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14 Abstract 

15 Anthropogenic activity degrades stream water quality, especially in urban areas. Quantified 

16 connections between pollution sources, degree of water quality degradation, and the 

17 disproportionate impact of degradation on underserved communities are not yet fully explored. 

18 Here, the anthropogenic effects on water quality and the heterogeneous distribution of degraded 

19 streams were examined in the urban watershed of the Rouge River in metropolitan Detroit, 

20 Michigan. We used benthic macroinvertebrate data collected by volunteer scientists and 
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21 aggregated into a Stream Quality Index (SQI) to define long-term water quality patterns. Spatial 

22 dependence of the data was assessed with spatial stream network models incorporating socio-

23 economic and environmental predictors. The best model included poverty as an explanatory 

24 variable with a negative relationship with stream quality. SQI predictions under true watershed 

25 conditions revealed a 1% decrease in SQI with 1% increase in poverty. This work demonstrated 

26 the benefits of volunteer science and spatial modeling methods for urban stream modeling. Our 

27 finding of inequitably distributed water quality impairment in urban streams underscores the 

28 importance of focused restoration in economically oppressed urban areas. 

29  

30

31 Graphical Abstract. 

32
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35 1. Introduction 

36 Human activity and environmental systems are interconnected. Over one third of Earth’s surface 

37 is impacted by anthropogenic landcover alterations (Vitousek, Mooney, Lubchenco, & Melillo, 

38 1997) and these landcover changes are connected to water quality and river ecosystem health 

39 (Allan, 2004). Landcover change is a particularly important driver of water quality in urban 

40 areas. The term “urban stream syndrome” broadly defines this relationship between dense 

41 anthropogenic activity and the negative effect on stream quality and diminished ecosystem 

42 services (Booth, Roy, Smith, & Capps, 2016; Walsh et al., 2005; Withers & Jarvie, 2008). Urban 

43 streams have higher nutrient loading (Grimm et al., 2005; Meyer, Paul, & Taulbee, 2005; Wahl, 

44 McKellar, & Williams, 1997; Withers & Jarvie, 2008), biochemical oxygen demand (BOD) 

45 loading (Mallin, Johnson, Ensign, & MacPherson, 2006), highly variable flows (Blaszczak, 

46 Delesantro, Urban, Doyle, & Bernhardt, 2019) and highly variable temperature profiles (Walsh 

47 et al., 2005), contributing to hypoxia and other damaging impacts.

48 Causes and in-stream effects of urban stream syndrome have been broadly assessed, but less is 

49 known about how this water quality degradation is distributed within an urban watershed. 

50 Understanding disproportionate water quality degradation is essential to understand the extent 

51 and impact of urban stream syndrome. In the United States, the Environmental Protection 

52 Agency (U.S. EPA) monitors spatial connections between environmental indicators and 

53 demographic indicators through the “EJscreen” platform (United States Environmnetal Protecion 

54 Agency, 2021). Previous studies identified relationships between communities of racial 

55 minorities and economically oppressed people and environmental burdens like poor air quality 

56 (Anderson, Kissel, Field, & Mach, 2018; Miranda, Edwards, Keating, & Paul, 2011), harmful 

57 chemical exposures (Bevc, Marshall, & Picou, 2007), inequitable land use zoning, environmental 

https://www.epa.gov/ejscreen


5

58 regulation protections, and environmental law enforcement (Bullard, 1996). Past studies of the 

59 intersections between water and environmental justice investigated inequity in flood risk, and 

60 sought to inform just flooding infrastructure and management decisions (Maantay & Maroko, 

61 2009; Meenar, Fromuth, & Soro, 2018).  Recent work expanded this study between 

62 environmental justice and water to include quantitative assessments of the spatial distribution of 

63 socioeconomic status and stream water quality (Daneshvar, Nejadhashemi, Zhang, & Herman, 

64 2018; Daneshvar et al., 2016; Sanchez et al., 2015, 2014). Existing models demonstrate weak 

65 correlations or inconsistent correlation directions between stream health and socioeconomic 

66 parameters (Daneshvar et al., 2018, 2016; Sanchez et al., 2015, 2014). Limitations in data 

67 availability and the need to address the complex longitudinal patterns in stream quality data 

68 present challenges towards exploring these relationships between stream quality and 

69 socioeconomic distribution of stream degradation. 

70 The first challenge, the paucity of water quality data, is an issue because both spatially and 

71 temporally robust data are necessary to accurately represent prevailing water quality trends. This 

72 challenge was addressed in the present study with volunteer science (i.e. citizen science) data. 

73 Volunteer science programs are a widely used method to overcome the data shortage challenge 

74 (Taylor et al., 2021). Involving community members in water quality research enables more 

75 spatially and temporally robust data collection, spanning large physical distances and long time 

76 periods while promoting community engagement and education (Buytaert et al., 2014; 

77 Jollymore, Haines, Satterfield, & Johnson, 2017; Krabbenhoft & Kashian, 2020; Njue et al., 

78 2019). However, volunteer science resources are limited, for example, safety conditions or lack 

79 of volunteers prevent uniform and ubiquitous distribution of sampling effort. For this reason, a 
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80 combination of modeling and volunteer science data are necessary to achieve full spatial 

81 coverage of water quality data.   

82 The second challenge, stream connectivity, refers to the interdependency between water quality 

83 observations on streams. Both in-stream and out of stream relationships may exist between data 

84 points, and this prevents the application of analysis methods requiring independence between 

85 points. To overcome this challenge, the spatial correlations from upstream, downstream, and 

86 near-stream relationships must be considered. Spatial stream network (SSN) models  

87 appropriately address stream connectivity by encompassing spatial correlations that exist both on 

88 flow paths and outside of flow paths into model predictions (Isaak et al., 2014; Peterson & Ver 

89 Hoef, 2014; Peterson et al., 2013; Ver Hoef, Peterson, Clifford, & Shah, 2014). When used in 

90 conjunction, volunteer science data and SSN modeling overcome challenges in data paucity and 

91 stream connectivity.

