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A B S T R A C T   

We demonstrate the use of spatial stream network models (SSNMs) to explore relationships between a semi- 
aquatic bioindicator songbird, Louisiana Waterthrush (Parkesia motacilla), and stream monitoring and benthic 
macroinvertebrate data in an area undergoing shale gas development. SSNMs allowed us to account for spatial 
autocorrelation inherent to these environmental data types and stream properties that traditional modeling 
approaches cannot capture to elucidate factors that affect waterthrush foraging locations. We monitored 
waterthrush along 58.1 km of 1st- and 2nd-order headwater stream tributaries (n = 14) in northwestern West 
Virginia over a two year period (2013–2014), sampled benthic macroinvertebrates in waterthrush territories, 
and collected wetted perimeter stream channel and water chemistry data along a 50 m fixed point stream grid. 
Spatial models outperformed traditional regression models and made a statistical difference in whether stream 
covariates of interest were considered relatable to waterthrush foraging. Waterthrush foraging probability index 
(FPI) was greater in areas where family and genus-level multi-metric indices of biotic stream integrity were 
higher (i.e. WVSCI and GLIMPSS). Waterthrush were found foraging both among stream flow connected and 
unconnected sampled sites on relatively further upstream locations where WVSCI and GLIMPSS were predicted 
to be highest. While there was no significant relationship found between FPI and shale gas land use on a 
catchment area scale, further information on waterthrush trophic dynamics and bioaccumulation of surface 
contaminants is needed before establishing the extent to which waterthrush foraging may be affected by shale 
gas development.   

1. Introduction 

A natural property of ecological data is autocorrelation where nearby 
objects are more likely to exhibit the same patterns for reasons not due 
to chance (Legendre, 1993). Since the advent of classical statistics that 
could not account for the non-independence of ecological observations 
(e.g. Fisher, 1935), there is an excess of spatial models for ecology that 
are not created equally (Dormann et al., 2007), designed mainly for 
terrestrial ecology (e.g. Fortin and Dale, 2005). Large, long-term data
sets are being collected globally on streams as part of biomonitoring 
efforts to determine environmental conditions and change (Buss et al., 
2015), making it increasingly important to choose appropriate statistical 
methods for valid assessment of stream network data (Rushworth et al., 

2015). Spatial models that incorporate the unique properties of streams 
as dendritic networks with restricted, directed movement of resources 
through the landscape would be more ideal than the current trend of 
adopting terrestrial modeling techniques to streams (Isaak et al., 2014). 
In the last few years, a series of spatial stream network models (SSNMs) 
were created that account for stream properties (e.g. branching, flow 
direction and connectivity, confluences) and allow analysis of typical 
environmental monitoring data via stream-based spatial-weighting and 
autocovariance structures (Cressie et al., 2006; Ver Hoef et al., 2006; 
Peterson and Ver Hoef, 2010). Spatial autocorrelation is a confounding 
source of variability for covariates of interest on a stream network, 
where dismissing or ignoring it using traditional methods (i.e. general
ized linear regression models that impose independence between 
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observations) can lead to important information being discarded or lack 
of statistical inference (Legendre, 1993). 

Wildlife communities in the Appalachian region, particularly in 
forested freshwater ecosystems (Dunscomb et al., 2014; Evans and 
Kiesecker, 2014), are threatened by unconventional shale gas develop
ment due to the rate at which development can outpace implementation 
of best management practices (Brittingham et al., 2014). Shale gas wells 
in the Marcellus shale region are commonly within 100–300 m of stream 
channels, and often even closer to headwater drainage areas (Entrekin 
et al., 2011). Headwater streams are the critical sources of water, sedi
ment, organic matter, and nutrients for the rest of the system (Gomi 
et al., 2002), and are therefore vital for ecological integrity (Freeman 
et al., 2007). Furthermore, headwater streams, despite their predomi
nance of drainage area and total stream length, are largely overlooked 
for protection or regulation contrary to their potential effect on down
stream reaches and aquatic life (MacDonald and Coe, 2007). 

