. Do stream fish track climate change? Assessing distibution shifts in recent decades. *Ecography*.

# Strategic Prioritization of Restoration Actions is Possible •Maintaining/restoring flow...

![](_page_49_Picture_1.jpeg)

![](_page_49_Picture_2.jpeg)

![](_page_49_Picture_3.jpeg)

- •Maintaining/restoring riparian...
- •Restoring channel form/function...
- •Prescribed burns limit wildfire risks...

Low

Priority

•Non-native species control...

High

Priority

Improve/impede fish passage...

![](_page_50_Figure_0.jpeg)

# NorWeST is a "Crowd-Sourced" Model Developed from Everyone's Data

![](_page_51_Picture_1.jpeg)

![](_page_51_Picture_2.jpeg)

Observed (°C)

![](_page_51_Picture_3.jpeg)

GCM

![](_page_51_Picture_4.jpeg)

![](_page_51_Picture_5.jpeg)

# NorWeST Website Distributes Temperature Data as GIS Layers

1) GIS shapefiles of stream temperature scenarios

![](_page_52_Picture_2.jpeg)

![](_page_52_Picture_3.jpeg)

**Regional Database and Modeled Stream Temperatures** 

#### 3) Temperature data summaries

2) GIS shapefiles of stream temperature model prediction precision

+ = Thermograph = Prediction SE

![](_page_52_Picture_8.jpeg)

Google "NorWeST" or go here... http://www.fs.fed.us/rm/boise/AWAE/projects/NorWeST.shtml

# NorWeST Blob Growing... > 14,370 summers of data swallowed > 92,000 stream kilometers of thermal ooze mapped

![](_page_53_Picture_1.jpeg)

# VIC Streamflow Scenarios – Western US C. Luce expanding VIC nationally

![](_page_54_Figure_1.jpeg)

NHD+ stream segments & climate scenarios

Climate scenarios

Pacific Northwest Interior Columbia Platte Great Basin Upper Colorado

... for the western U.S.

#### Website: http://www.fs.fed.us/rm/boise/AWAE/project s/modeled\_stream\_flow\_metrics.shtml

Wenger et al. 2010. Water Resources Research 46, W09513

# Better Spatial Data = Better Resource Decisions

![](_page_55_Figure_1.jpeg)

## **Bull Trout Climate Decision Support Tool**

![](_page_56_Picture_1.jpeg)

#### Tool runs on regionally consistent data layers

30

km

![](_page_56_Figure_3.jpeg)

![](_page_56_Figure_4.jpeg)

![](_page_56_Picture_5.jpeg)

#### **Downscaled Stream Scenarios**

![](_page_56_Figure_7.jpeg)

![](_page_56_Figure_8.jpeg)

#### Peterson et al. 2013. Fisheries 38:112-127.

# **NorWeST Facilitating Related Projects**

JTBI-00

- •Regional bull trout climate vulnerability assessment (J. Dunham)
- •Cutthroat & bull trout climate decision support tools (Peterson et al., 2013)
- •Landscape-scale bull trout monitoring protocol (Isaak et al. 2009)
- •Consistent thermal niche definitions & more accurate bioclimatic models for trout & nongame fishes (S. Wenger, In Prep.)
- •Efficient stream temperature monitoring designs

![](_page_57_Picture_6.jpeg)

# **NorWeST Facilitating Related Projects**

![](_page_58_Picture_1.jpeg)

# "Apps" Run on a Consistent **Data Network**

Initions &

UTBI-001 000 onset

![](_page_58_Picture_4.jpeg)

![](_page_58_Picture_5.jpeg)

### **An InterNet for Stream Data Technical & GIS infrastructure now exist**

![](_page_59_Figure_1.jpeg)

# **1G LCC**

# Just need spatial stream datasets

Oregon Idaho Wyoming • USFS Regions 1, 2, 4, 6 **50 National Forests** Utah

Accurate & consistent scaling of information

### Internet Needs Consistent Data "Packets" Standardized data collection protocols

UTBI-001

Onset of

Elevation

![](_page_60_Picture_1.jpeg)

UT

NV

![](_page_60_Picture_2.jpeg)

Protocol for Bull Trout
Dat bask, here Kenna, and Dees Heren

A Watershed-Scale Monitoring

![](_page_60_Picture_4.jpeg)

![](_page_60_Picture_5.jpeg)

# Data In Information Out

![](_page_61_Figure_1.jpeg)

# Let's Never Live this Nightmare Again

USFS has an awesome amount of data... ... that is awesomely disorganized

![](_page_62_Picture_2.jpeg)

>45,000,000 hourly records
>15,000 unique stream sites
~50% data from USFS

![](_page_62_Picture_4.jpeg)

We have millions of \$'s in "free" data if organized

Biggest value is information developed from these data

![](_page_62_Picture_7.jpeg)

# Legacy Temperature Data Migration for Forests in NorWeST area

10000 7

#### >20,000 deployments

Not in AqS

Sensor Deployments AqS 8000 6000 4000 2000 0 **Region 1 Region 2 Region 4 Region 6** Research **14 Forests 7 Forests 7 Forests 18 Forests RMRS**/ PIBO/ AREMP

# **Aquatic Surveys Module in NRM**

Temperature Surveys Tool in AqS Data Entry, Uploading, Maintenance Interface

![](_page_64_Picture_2.jpeg)

i. Click on the Attachment field icon to incont loannated tamats PDF JPFG PNG TIF

View Hide Preview Dose Dose

![](_page_64_Figure_3.jpeg)

Callie McConnell's development team is superb Surveys/database structure can be evolved

# **Research/Management Synergy**

### A Large Land-base 190 Million Acres

Lots of data

being collected

UTBI-001

#### "Boots-on-the-Ground"

![](_page_65_Picture_3.jpeg)

USFS has ~600 fish bios/hydros. (That's an aquatics army!)

![](_page_65_Picture_5.jpeg)

O Rocky Mount Research Stat

Hawaii

# More With Less, but What If... It was Much More?

![](_page_66_Figure_1.jpeg)

![](_page_67_Figure_0.jpeg)

![](_page_68_Picture_0.jpeg)

#### Find me on find performance find me on find

![](_page_68_Picture_2.jpeg)