92 This research is a collaboration with Friends of the Rouge (FOTR), a non-profit organization that 

93 leads volunteer science data collection events in metropolitan Detroit. FOTR and their volunteer 

94 scientists voiced an interest in better understanding the relationships between socioeconomic, 

95 environmental, and water quality patterns in the Rouge River. Our goal is to address this 

96 community interest and address the prevailing lack of understanding of the distribution of water 

97 quality impairment in urban watersheds. The large area and urban setting of the Rouge River 

98 provides a range of environmental conditions and diverse communities towards addressing this 

99 question. We address the challenges of data paucity and stream connectivity analysis with 

100 volunteer science and spatial modeling. Our hypothesis is that water quality degradation in 

101 metropolitan Detroit is not distributed uniformly across communities of varying poverty levels. 

102 To test this hypothesis, benthic macroinvertebrate observations from FOTR volunteer scientists 
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103 were modeled with environmental and socio-economic variables in an SSN model. Additionally, 

104 this model was used to predict water quality under varying manipulated watershed conditions to 

105 evaluate the relationship between poverty and predicted water quality. 

106 2. Methods 

107 2.1 Study Area

108 The study area was the Rouge River watershed, which contains parts of metropolitan Detroit, 

109 MI. The watershed is approximately 1200 km2 and includes 204 km of stream segments (Figure 

110 1). The watershed drains into the Detroit River, which within the context of the Laurentian Great 

111 Lakes, connects Lake St. Clair and Lake Erie. The Rouge River watershed is highly urbanized, 

112 with 85% developed, 4% agricultural, and 6% forested landcover (NLCD, 2019). These 

113 landcover types are spatially heterogeneous across the watershed, with a general trend of 

114 increasing urbanization towards the outlet in the southeast. From 2001 to 2019 imperviousness 

115 increased across the watershed, but the magnitude of this increase was less than 1% within ~97% 

116 of catchments. The Rouge River twenty-year mean annual discharge is 147 million m3 year-1 (US 

117 Geological Survey, 2016). Landcover and hydrologic conditions within the various tributaries 

118 are diverse. The relatively undeveloped and rural headwaters contain the least impacted streams. 

119 The Rouge River stream segments span all levels of anthropogenic alteration, from groundwater 

120 fed pristine segments to segments encased in concrete channels. The U.S. EPA identified the 

121 lower Rouge River as an Area of Concern under the Great Lakes Water Quality Agreement of 

122 1987 and cited nine Beneficial Use Impairments in the watershed (Selzer, 2008). 

123 2.2 Volunteer Science Stream Quality Index Data
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124 Benthic macroinvertebrates are bioindicators of stream health and quality, and they are relevant 

125 in environmental impact studies near the Rouge River (Burlakova et al., 2018) and globally (Bae, 

126 Kil, & Bae, 2005; Del Arco, Ferreira, & Graca, 2012; Graham & Taylor, 2018; Patang, 

127 Soegianto, & Hariyanto, 2018). Macroinvertebrate populations are affected by environmental 

128 degradation, and their use as sentinels of water quality impact from urbanization is well 

129 documented (Del Arco et al., 2012; Kenney, Sutton-Grier, Smith, & Gresens, 2010; Vitousek et 

130 al., 1997; Walsh et al., 2005; Walsh, Sharpe, Breen, & Sonneman, 2001). Benthic 

131 macroinvertebrates are particularly good bioindicators of stream conditions, as the presence or 

132 absence of sensitive taxa reflects long-term stream conditions, rather than the “snapshot” 

133 conditions shown by grab samples and chemical analysis (Infante, David Allan, Linke, & Norris, 

134 2009; Lenat, 1988). This relevance as a water quality proxy, as well as cheap and simple 

135 collection methods make benthic macroinvertebrates a feasible water quality indicator for 

136 volunteer science groups (Graham & Taylor, 2018). Here, we use volunteer science collected 

137 benthic macroinvertebrate data as a bioindicator of water quality. 

138 Macroinvertebrate species and frequencies were collected by FOTR volunteers. FOTR collected 

139 benthic macroinvertebrate data with volunteer scientists participating in biannual (Spring and 

140 Fall) “bug hunts”. FOTR started collecting benthic macroinvertebrate data in 2001, and data 

141 collection is ongoing. Prior to collection and identification events, volunteers were trained as 

142 “bug hunt” team leaders in workshops led by both FOTR and a local biologist. Samples were 

143 collected from a rotating subset of 122 sampling locations (Figure 1). Trained volunteer scientist 

144 leaders surveyed instream habitats for benthic macroinvertebrates (riffle, cobble, pool, 

145 overhanging vegetation, undercut banks) with “D”-frame nets (Brua, Culp, & Benoy, 2011). 

146 Macroinvertebrates were preliminarily identified in the field, to order.  Four to five specimens of 
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147 all but clams, mussels, snails, and crayfish were preserved in ethanol and later identified in the 

148 lab by FOTR staff and the local biologist to check field identifications and identify to family. 

149 The sensitivity of benthic macroinvertebrates and their frequencies are converted to a Stream 

150 Quality Index (SQI) using the MiCorps’ Macroinvertebrate Datasheet (Supplemental Figure 1). 

151 SQI categorizes macroinvertebrates (mainly by order) into three levels: “sensitive” “somewhat 

152 sensitive” and “tolerant,” based on pollution sensitivity and rates them as rare (1-10 individuals) 

153 or common (11 or more). Common “sensitive” organisms like mayflies are scored higher than 

154 common “Tolerant” organisms.  A higher SQI score reflects higher numbers of sensitive species 

155 like stonefly nymphs (Plecoptera) and hellgrammites (Megaloptera), indicating higher water 

156 quality. This study considers biannual SQI observations from 2001-2021 (n=1,655 site visits). 