The Louisiana Waterthrush (Parkesia motacilla), hereafter water
thrush, is an established biological indicator of aquatic stream integrity 
(O’Connell et al., 2000; Mulvihill et al., 2008) and species of conser
vation concern (USFWS, 2008). Waterthrush feed primarily on benthic 
macroinvertebrates (Mattsson et al., 2009) and breed along forested 
headwater streams, reaching some of their highest abundances in the 
Marcellus shale region (Sauer et al., 2014). Over a six-year period, areas 
disturbed by shale gas negatively affected waterthrush riparian habitat 
quality, nest productivity, and nest survival suggesting potential long- 
term population consequences (Frantz et al., 2018a). Given the pro
pensity for shale gas in the Appalachian region to be developed on 
ridgetops near headwater streams (Cook et al., 2015), there is a strong 
need to evaluate how down-stream communities, both aquatic and 
terrestrial, can be affected by potential surface water pollution (Entrekin 
et al., 2011). In particular, the food webs along the aquatic-terrestrial 
interface may be indirectly influenced by surface water contamination 
depending on where the organisms reside or forage along the stream 
network. Waterthrush are known to compensate for the loss of food 
resources by increasing their territory sizes and foraging in nearby 
unimpacted areas (Mulvihill et al., 2008; Frantz et al., 2018a). As such, a 
more detailed study of headwater streams and foraging of a stream- 
dependent organism would shed some light on whether shale gas 
development is influencing these resources. Frantz et al. (2019b) 
recently found there may be a disturbance threshold at which water
thrush demography respond to aquatic prey changes using a spatial 
modeling approach, but did not assess locations where waterthrush were 
observed foraging nor used models designed specifically for stream- 
based spatial weighting and autocovariance structures. 

In this study, we used SSNMs to evaluate their utility in quantifying 
characteristics of waterthrush foraging areas based on 1) water chem
istry, 2) a waterthrush foraging score based on stream channel data, 3) 
shale gas land use based on reach contribution, and 4) multi-metric 
indices of biotic stream integrity at the family and genus level. We hy
pothesized that waterthrush foraging would more likely occur in areas 
with higher biotic stream integrity and with higher abundance of 
pollution sensitive aquatic prey such as Ephemeroptera, Plecoptera, and 
Trichoptera (EPT) believed to be the waterthrush’s preferred prey items 
(Mattsson et al., 2009). We also hypothesized that waterthrush foraging 
activity would be negatively related to areas of higher shale gas land use 
and water chemistry (i.e. higher conductivity, total dissolved solids, pH, 
and water temperature) as surface water pollution (e.g. Latta et al., 
2015) and decreased riparian habitat quality (e.g. Wood et al., 2016; 
Frantz et al., 2018b) from shale gas development may negatively alter 
aquatic prey communities (Johnson et al., 2015). 

2. Material and methods 

2.1. Study area 

We studied waterthrush along 58.1 km of 1st- and 2nd-order 

headwater stream tributaries (n = 14) at Lewis Wetzel Wildlife Man
agement Area (LWWMA) located in northwestern West Virginia (Fig. 1). 
Our waterthrush foraging study occurred in 2013 and 2014 as part of a 
larger waterthrush demography study over a six year period 
(2009–2011, 2013–2015). The study area lies within the Permian Hills 
subdivision of the Western Allegheny Plateau Ecoregion, an area of 
deeply dissected topography and relatively continuous Appalachian Oak 
and Mixed-Mesophytic Forest (Woods et al., 1999) with elevations of 
221–480 m. The study area overlays the Marcellus-Utica shale region 
and occurs where waterthrush reach their highest densities within the 
central Appalachians (Sauer et al., 2014). 

Prior to our study, LWWMA was 95% forested with the first uncon
ventional gas well development and activity, hereafter shale gas, start
ing in 2007 (Farwell et al., 2016). Shale gas at our study area and within 
the surrounding region since then has rapidly increased (WVGES West 
Virginia Geological and Economic Survey, 2015). By 2015, LWWMA 
was 91% forested with forest loss primarily due to shale gas develop
ment (Farwell et al., 2016). Over the six year study period, gas well 
development activities included building of conventional and Marcellus 
well pads, timbering for yet unbuilt well pads, the expansion of existing 
road and pipeline infrastructure, and the construction of new infra
structure. Early in the study (2009–2010), the majority of Marcellus 
wells and their water holding ponds were located along the main stem of 
Buffalo Run where the majority of our headwater study streams empty. 
Thus, although a few Marcellus well pads were located along our study 
streams, they tended to primarily impact the lower portions. Between 
the 2010 and 2011 breeding seasons, shale gas development activities 
began to increase on the ridgetops (Frantz et al., 2018a, 2018b). 
Therefore during the waterthrush foraging study in 2013–2014 the 
whole downstream network of some streams became disturbed by 
sedimentation and surface runoff from ridgetop activity (Frantz et al., 
2018a, 2018b). 