157 All FOTR volunteer science SQI collection was completed using a quality assurance project plan 

158 reviewed by the Michigan Department of Environment, Great Lakes, and Energy (EGLE), the 

159 Michigan Department of Natural Resources, the Michigan Clean Water Corps (MiCorps), the 

160 Wayne County Department of Public Services, and FOTR (Petrella, 2020). FOTR checked SQI 

161 scores year to year and flagged data points that differed from past observations. Yearly 

162 observations of SQI were also checked against local knowledge and reported biannually. A 

163 validation study found that SQI calculated in the Rouge River and nearby Clinton River by 

164 volunteer scientists produced comparable, but more conservative estimates of stream quality than 

165 quantitative data collected by professional scientists (Krabbenhoft & Kashian, 2020).  The SQI is 

166 a water quality index used by monitoring groups in Michigan developed by the Michigan 

167 Department of Environmental Quality (now, Michigan EGLE) through their grant funded 

168 program to engage volunteer science groups in benthic macroinvertebrate monitoring around the 

169 state. MiCorps is a statewide network that took oversight of the state-backed volunteer science 
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170 monitoring program in 2003 (“Michigan Clean Water Corps: About,” n.d.). The establishment of 

171 the SQI metric in Michigan follows the popularization of bioindicators for water quality 

172 monitoring at the state and federal level in the late 1980s due in part to guiding programs like 

173 EPA’s Rapid Bioassessment Protocol (Barbour, Gerritsen, Snyder, & Stribling, 1999; Barbour, 

174 Stribling, & Verdonschot, 2006). Indices of biological integrity similar to SQI are historically 

175 prevalent in volunteer-based water quality monitoring (Firehock, K. and West, 1995) and 

176 accepted as reliable indicators of aquatic conditions (Engel & Voshell, 2002). Further, there is a 

177 precedent for bioindicator index application in in foundational environmental justice water 

178 quality models (Daneshvar et al., 2018, 2016; Sanchez et al., 2015, 2014).    

179

180
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181 Figure 1: The Rouge River watershed. The Rouge River watershed includes parts of 

182 metropolitan Detroit and its Western suburbs. Volunteer science benthic macroinvertebrate data 

183 were collected sporadically at 122 observation sites along the Rouge River. 

184 2.3 Stream Spatial Network 

185 To test our hypothesis, we built an SSN model for SQI as a function of environmental and social 

186 variables. This modeling step was performed to expand the spatial coverage of SQI data. 

187 Environmental data included landcover and stream characteristics, and socio-economic data was 

188 represented by poverty distributions. Landcover is a strong driver of in-stream conditions, where 

189 anthropogenic land uses, whether urban or agricultural, degrade stream quality (Brabec, Schulte, 

190 & Richards, 2002; Carlisle, Falcone, & Meador, 2009; Chen et al., 2016; Epps & Hathaway, 

191 2021; Tong & Chen, 2002).  Degraded stream quality effects population size and diversity of 

192 benthic macroinvertebrate communities, which are sensitive to degraded stream conditions 

193 (Carlisle et al., 2009; Walsh et al., 2001; Wang et al., 2018). Thus, we used sediment regulation 

194 (lack of degradation from sedimentation) and percent imperviousness watershed area as 

195 landcover characteristics to predict invertebrate population derived SQI. These parameters were 

196 obtained from the U.S. EPA StreamCat database and were available for each individual stream 

197 segment (Hill, Weber, Leibowitz, Olsen, & Thornbrugh, 2016). Three different poverty metrics 

198 were weakly but positively correlated with another water quality index in the neighboring 

199 watershed of the Saginaw Bay basin (Sanchez et al., 2014). Poverty was obtained from the U.S. 

200 Census Bureau’s 2016 American Community Survey data.

201 Imperviousness is a measured value indicating the mean percent of landcover that is classified as 

202 an anthropogenic surface such as pavement, roads, and buildings (Figure 2b). Our 

203 imperviousness variable is an average of the mean percent of impervious landcover within a 

https://www.epa.gov/national-aquatic-resource-surveys/streamcat-dataset-0
https://www.census.gov/programs-surveys/acs
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204 stream segment’s immediate and upstream drainage area as reported for 2001, 2004, 2006,  2008, 

205 2011, 2013, 2016, and 2019 in the National Land Cover Database (NLCD) (Dewitz & U.S. 

206 Geological Survey, 2021).  

207 Sediment regulation is a modeled parameter on a scale of 0 to 1 that was developed to 

208 summarize sedimentation using instream and out-of-stream parameters in the StreamCat 

209 database (Hill et al., 2016; Thornbrugh et al., 2018) (Figure 2a). Sedimentation describes 

210 inorganic particle retention and size alteration due to transport to and within streams 

211 (Flotemersch et al., 2016; Thornbrugh et al., 2018). The sediment regulation parameter was 

212 calculated considering observed values of stressors relative to maximum stress level for 5 major 

213 stressors: 1) presence and volume of reservoirs, 2) stream channelization and levee construction, 

214 3) alteration and changes to riparian vegetation, 4) frequency of mines, frequency of forest cover 

215 loss, and density of roads, and 5) agriculture presence weighted by soil erodibility (Flotemersch 

216 et al., 2016; Hill et al., 2016; Thornbrugh et al., 2018). 

217 Poverty associated with each stream segment reflects census-tract level percentages of 

218 households living below the poverty line, an annual household income of $31,661.  (Figure 2c, 

219 U.S. Census Bureau (US Census), 2020). Poverty information was obtained as census-tract based 

220 and converted to the average poverty in the topographical boundary (catchment) of each stream 

221 segment. These catchment-level values were then averaged with upstream catchments to express 

222 the percentage of households below the poverty line in the entire upstream drainage area of each 

223 stream segment. Poverty as census-tract based measurements ranged from 0% to 91%, and when 

224 converted to upstream watershed-based, ranged from 0.2% to 24.5% of households in the 

225 catchment and upstream watershed residing below the poverty line.

https://www.usgs.gov/centers/eros/science/national-land-cover-database?qt-science_center_objects=0#qt-science_center_objects
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226

227 Figure 2: Relevant characteristics in the Rouge River watershed. Sediment regulation (a) is a 

228 modeled parameter from 0-1 where 0 indicates low impact of sediment within a catchment, 

229 imperviousness (b) as the average percent of landcover identified as impervious, and poverty is 

230 the percent of the population living under the poverty line (c) plotted in original data format as 

231 percentages within census tracts.

232 In addition to multiple explanatory variables, the SSN also considers spatial relationships 

233 between sites in models. Spatial relationships are categorized into either flow-connected or flow-

234 unconnected relationships, based on whether there is a direct flow path connecting two sites. 

235 These relationships consider three autocovariance functions: tail-up, tail-down, and Euclidean 

236 distance. Tail-up autocovariance exists only between flow-connected sites, and they represent a 

237 weighted moving average function in the upstream direction. Tail-down autocovariance may 

238 exist under either flow-connected or flow-unconnected conditions, and they represent a weighted 

239 moving average function in the downstream direction. Euclidean distance may be considered in 

240 flow-unconnected relationships when autocovariance isn’t restricted to in-channel distances 

241 between sites (Garreta, Monestiez, & ver Hoef, 2010; Isaak et al., 2014; Ver Hoef & Erin, 2010). 
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242 The weighting model for these tail-up and tail-down autocovariances can be calculated with 

243 linear, exponential, spherical, Mariah, and Epanech weights (Garreta et al., 2010; Ver Hoef & 

244 Erin, 2010). Euclidean autocovariance weighting included standard spatial covariance models: 

245 spherical, exponential, Gaussian, and Cauchy. The suitability of these various spatial 

246 autocovariances differs depending on the nature of the stream metric. For example, chemical 

247 data would be most likely to follow flow-connected tail-down autocovariance because chemical 

248 transport in a stream network is driven by transport in the channel, and in the downstream 

249 direction. However, macroinvertebrate-derived data may be represented with both flow-

250 connected and flow-unconnected relationships since benthic macroinvertebrates have preferential 

251 travel along stream channels, but they can travel in both in upstream and downstream directions, 

252 and can also move outside of the confinement of stream channels (Isaak et al., 2014). 

253 Our SSN was implemented by using the Spatial Tools for the Analysis of River Systems 

254 (STARS) and SSN tools in ArcMap 10.8.1, R version 3.6.1, and RStudio version 1.2.5019, 

255 respectively (Peterson & Ver Hoef, 2014; Ver Hoef et al., 2014). SSN models were made with 

256 sediment regulation, imperviousness, and poverty as independent variables. The dependent 

257 variable was log mean SQI. Mean SQI was calculated as the mean SQI observation at a site 

258 through time. Means were taken to simplify temporally diverse data, because only 9% of sites 

259 observed a linear change (p < 0.05) in SQI over time, and this change was mixed, with 7 sites 

260 increasing and 4 sites decreasing SQI.  Mean SQIs were logged to ensure normal distribution. 

261 All explanatory variables were normalized using min-max normalization to redistribute values 

262 from 0-1 based on the ranges of these variables measured at observation sites. This was done to 

263 standardize model covariates to the same scale.  SSN models were constructed with multiple 

264 combinations of tail up, tail down, and Euclidean distance autocovariances to encompass the 

https://www.fs.fed.us/rm/boise/AWAE/projects/SpatialStreamNetworks.shtml
https://www.fs.fed.us/rm/boise/AWAE/projects/SpatialStreamNetworks.shtml
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265 three possible spatial relationships between observation sites (Isaak et al., 2014; Ver Hoef et al., 

266 2014). A final SSN model was then selected by comparing models with the evaluators: Akaike 

267 information criterion (AIC), coefficient of determination (R2), and root mean square error 

268 (RMSE) calculated from leave one out cross validation (LOOCV). The best performing SSN of 

269 SQI as a function of the environmental variables and socio-economic variables was further 

270 evaluated by comparing it to two simpler models. The first simple model omitted the spatial 

271 component of the SSN and the second simple model omitted the socio-economic variable. 

272 Additionally, SQI could decrease downstream along flowlines as a result of physical stream 

273 attributes associated with high flows and greater depth. To account for this, the best performing 

274 model was reparametrized with a random effect for stream order. Again, models with and 

275 without the stream order random effect were compared via AIC, R2, and RMSE.  

276 2.5 Water Quality across Potential Scenarios 

277 To explore potential conditions within the Rouge River we predicted SQI with the best 

278 performing model at points every 800m of all stream segments in the Rouge River watershed. 

279 SQI predictions were made under 4 conditions: true (observed) conditions, and three levels of 

280 hypothetical watershed conditions – good, standard, and poor conditions (Figure 3). Each 

281 hypothetical watershed condition used manipulated values of imperviousness and sediment 

282 regulation and observed values of poverty. The values of imperviousness and sediment 

283 regulation conditions assigned to the “good”, “standard” and “poor” labels were selected to 

284 represent a range of values that are realistic for the watershed. Good conditions were defined as 

285 imperviousness at 25% of the range of imperviousness observations (18% imperviousness) and 

286 75% of the range of sediment regulation (0.96). Standard conditions were defined as 

287 imperviousness at 50% of the range of imperviousness observations (35% imperviousness) and 
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288 50% of the range of sediment regulation (0.94). Poor conditions were defined as imperviousness 

289 at 75% of the range of imperviousness (53% imperviousness) and 25% of the range of sediment 

290 regulation (0.92). Imperviousness and sediment regulation intervals were opposite one another 

291 because increasing imperviousness is associated with poor environmental conditions, while 

292 increasing sediment regulation indicates higher integrity, or lack of impact from sedimentation, 

293 and is thus associated with better environmental conditions. These intervals were made to 

294 demonstrate the impact of poverty on SQI under different environmental conditions that were 

295 reasonable in the context of the ranges of imperviousness and sediment regulation observed in 

296 the watershed. Linear models of predicted SQI and poverty were generated based on the 4 

297 conditions above. The slopes of these linear models were then compared. 