2.2. Mapping of streams and disturbance 

Within a Geographic Information System (GIS), we used a sequence 
of leaf-on and leaf-off aerial (e.g. NAIP) imagery and extensive ground- 
truthing to manually digitize areas of disturbance within the study area 
(see Frantz et al., 2018a for full description). All disturbances were 
classified as shale gas related (e.g. well pads and associated road and 
pipeline infrastructure) or as being unrelated or pre-existing (e.g. forest 
roads, recent even-aged timber harvests, and various types of existing 
clearings). We classified a few conventional impacts (i.e., stream-side 
vertical pump jacks) as related to shale gas development because their 
pads were managed in conjunction with nearby shale gas infrastructure 
and because their targeted formation, even though they remained 
shallow after development, was listed as Marcellus. Gas well records 
(WVDEP, 2015; WVGES West Virginia Geological and Economic Survey, 
2015) were used to verify target shale formations, drilling status, and 
start dates for all well disturbances. Lengths of each study stream 
(average length 4.1 ± 0.54 km, range 0.95–7.4 km) were calculated in 
GIS using a 3D functional surface length tool and a 3 m resolution digital 
elevation model to account for topography, and study streams were 
defined to have a drainage basin of 9 ha (i.e. <100 ha, Swanson et al., 
1998) to delineate the uppermost headwater reaches (24 k scale or 
higher resolution; e.g. Strager et al., 2009). 

2.3. Waterthrush foraging observations 

We mapped waterthrush territories along 14 streams with varying 
degrees of shale gas disturbance in 2013–2014. Waterthrush territories 
were delineated typically from early April to late June each year. 
Standardized territory mapping (Robbins, 1970; Bibby et al., 1992) 
included ≥6 (average 11.5 ± 0.6) visits along each stream reach, with 
visits preceding peak incubation initiation, and visits within 4 h after 
sunrise to ensure high rates of detection (Mattsson and Cooper, 2006). 

M.W. Frantz et al.                                                                                                                                                                                                                              



Food Webs 33 (2022) e00249

3

While delineating territories, observations were made whether water
thrush were foraging or not (e.g. singing, territorial dispute, flying) and 
mapped with a WAAS-enabled Garmin 60CSX GPS unit with accuracy 
≤5 m. We recorded observations of both male and female waterthrush 
since neither foraging rate nor microhabitat use differs between the 
sexes (Robinson, 1990). When a waterthrush was detected, we only 
approached close enough for observation without perceptibly influ
encing behavior (Vitz and Rodewald, 2010). Waterthrush are just as 

likely to be “loafing” as they are foraging in a given location (Robinson, 
1990), therefore any observation where a waterthrush was observed to 
flush when first encountered was categorized as non-foraging. We varied 
the order and time of day we monitored study streams to prevent any 
time of day effects (Shields, 1977), so waterthrush observations overall 
should not be influenced by our presence nor time of day. We concur
rently searched for and monitored waterthrush nests during these visits. 

Fig. 1. Study area map. Our study area, Lewis Wetzel Wildlife Management Area (LWWMA), lies within the Marcellus-Utica shale basin. We observed Louisiana 
Waterthrush foraging on fourteen 1st and 2nd order headwater streams and collected benthic macroinvertebrate samples during 2013–2014. 
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2.4. Wetted perimeter data 

To evaluate in-stream riparian habitat quality for foraging water
thrush, we collected several stream channel metrics every 50 m along 
each stream using a wetted perimeter protocol designed to determine 
optimal waterthrush foraging substrate locations (Mulvihill and Latta, 
Unpublished results; Master et al., 2005). Sampling locations were 
assigned in GIS prior to entering the field using Linear Referencing, 
which created routes along the stream that accounted for stream bend. 
Points were not sampled that fell on private property (n = 58 points), on 
completely dry sections of streams (n = 30 points), or stream sections 
with water flow too high for waterthrush (n = 5 points). This resulted in 
sampling of 1121 points among the fourteen headwater streams. Wetted 
perimeter data were collected in 2013 for Olive Run and Wyatt Run, and 
for the remainder of the streams in 2015. The data were collected in late 
June–July to be representative of year-round baseflow conditions (i.e. 
flow between rainfall events) as verified by field technicians and the 
principal investigator present for multiple years of the study. 