298

299
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300 Figure 3: Flow diagram of methods, highlighting data inputs and analysis methods. 

301

302 3. Results 

303 3.1 SQI Observations

304 Average SQI observations ranged from 14 to 48 (Figure 4a). Stream quality was generally worse 

305 on the main branch and near the watershed outlet. However, poor quality was also observed in 

306 some headwater streams. The highest quality was observed on streams on the western edge of the 

307 watershed. 

308   

309

310 Figure 4: Observed and modeled SQI data. SQI measures were collected for sites in the Rouge 

311 River watershed by the volunteer science organization Friends of the Rouge. Observations of 

312 SQI (a) compared to modeled SQI along every 800m of stream under true conditions (b). 
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313 3.2 Spatial Model Performance 

314 The best performing SSN model based on our model comparison metrics used sediment 

315 regulation, imperviousness, and poverty in a multivariate spatial regression model with a linear-

316 sill tail-down autocovariance and no random effect on stream order (Supplementary Table 1). 

317 The R2 value indicates that about 1/3 of the variability in SQI is captured in the model. The 

318 RMSE indicates that prediction error is about 3 SQI points, or about 10% of the range of 

319 observed SQI values. The explanatory variables are correlated with one another, however, 

320 variance inflation factors (VIF, Helsel & Hirsch, 1992) for sedimentation, imperviousness, and 

321 poverty were low (1.23, 1.23, and 1.16, respectively). These are close to the ideal value (VIF ~1, 

322 Helsel & Hirsch, 1992) and below the cutoff value applicable for SSN models (VIF <5, Isaak et 

323 al., 2017) thus suitable for our hypothesis testing. Imperviousness and poverty had negative 

324 relationships with SQI with model coefficients -0.28 (p = 0.01) and -0.23 (p = 0.05), 

325 respectively. Sediment regulation had a positive relationship, model coefficient 0.30 (p = 0.07), 

326 this is interpreted as less impact from sedimentation related to higher SQI. The linear sill tail-

327 down autocovariance indicates that both flow-connected and flow unconnected relationships 

328 exist in the SQI data, and that these relationships are linear and point downstream. This means 

329 that between two SQI observations the downstream point is influenced by the upstream point and 

330 that relationship decreases linearly with increasing distance between the points. 

331 This spatial socio-economic environmental model outperformed the simple model and spatial 

332 model fit with only environmental predictors. The simple model had a higher R2 value 

333 (Supplementary Table 1), but lower AIC and RMSE (Figure 5). The spatial environmental-only 

334 model had a slightly higher AIC, lower R2, and higher RMSE compared to the best model 

335 (Supplementary Table 1). The RMSE value especially highlights the value of modeling SQI with 
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336 SSN models, as the RMSE for the simple model was about one SQI index point higher than the 

337 RMSE for either of the spatial models, indicating a worse ability of the simple model to capture 

338 the true variability in SQI data (Figure 5). Poverty adds predictive power to the model, as 

339 demonstrated by the improvement in all model evaluators when poverty is included in the spatial 

340 model. 

341

342 Figure 5: Leave one out cross validation (LOOCV) results compared for a non-spatial model (a) 

343 containing the same predictor variables as a spatial model with socio-economic and 

344 environmental variables (b). Root mean square error (RMSE) and the standard deviation of this 

345 calculation is printed on each plot, showing higher RMSE and standard deviation for the simple 

346 model than for the spatial model. 

347

348 Adding stream order as a random effect did not improve model performance. The stream order- 

349 random effect model had a higher AIC and RMSE, and a comparable R2 as the best performing 

350 model. This showed that the relationship between SQI and explanatory variables did not vary 

351 based on the stream order. In other words, small streams should not be modeled differently than 
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352 larger branches. This provides support that stream order and associated downstream trends do 

353 not explain water quality in the watershed better than sediment regulation, imperviousness, and 

354 poverty without stream positioning information.

355 3.3 Predictions under Potential Scenarios

356 The SSN model was used to predict SQI every 800m of stream segment in the Rouge River 

357 watershed. Under true conditions in the watershed, SQI predictions ranged from 15.76 (poor) to 

358 44.83 (good) (Figure 4b). The average prediction standard error was 1.17. The slope between 

359 poverty and predicted SQI was negative and indicated that a stream segment with 10% higher 

360 poverty in its upstream watershed drainage area would have a 3.62 lower SQI. This 3.62 change 

361 in SQI is equivalent to a 10% change in the range of water quality, or about a 1% decrease in 

362 water quality for every 1% increase in poverty.  

363 Under manipulated watershed conditions, poverty and predicted SQI also had negative 

364 relationships (Figure 6). The magnitude of this negative relationship increased with increasingly 

365 positive watershed conditions. Under poor watershed conditions (53% imperviousness, 0.92 

366 sediment regulation) a 10% increase in poverty would result in a decrease in SQI by 2.87. Under 

367 standard watershed conditions (35% imperviousness, 0.94 sediment regulation) a 10% increase 

368 in poverty would decrease SQI by 3.61. Finally, under good watershed conditions (18% 

369 imperviousness, sediment regulation = 0.96) a 10% increase in poverty would decrease SQI by 

370 4.53. 
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371

372 Figure 6: Relationships between predicted SQI and poverty under hypothetical poor (a), 

373 standard (b) and good (c) watershed conditions, compared to the relationship under true 

374 watershed conditions (d). The slope of the linear relationship between predicted SQI and poverty 

375 is plotted under each scenario. 

376 4. Discussion 

377 4.1 Degraded Water Quality in Higher Poverty Areas

378 The identified negative relationship between water quality and poverty provides information 

379 about spatial distribution of water quality degradation. Our SSN’s negative coefficient between 

380 stream quality and poverty provides statistical evidence that stream quality is associated with 

381 socioeconomic factors, in addition to known relationships between stream quality and 

382 environmental factors like sediment regulation and imperviousness. 

383 The observed decrease of stream quality in high poverty areas provides support that urban stream 

384 degradation is inequitably distributed. It is important to emphasize that the negative relationship 

385 does not prove a causal relationship; it provides statistical support that environmental 

386 degradation of water quality disproportionately affects impoverished communities. Explicitly, it 

387 is incorrect to interpret that high poverty causes poor water quality. While a latent cause-effect 
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388 relationship may exist, our analysis does not articulate an underlying causal structure. Previous 

389 research provides support for potential casual structures. For example, inequity in access and 

390 proximity to parks has been shown for poor communities (Rigolon, Browning, & Jennings, 

391 2018), and park land is one tool used to impede stormwater runoff from polluting streams 

392 (Cettner, Ashley, Viklander, & Nilsson, 2013). 

393 Local knowledge and spatial setting further contextualize the relationship between poverty and 

394 water quality. The highest poverty area in the watershed is in the Southeast region of the 

395 watershed. Observations of SQI in this area included 23 sites, with an average SQI of 24, a “fair” 

396 rating. While this SQI score is relatively low, it fails to express other water quality issues in this 

397 area. The segment of the Rouge River bordering the highest density poverty area contains 21 

398 uncontrolled combined sewer overflow (CSO) outfalls, making this area subject to flashy water 

399 levels and at risk to acute degradation events post rainfall as is true in cities with similar drainage 

400 systems, like Philadelphia, PA and Chicago, IL (Miskewitz & Uchrin, 2013; Quijano, Zhu, 

401 Morales, Landry, & Garcia, 2017). Further, tributary streams in this area are sparse, having been 

402 removed from their historical locations (Figure 7). The lack of tributary streams in this area is an 

403 example of water inequality, as this high poverty area is deprived of natural surface waters 

404 entirely. 



23

405  

406

407 Figure 7: High poverty within the Southeast part of the Rouge River watershed, highlighting 

408 water concerns in this region including density of uncontrolled Combined Sewer Overflow 

409 (CSO) outfalls and locations of ghost streams that no longer exist. 

410 This lack of naturally formed stream channels is also a limit of our analysis – lack of natural 

411 drainage boundaries in high poverty areas, as well as highly urbanized areas, compromise the 

412 catchment- level units of analysis. In these areas, our measurements of sediment regulation and 
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413 imperviousness may not properly represent the land being drained to stream segments since 

414 stormwater infrastructure in a combined sewer system would carry stormwater to a wastewater 

415 treatment plant, or in an overflow event, may convey water to stream segments that wouldn’t 

416 have naturally received that water. To estimate water quality more accurately in the high poverty 

417 area of the Rouge River, future work would need to consider conversion of naturally delineated 

418 drainage areas to those defined by stormwater infrastructure (Achleitner, Möderl, & Rauch, 

419 2007; House et al., 1993; Tscheikner-Gratl et al., 2019). 

420 Other limits of our poverty analysis are the quality of U.S. Census data, and the assumptions 

421 made in converting poverty data from census tract to catchment-based units. A limitation of 

422 environmental justice datasets is low survey responses and lack of internal community 

423 involvement in surveying (Lee, 2020; Mah, 2017). Increased involvement of local community 

424 members in environmental justice data collection is necessary for increased understanding of the 

425 disproportionate water quality burdens across socioeconomic groups. A second layer of potential 

426 error in U.S. Census data was introduced when we converted data from census tracts to drainage 

427 area. This conversion was made by assuming that poverty was distributed homogenously in 

428 census tracts. This assumption is an over-generalization that could lead to inaccuracy in 

429 calculating poverty rates in units of catchments. Scales of socioeconomic data resolution are 

430 influential in improving stream health modeling performance (Daneshvar et al., 2016), so future 

431 modeling efforts would benefit from a more realistic conversion of socioeconomic data from 

432 census-area to area units more conducive to water quality modeling. 

433 4.2 Volunteer Science Data Applicability  

434 Volunteer science collected water quality data was key to executing this work.  The term 

435 volunteer science was selected intentionally over similar titles (citizen science, community 
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436 science, community-based monitoring) because volunteers collected data and volunteerism was 

437 entirely unrelated to citizen status (contrary to the implication of the term citizen science), and 

438 the community was not involved in all stages of the research (as is common in community 

439 science) (Cooper et al., 2021).  Our work serves as an example of a mutually beneficial 

440 partnership between formal research and volunteer science. Labor, cost, time, and local 

441 knowledge would have prevented this research without volunteer science collaboration, which 

442 provided a temporally and spatially robust dataset. For the volunteer science data collecting 

443 group FOTR, technical and resource hurdles stand in the way of the spatial model building and 

444 analysis needed to fully understand river data. This mutually beneficial partnership between 

445 scientists and the local community offers the exchange of knowledge and perspective from 

446 interested parties who come from diverse backgrounds and motivations (Taylor et al., 2021), and 

447 is one reason why volunteer science has recently become more prevalent in aquatic science and 

448 hydrology research (Kielstra, Chau, & Richardson, 2019; Krabbenhoft & Kashian, 2020; 

449 Maguire & Mundle, 2020). An additional co-benefit of FOTR volunteer science is that data 

450 collection events are used to engage volunteer scientists in the watershed, raise awareness about 

451 river conditions, and advocate for the need to clean up the Rouge River.

452 Despite the benefits offered to both scientists and volunteer science groups, there are obstacles 

453 that prevent the widespread use of volunteer science data.  These obstacles include scientific 

454 community acceptance, data validity and governance, research problem definition, and in the 

455 case of water quality – observation tool expense and access (Buytaert, Dewulf, De Bièvre, Clark, 

456 & Hannah, 2016; Buytaert et al., 2014). The most common critique of volunteer science is data 

457 validity (Jollymore et al., 2017). Means to overcome this obstacle include volunteer scientist 
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458 training, and understanding of volunteer science volunteerism motivation which increases the 

459 reliability (Alender, 2016; Buytaert et al., 2014; Jollymore et al., 2017). 