At each 50 m sampling point, a small-link metal chain was draped 
across the stream where water during a high flow event at the edge of the 
stream meets the bank. This resulted with the ends of the chain curving 
up each side of the stream bank and stopping at the uppermost portion at 
which water could flow, creating a “U-shape” with the chain. The chain 
conformed to all irregularities in the stream channel (e.g. rocks, logs) 
comprising the bottom substrate, including those sticking up above 
water. Using a meter tape, the lengths of chain that were above water 
and stretched over rocks or logs were measured (in meters) as an 
exposed point measurement with the number of exposed points tallied. 
The chain was then removed from the water and stretched to full length, 
with the distance between the two points that marked the edges of the 
stream measured. The full chain length was a wetted perimeter mea
surement, where a wet distance could be calculated from subtracting the 
exposed distance. We measured stream depth (in cm) at five regularly 
spaced intervals across the same start and end points of the chain: wa
ter’s edge on both sides, a quarter of the way in from middle on both 
sides, and middle of stream. A waterthrush foraging substrate score was 
calculated by taking the wetted perimeter value and dividing it by the 
average stream depth at that point (Mulvihill and Latta, Unpublished 
results). A higher wetted perimeter to mean depth ratio presumably 
indicated relatively better foraging substrate, and smaller values poorer 
foraging substrate (Mulvihill and Latta, Personal communication) which 
corresponds to the need for sufficient water flow to maximize nest sur
vival at the time of year collected (Frantz et al., 2018a). At every 50 m 
sampling point, we also collected water chemistry data in the form of 
pH, total dissolved solids (TDS, g/L), conductivity (μS/cm), and water 
temperature (◦C) with a Hannah Instruments multi-parameter probe to 
relate results to a macroinvertebrate assemblage study conducted on the 
study area (Merovich Jr. et al., 2022), and because surface disturbances 
that can increase runoff and sedimentation increase dissolved solids and 
conductance (Merriam et al., 2013). 

2.5. Benthic macroinvertebrate sampling 

Macroinvertebrates occurring in riffle habitat the most adjacent to 
nest site locations were sampled using a Surber sampler in 2013 and 
2014. Nest site samples (n = 178) were collected shortly after the nest 
fledged, failed, or had been abandoned (from mid-June to late July) to 
assess relative prey availability at the time the site was used by water
thrush. Additional macroinvertebrate samples were collected from 
waterthrush foraging locations (n = 65; average 165 ± 12.6 m from nest 
site locations) during two timed bouts, one each in May and June. The 
two bouts were later pooled into one sample after we found no taxa 
differences between the time periods. During sample collection, we 
scrubbed rock substrates and disturbed sediment 3-cm below the stream 
bed within the Surber frame for a total of 3 min (Mattsson and Cooper, 
2006). We separated macroinvertebrates from detritus for each sample 

in the field and stored them in 95% or 70% ethanol. 
Macroinvertebrates in benthic samples were sorted, counted, iden

tified to genus level, and body lengths measured by an environmental 
scientist certified by the Society of Freshwater Scientists in macro
invertebrate identification. For each sample, we calculated several 
commonly used community metrics both at the family (e.g. family taxa 
richness) and genus (e.g. genus taxa richness) levels of resolution. These 
metrics were used to calculate multimetric indices of biotic integrity, 
one at the family level (West Virginia Stream Condition Index, WVSCI; 
Gerritsen et al., 2000) and one at the genus level (Genus Level Index of 
Most Probable Stream Status; GLIMPSS, version CF), which does not 
require the genus-level identification of Chironomidae (Pond et al., 
2013). 

2.6. GIS data preparation and stream formatting 

In ArcMap GIS 10.2.2 (ESRI, 2011, Redlands, CA), foraging obser
vations and macroinvertebrate sampling points were mapped along with 
the wetted perimeter point grid plotted along the headwater streams. 
Waterthrush typically travel no further than 60 m away from their linear 
territories (Mattsson and Cooper, 2009) and will forage off stream more 
often as the breeding season progresses (Robinson, 1990). Therefore we 
placed a 60 m buffer around each wetted perimeter sampling point. 
Using a spatial join, all foraging and non-foraging observations within 
those buffers were assigned to the wetted perimeter grid. Metrics from 
macroinvertebrate sampling points were merged into a single new 
output if they fell within a 60 m buffer, and then averaged if more than 
one point fell within a buffer. Any wetted perimeter point that did not 
have any foraging or non-foraging observations nor macroinvertebrate 
data were removed from our response variable. A foraging probability 
index (FPI, 0–100%), our response variable, was derived from the 
number of foraging observations divided by the total observations 
(foraging and non-foraging) for the 60 m area. Calculating FPI in this 
manner gave a mostly continuous index since a 60 m buffer overlapped 
the 50 m wetted perimeter points, meaning observations and benthic 
samples could be assigned to more than one nearby wetted perimeter 
sample point. We defined FPI as a relative index that gauged where 
waterthrush were most likely to be found foraging. Rather than assume 
any areas with no waterthrush observations (i.e. points that we did not 
use for FPI) were non-optimal foraging areas, we reserved these wetted 
perimeter points for testing model prediction. 