460 In volunteer science organized by FOTR, volunteer training and internal quality assurance 

461 checks are the primary means of data quality assurance. The team leaders who collect data attend 

462 training in the classroom and field to learn sampling techniques and identification. Volunteers 

463 who want to become team leaders must first attend a sampling day as a regular volunteer. 

464 Following training, trainees are paired with an experienced team leader for their first few events 

465 and the experienced leader works with them to make sure they are sampling thoroughly and 

466 following procedures. Team leaders repeat the training every few years to stay updated. On 

467 sampling days, team leaders conduct all sample collection, and untrained volunteers assist in 

468 picking through the samples. Team leaders collect voucher specimens which are identified in the 

469 lab.  Quality assurance is performed with internal checks against historical SQI observations, 

470 where any results for sites that vary greatly from past sampling are examined to determine the 

471 cause. A reliability study on FOTR volunteer science data concluded the SQI data used here is a 

472 conservative estimate of water quality as traditionally measured numerically by scientists 

473 (Krabbenhoft & Kashian, 2020). The macroinvertebrate preservation method used by FOTR may 

474 be one potential source of this discrepancy, as only 4-5 representative specimens are preserved 

475 for post-hoc identification rather than preserving all samples as recommended by other benthic 

476 macroinvertebrate sampling (Barbour et al., 1999). 

477 4.2.1 Lessons from Friends of the Rouge

478 The long-term operation of volunteer science at FOTR has resulted in many learned experiences 

479 that can benefit other communities, including the scientific community. Initially, FOTR provided 

480 training and equipment and expected trainees to monitor sites on their own. This model failed to 
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481 engage volunteers, and consequently FOTR altered their sampling events to group sampling days 

482 with the trainees leading untrained volunteers. This structure allows for wide community 

483 participation, with over 100 volunteers attending monitoring days. Success of this method is 

484 measured through volunteer retention, and influence of volunteering experience on community 

485 members. Many volunteers return year after year, some for as long as 20 years. Volunteers learn 

486 about stream ecology and urban rivers through their experience at sampling events. Children 

487 participate with their parents and many reported going on to pursue a degree in the sciences 

488 because of the experience.

489 FOTR also attributes their success to their commitment to ensure that the data is useful and made 

490 available to stakeholders. Following each monitoring event, a report is made available to all 

491 volunteers, and state and local agencies, including the communities who are now providing some 

492 of the funding to support monitoring.  FOTR makes the data freely available to academic 

493 institutions for research use which has resulted in journal publications (Krabbenhoft & Kashian, 

494 2020; Maguire & Mundle, 2020) and several Master’s students theses.  

495 Volunteer science events conducted by FOTR have also resulted in unsuspected co-benefits. 

496 Inspired by questions from volunteers about pipes while sampling, team leaders are now trained 

497 in illicit discharge elimination and have been responsible for reporting spills, sewage leaks, 

498 erosion issues, and more that might have never been noticed otherwise. Volunteers have also 

499 observed other species while working on macroinvertebrate study events. Notably, new native 

500 species have been documented including one new to the state and multiple invasive species were 

501 tracked.

502 4.3 Spatial Modeling
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503 The SSN and STARS tools were useful in modeling stream water quality in the Rouge River 

504 from volunteer science water quality data, and spatial relationships in stream systems. STARS 

505 and SSN tools have been applied to a range of stream modeling applications like surface water 

506 isotope variations (McGill, Steel, Brooks, Edwards, & Fullerton, 2020), fish genetic diversity in 

507 southern France (Paz-Vinas et al., 2018), and fecal contamination in streams in Northeast 

508 Scotland (Neill et al., 2018) and central North Carolina (Holcomb, Messier, Serre, Rowny, & 

509 Stewart, 2018). SSN methods have been previously applied with volunteer science data (Kielstra 

510 et al., 2019), and macroinvertebrates in streams (Frieden, Peterson, Angus Webb, & Negus, 

511 2014; Pond, Krock, Cruz, & Ettema, 2017). This project uniquely combines volunteer science 

512 collected macroinvertebrate data into a spatial model, which together were able to overcome 

513 challenges in data paucity and stream connectivity. 

514 Water quality in the Rouge River was modeled with imperviousness and sediment regulation, 

515 both of which reflect some degree of anthropogenic activity; and together they show that human 

516 behavior affects stream quality through different avenues. Imperviousness is directly related to 

517 human populations and densities, where high imperviousness is associated with high human 

518 density and is known to cause increased flashiness, temperatures, and BOD; and cause 

519 streamlined pollution conveyance via stormwater (Blaszczak et al., 2019; Grabowski, Watson, & 

520 Chang, 2016; Mallin, Johnson, & Ensign, 2009). The negative imperviousness coefficient 

521 modeled here aligns with the emphasis placed on impervious sources as a key driver of water 

522 resources impacts in previous research (Arnold & Gibbons, 1996; McGrane, 2016; Salerno, 

523 Viviano, & Tartari, 2018). Sediment regulation is estimated through factors directly or indirectly 

524 driven by humans, like reservoir presence and volume, stream channelization, riparian 

525 vegetation, and agriculture weighted by soil erodibility (Thornbrugh et al., 2018). The positive 
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526 coefficient associated with sediment regulation indicates an increase in sensitive benthic 

527 macroinvertebrate species associated with high sediment regulation. This relationship was 

528 expected as benthic macroinvertebrates thrive in well oxygenated water, with low proportions of 

529 fine substrate (Kaller & Hartman, 2004; Von Bertrab, Krein, Stendera, Thielen, & Hering, 2013). 

530 The use of imperviousness and sediment regulation helped to build the stream quality SSN 

531 model.

532 Our methodology using an SSN model builds upon existing analyses of the socioeconomic 

533 influence of stream quality. Previous analyses explored regression relationships and spatial 

534 clustering between stream environment indicators and variables describing historically 

535 disadvantaged populations. These studies found mixed correlation results, revealing negative 

536 trends between a stream health index and both household size and poverty (Daneshvar et al., 

537 2016; Sanchez et al., 2014). The strength of correlations between socioeconomic and stream 

538 health indices was improved by applying spatial clustering (Sanchez et al., 2015) and tailoring 

539 the resolution of spatial analysis (Daneshvar et al., 2016). In general, higher resolution data 

540 produced higher correlations (Daneshvar et al., 2016; Sanchez et al., 2015). The method of 

541 parameter estimation for environmental justice modeling has also been performed with many 

542 explanatory variables categorized as ecological, socioeconomic, and physiological (Daneshvar et 

543 al., 2018). This work’s methodology avoided the ambiguousness associated with correlation 

544 calculations and complexity of clustering methods by using both socioeconomic and 

545 environmental variables, and a spatial model designed for stream networks. The spatial modeling 

546 framework applied in past models was conditional autoregressive modeling, which considers 

547 spatial influence of neighboring points (Daneshvar et al., 2016; Sanchez et al., 2015, 2014). Our 

548 modeling approach with SSN expands on this consideration of neighboring points, by including 
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549 relationships that exist on stream flow paths. While our model identifies weaker statistical 

550 relationships than those observed in past models (Sanchez et al., 2015, 2014), the simplicity and 

551 interpretability of our SSN model provides a straightforward means of expressing the complex 

552 relationship between socioeconomic parameters and urban stream quality. Ultimately, our work 

553 aligns with previous environmental justice models, all finding negative relationships between 

554 historically underserved groups and water quality via stream health indices. 

555 5. Conclusion 

556 Urban stream syndrome remains a prevalent environmental concern, and this work shows how 

557 degraded stream water quality disproportionately burdens higher poverty areas. Our results show 

558 that under similar environmental conditions, streams with higher poverty have lower stream 

559 quality. Volunteer science collected data provided a robust understanding of stream quality in the 

560 Rouge River, and spatial modeling methods enabled the incorporation of stream 

561 interdependencies in stream quality modeling. In further analyses of the socioeconomic 

562 distribution of water quality degradation, we encourage the partnership of volunteer science 

563 groups, who may have parallel interests in understanding the water quality story in their 

564 community. 

565
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877 Appendix A. Supplemental Material

878

879 Figure A1: SQI calculation sheet developed by the Michigan Clean Water Corps from their 

880 Macroinvertebrate Datasheet (pre 2020) (“Stream Macroinvertebrate Datasheet,” n.d.).  

https://micorps.net/
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881 Supplemental Table 1: Model selection parameters for the best performing model and parallel 

882 models excluding spatial modeling methods, socio-economic data, and including stream order. 

Spatial 
Relationship Variables Random 

Effect AIC R2 RMSE

-
Imperviousness

Sediment Regulation
Poverty

- -48.01 0.40 4.11

Linear Sill 
Tail-down

Imperviousness
Sediment Regulation - -83.33 0.31 3.16

Linear Sill 
Tail-down

Imperviousness
Sediment Regulation

Poverty
Stream Order -81.77 0.36 3.16

Linear Sill 
Tail-down

Imperviousness
Sediment Regulation

Poverty
- -83.77 0.36 3.14

883

884 CRediT Author Statements: 

885 Isabelle R Horvath: Formal analysis, Investigation, Writing, Visualization. Anthony J 

886 Parolari: Supervision, Writing – Review & Editing. Sally Petrella: Conceptualization, 

887 Resources, Data Curation, Writing – Review & Editing. Craig Stow: Writing – Review & 

888 Editing, Supervision, Project administration, Funding acquisition. Casey Godwin: Writing – 

889 Review & Editing, Supervision, Project administration, Funding acquisition. Timothy J. 

890 Maguire: Conceptualization, Methodology, Software, Formal Analysis, Investigation, Data 

891 Curation, Writing, Visualization, Supervision, Funding acquisition.  

892

893 Figure Captions

894

895 Figure 1: The Rouge River watershed. The Rouge River watershed includes parts of 

896 metropolitan Detroit and its Western suburbs. Volunteer science benthic macroinvertebrate data 

897 were collected sporadically at 122 observation sites along the Rouge River. 
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898 Figure 2: Relevant characteristics in the Rouge River watershed. Sediment regulation (a) is a 

899 modeled parameter from 0-1 where 0 indicates low impact of sediment within a catchment, 

900 imperviousness (b) as the average percent of landcover identified as impervious, and poverty is 

901 the percent of the population living under the poverty line (c) plotted in original data format as 

902 percentages within census tracts.

903 Figure 3: Flow diagram of methods, highlighting data inputs and analysis methods. 

904 Figure 4: Observed and modeled SQI data. SQI measures were collected for sites in the Rouge 

905 River watershed by the volunteer science organization Friends of the Rouge. Observations of 

906 SQI (a) compared to modeled SQI along every 800m of stream under true conditions (b). 

907 Figure 5: Leave one out cross validation (LOOCV) results compared for a non-spatial model (a) 

908 containing the same predictor variables as a spatial model with socio-economic and 

909 environmental variables (b). Root mean square error (RMSE) and the standard deviation of this 

910 calculation is printed on each plot, showing higher RMSE and standard deviation for the simple 

911 model than for the spatial model. 

912 Figure 6: Relationships between predicted SQI and poverty under hypothetical poor (a), 

913 standard (b) and good (c) watershed conditions, compared to the relationship under true 

914 watershed conditions (d). The slope of the linear relationship between predicted SQI and poverty 

915 is plotted under each scenario. 

916 Figure 7: High poverty within the Southeast part of the Rouge River watershed, highlighting 

917 water concerns in this region including density of uncontrolled Combined Sewer Overflow 

918 (CSO) outfalls and locations of ghost streams that no longer exist
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919

920 Highlights

921  Citizen science data was used to build a spatial stream network model

922  Stream quality was modeled with a combination of environmental and socio-economic 

923 variables

924  Stream quality is lower in urban streams with high poverty rates 

925