Gas variables (% Marcellus pad, % any gas pad (unconventional and 
conventional), % any gas infrastructure) were created first as reach 
contributing area (RCA; i.e. catchment area scale) attributes using the 
STARS (Spatial Tools for the Analysis of River Systems) toolbox 
(Peterson and Ver Hoef, 2014) in ArcMap GIS as a means of calculating 
land use. The Accumulate Values Downstream and Watershed Attributes 
tools were used to create and assign the gas RCA values to sampled 
points on the stream. To get a percentage contribution of each gas var
iable, we divided the value assigned to each stream sample by the total 
watershed area representative of all segment watersheds encompassing 
the study streams (33.4 km2 total). Percent Marcellus Pad included three 
retention ponds that may pose the same concerns to surface water 
contamination. While we include a metric that includes conventional 
gas well pads (% Any Gas Pad), all major landscape alterations, devel
opment, and activity seen during the duration of our study would not 
have occurred without shale gas at our study site (Farwell et al., 2016). 
Percent Any Gas Infrastructure included well pads, pipelines, retention 
ponds, and access roads leading to well sites. 

Stream segment vectors were simplified to avoid converging streams 
and have minimum pseudonodes (Peterson and Ver Hoef, 2014). In the 
original study design, parts of Buffalo Run that the headwater streams 
emptied into were included as part of the boundaries of each study 
stream since many times a waterthrush territory would border or 
include part of Buffalo Run (Frantz et al., 2018a). These sections of 
Buffalo Run were removed from each study stream since each stream can 
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only have one outlet in SSNMs. Stream segments were also extensively 
preprocessed to ensure they were digitized in a downward flow direction 
and any network topology errors removed that may interfere with 
spatial weighting calculations. 

2.7. Model spatial distance and weight preprocessing 

All model analyses were done using the Spatial Stream Network 
(SSN) package (Ver Hoef et al., 2014) in R (R Core Team, 2014) and SSN 
object preprocessing for import in ArcGIS using the STARS toolbox 
(Peterson and Ver Hoef, 2014). In order to fit spatial models using 
spatial weights, we first determined stream segment proportional in
fluence and additive function values using STARS. Stream segment 
proportional influence was based on RCA for each line segment water
shed area (Peterson and Ver Hoef, 2010). Spatial weight was based on 
RCA since it serves as a surrogate for flow volume (Friedan et al., 2014). 
These values were contributed in R to create the spatial weights (Ver 
Hoef et al., 2014). Upstream distance between a stream outlet and each 
stream segment and sample point were calculated with STARS (Peterson 
and Ver Hoef, 2014) to be used in R for calculating hydrologic 
flow-connected and -unconnected distances (see Ver Hoef and Peterson, 
2010) in R. The processed dataset was stored and displayed as a Land
scape Network (LSN) that included all spatial and geographic relation
ships for the streams and stream dataset (Theobald et al., 2006; Peterson 
and Ver Hoef, 2014). 

2.8. Model variables, covariance, selection, and evaluation 

We initially reviewed all data graphically and through diagnostic 
tools to test assumptions of normality and applied data transformations 
if it improved approximation to normality (Zuur et al., 2010). Torge
grams (i.e. semivariograms for streams; see Zimmerman and Ver Hoef, 
2017) were used to assess spatial autocorrelation which breaks up the 
semivariance into flow-connected and -unconnected structures (Ver 
Hoef et al., 2014). Based on diagnostic evaluation we added a log10 data 
transformation for temperature, total dissolved solids (TDS, g/L), con
ductivity (μS/cm), and foraging score. 

Our spatial-stream network models (SSNMs) used a mixed-model 
autocovariance structure consisting of exponential tail-up (TU), tail- 
down (TD), and exponential Euclidean. TU and TD autocovariance 
models represent flow-connected and –unconnected relationships along 
the stream and is based on hydrologic (rather than “traditional” straight- 
line Euclidean) distance (extensive explanation can be found in Ver Hoef 
and Peterson, 2010). Euclidean distance was included for comparison 
since it is a traditional distance. Autocovariance models were not 
determined a priori (Friedan et al., 2014) as a partial sill, range 
parameter, and overall nugget effect estimated for each model helps 
determine relative influence of the components in individual models for 
either model improvement or removal (Ver Hoef and Peterson, 2010). 

We used an exploratory multi-stage model selection process for 
model evaluation that allowed us to determine autocovariance structure 
and what covariates to keep for further evaluation (Friedan et al., 2014). 
We modeled covariates individually since we were interested in which 
ones had the most predictive power and were statistically significant 
before comparing the individual covariates in a final model set. As such, 
there was no need to examine correlations of covariates to avoid mul
ticollinearity. We set α = 0.10 to avoid missing any variables that may be 
of ecological relevance. We first ran a non-spatial linear regression 
model equivalent for each variable for comparison and evaluation of 
spatially-influenced properties in spatial models, and because 
non-spatial linear regression models are traditionally how the variables 
would have been modeled. Only significant variables (P < 0.10) from 
the non-spatial models were placed into spatial models. Initial covari
ance structures of spatial models were mixed and fixed to exponential 
TU, exponential TD, and exponential Euclidean since we expected 
variability in how spatial weights may affect each covariate. Both 

non-spatial and spatial models included an estimated nugget covariance 
effect to account for the influence of variance in geostatistical datasets 
(Diggle and Robeiro 2007). 

Maximum likelihood (ML) estimation was used to estimate param
eters of Gaussian models (response variable FPI). Akaike’s Information 
Criterion (AIC; Akaike, 1974; Burnham and Anderson, 2002) was used 
to compare non-spatial and spatial models which penalized for addi
tional spatial autocovariance structures (Ver Hoef and Peterson, 2010). 
We considered the model with the lowest AIC value to be the best- 
supported model for each candidate set, and any models with ΔAIC 
<2 were considered plausible (Burnham and Anderson, 2002). Including 
non-spatial models in initial AIC model selection allowed us to deter
mine whether spatial models would outperform traditional regression 
models. R2 and root mean square prediction error (RMSPE) based on the 
observed response variable and leave one out cross validation (LOOCV) 
predictions were also calculated. Variance decomposition was used to 
determine the total amount of variation associated with a response 
variable (Ver Hoef et al., 2014). Predictions from wetted perimeter lo
cations with no waterthrush observations were generated using uni
versal kriging (Cressie, 1993). 

The next stage of model selection involved selecting the best auto
covariance structure (Friedan et al., 2014). If exponential TU/TD models 
had a higher partial sill than Euclidean autocovariance, we added 
Mariah, Spherical, and Linear-with-sill to test before final selection of 
autocovariance. Final models were evaluated by AIC, ΔAIC, RMSPE, and 
by examining the influence of each variance component. We mapped 
and visually examined prediction values ± standard error (SE) as one 
means of determining overall model performance (Bennett et al., 2013) 
along with plotting of LOOCV predictions and SEs against the observed 
data. Post-hoc Spearman’s Rho correlation index tests in R were used to 
determine what components of WVSCI, GLIMPSS, or foraging score were 
associated to FPI if those covariates were found important during model 
selection. 

3. Results 

During 2013–2014 we collected 948 foraging and non-foraging ob
servations of waterthrush. Each stream had an overall average of 30.6 ±
7.2 foraging and 37.1 ± 6.2 non-foraging observations (average 67.7 ±
11.1 total observations per stream, range 4–214) collected. We had 318 
60-m buffered wetted perimeter sampling points for analysis that 
included both waterthrush observations and benthic samples, and an 
additional 103 saved for prediction modeling that had benthic samples 
but no waterthrush observations. Each stream had an average of 22.7 ±
3.4 sampling points (range 3–42). Each sampling point contained on 
average 4.1 ± 0.2 waterthrush observations (range 1–30). Average 
foraging observations at each sampling point were 2.0 ± 0.2 (range 
0–30) and average non-foraging observations were 2.0 ± 0.1 (range 
0–14). Overall average foraging probability index (FPI) on each stream 
based on the sampling points was 47.9 ± 4.5% (range 20.3–80.4%, 
Fig. 2). 

Stream temperature, benthic biomass, benthic density, GLIMPSS, 
and WVSCI were significant in explaining foraging probability index 
(FPI) according to the non-spatial linear regression models (P < 0.10, 
Table 1). A torgegram for FPI suggested there may be higher spatial 
autocorrelation between flow-connected sample points at short dis
tances, but both flow-connected and unconnected samples have high 
autocorrelation (Fig. 3). The torgegram also suggested using both tail up 
(TU) and tail down (TD) autocovariance structures in initial spatial 
models to obtain the full range of autocorrelation. 

The five significant variables were placed into individual spatial 
models where only GLIMPSS and WVSCI remained significant (P < 0.05, 
Table 2) to continue model selection and comparison. Given support 
that tail down (TD) models performed better than tail up (TU) models 
(Table 3), we added two more tail down variance components for AIC 
model comparison (Table 4). Traditional, non-spatial regression models 
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had the least support compared to spatial models for GLIMPSS and 
WVSCI (ΔAIC values >2, Table 4). 

In the AIC model comparison for WVSCI, three models had 
competing support (ΔAIC values >2, Table 4). For GLIMPSS, there were 
two models with competing support (ΔAIC values >2, Table 4). WVSCI 
and GLIMPSS had similar root-mean-square-prediction error (RMSPE, 
Table 4) and indication of both TD and Euclidean variance structure 
(Table 5). Final models for WVSCI and GLIMPSS had low predictive 
power with almost all model variance explained by the autocovariance 

component rather than the covariate (Table 5, Figs. 4 and 5). Post-hoc 
spearman rank correlation tests between FPI and WVSCI/GLIMPSS 
metrics (no. Ephemeroptera genera, no. Plecoptera genera, no. intol
erant taxa tolerance value <4, and EPT richness) were all significant 
(Rho = 0.24, 0.20, 0.23, and 0.22 respectively, P < 0.001, Fig. 6). 

4. Discussion 

Our study is the first to apply SSNMs to relate trophic levels across 
the aquatic-terrestrial interface. Overall, spatial models outperformed 
traditional regression models, and made a statistical difference in 
whether stream covariates of interest were considered relatable to 
waterthrush foraging areas. While the spatial models had poor predic
tive power, SSNMs allowed us to assign variability due to spatial auto
correlation and evaluate potential trends involved in foraging on 
headwater streams. Stream temperature, biomass, and density were 
found to be significant using standard linear regression, but were no 
longer significant once we considered spatial autocorrelation. Therefore 
using standard statistical approaches could have led to making a type I 
error for these covariates (Dormann et al., 2007). 

We did not find a relationship between foraging substrate score 
based on wetted perimeter data and FPI (Table 1). The protocol was 
designed on 1st and 2nd order waterthrush study streams in Pennsyl
vania (PA) that are relatively wider, less bank, and deeper water depth 
(Latta, 2009) than our narrow streams with steeper topography. Stucker 
(2000) found 1st through 3rd order waterthrush streams in Mississippi 
had more instream exposed rock when estimating 15 cm of additional 
water flow than streams without waterthrush, similar to what would 
create a high FPI score (i.e. higher wetted perimeter). As such, the 
wetted perimeter protocol may be region and stream-type specific, and 
water depth in relation to exposed or wetted areas that create available 
foraging microhabitat less important for perennial streams with many 

Fig. 2. Foraging probability index by stream. Overall foraging probability index (FPI, 0–100%) on each stream during 2013–2014. FPI was derived from the number 
of foraging observations/total observations for a 60 m area surrounding each wetted perimeter grid point on the stream. FPI was a relative index that gauged where 
waterthrush were most likely to be found foraging. Note Carpenter Run (CARP) only had two foraging observations, limiting the ability to make inferences about FPI 
on that stream. 

Table 1 
Initial non-spatial linear models (with nugget) to test the relationship between 
foraging score, water chemistry, macroinvertebrate metrics, shale gas land use 
and foraging probability index (FPI). Covariates with bolded P values were 
significant at α = 0.10. R2 is a generalized value of model fit and the partial sill 
(sill minus nugget) was included to assess variance of a covariate without the 
nugget effect.  

Variable Estimate SE t value P 
value 

R2 Partial 
sill 

Foraging Score 0.046 0.054 0.855 0.393 0.0023 0.122 
Temperature 

(◦C) 
− 1.073 0.619 − 1.732 0.084 0.01 0.121 

pH 0.048 0.077 0.627 0.531 0.0012 0.122 
TDS, g/L − 0.052 0.106 − 0.494 0.622 0.0001 0.122 
μS/cm − 0.055 0.098 − 0.554 0.580 0.001 0.122 
GLIMPSS 0.004 0.001 3.008 0.003 0.03 0.119 
WVSCI 0.005 0.002 2.948 0.003 0.03 0.119 
Biomass 0.101 0.037 2.724 0.007 0.02 0.120 
Density 0.115 0.056 2.053 0.041 0.01 0.121 
% Marcellus Pad − 0.054 0.183 − 0.294 0.769 0.0003 0.122 
% All Pads − 0.062 0.175 − 0.353 0.725 0.0004 0.122 
% Any Gas 

Infrastructure 
− 0.018 0.086 − 0.213 0.832 0.0001 0.122  
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ephemeral and intermittent tributaries. For example, less availability of 
bank nest substrate in PA meant nests were commonly found off-stream 
in root balls of tree tip ups (S. Latta, Unpublished results), whereas nests 
at tree tip ups were rare at our study site (1 of 184 nests in 2013–2014; 
M. Frantz, Unpublished results). Master et al. (2005) found waterthrush 
densities on wintering grounds were higher on streams with higher 
wetted perimeter values, suggesting the need to test these protocols 
elsewhere in the waterthrush breeding range. 

Waterthrush benthic studies were completed in 2011 and 2013–2014 
during peak (2011), abated (2013), and ramped up (2014) shale gas 
development at our study site. We found that waterthrush territory 
densities were greater on streams with higher GLIMPSS scores (Wood 
et al., 2016), which supports our significant spatial models with 
GLIMPSS and WVSCI. Increasing GLIMPSS and WVSCI values increase 
aquatic prey metrics and indicates better riparian habitat quality for 
waterthrush (Frantz et al., 2018b). Our spatial model suggested at 
minimum a weak relationship between FPI and these multi-metric 
indices, at least relative to nesting locations where the majority of our 

benthic samples were collected. Friedan et al. (2014) used SSNMs to 
determine drivers of family and genus-level macroinvertebrate indices 
and wondered whether using coarser (mainly family-level) macro
invertebrate identification could have masked spatial patterns or 
reduced predictive power. In our case, using family vs. genus-level 
indices did not make a difference in residual variance of autocovar
iance (Table 5). Our results suggest family-level taxonomic resolution 
may be good enough to indicate most likely waterthrush foraging areas. 

Fig. 3. Foraging probability index torgegram. An example of a torgegram for foraging probability index (FPI) which is a modified type of semivariogram. A tor
gegram displays semivariance (spatial autocorrelation) for samples on streams into flow-connected and -unconnected structures to assist with model fitting. Di
ameters of circles are proportional to the number of pairs of points in each bin. 

Table 2 
Initial spatial generalized linear models to test the relationship between foraging 
score, water chemistry, macroinvertebrate metrics, shale gas land use and 
foraging probability index (FPI). Covariates with bolded P values were signifi
cant at α = 0.10. R2 is a generalized value of model fit and the partial sill (sill 
minus nugget) was included to assess variance of a covariate without the nugget 
effect.  

Variable Estimate SE t value P value R2 Partial sill 

Temperature − 0.747 0.842 − 0.887 0.376 0.002 0.0003 
GLIMPSS 0.003 0.001 2.114 0.035 0.01 0.0003 
WVSCI 0.004 0.002 2.493 0.013 0.02 0.0003 
Biomass 0.051 0.039 1.281 0.201 0.01 0.0003 
Density 0.074 0.054 1.360 0.174 0.01 0.0003  

Table 3 
Initial mixed autocovariance components (VAC) of the WVSCI and GLIMPSS 
spatial models. The nugget captures variability due to measurement error and/ 
or spatial variability at less than the sampling distance. The range represents the 
distance at which the covariate is no longer spatially autocorrelated. The partial 
sill (sill minus nugget) assesses variance of a covariate without the nugget effect. 
Percent VAC is the percentage of residual variance accounted for by each 
autocovariance component. Based on higher partial sill values for Exponential 
TD, we added Mariah, Spherical, and Linear-with-sill TD to test before final 
selection of autocovariance components.  

Variance component WVSCI GLIMPSS 

Tail down (TD) Autocovariance function Exponential Exponential  

Range 561.606 588.130  
Partial sill 0.073 0.067  
VACTD (%) 0.56 0.52 

Tail up (TU) Autocovariance function Exponential Exponential  
Range 433.213 734.33  
Partial sill 0.00000145 0.0000003  
VACTU (%) 0.00001 0.000002 

Euclidean (Euc) Autocovariance function Exponential Exponential  
Range 409.006 400.174  
Partial sill 0.055 0.061  
VACEuc (%) 0.42 0.47 

Nugget Nugget 0.0003 0.0003  
VACNugget (%) 0.002 0.002  
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Territory densities in 2011 were greater where Ephemeroptera, 
Plecoptera, and Trichoptera densities were higher, along with higher 
biomass (Wood et al., 2016; Merovich Jr. et al., 2022); territory density 
declines in 2013–2014 in part lead to the disassociation between aquatic 
prey biomass, density, and waterthrush demographic response at a nest 
and territory level (Frantz et al., 2018b). While biomass and density 
were no longer significant in our spatial models, there is still a positive 
association between richness of these sensitive taxa orders and FPI 
(Fig. 6). We did not assess biomass or density by size class, by which 
waterthrush may have shown a stronger, significant response (Wood 
et al., 2016) in the spatial models. Overall riparian habitat site quality 
may be more important to waterthrush site assessment (Frantz et al., 
2018a) than benthic metrics or in-stream characteristics alone for FPI. 
Indeed, waterthrush appear to be able to adapt to shale gas disturbance 
and meet all their foraging needs until potentially a certain disturbance 
threshold is reached (Frantz et al., 2018b). Adaptation strategies include 
provisioning outside their territories and foraging on terrestrial arthro
pods when their preferred benthic prey is reduced (Trevelline et al., 
2018). Nest survival in 2011 was best explained by Habitat Suitability 
Index (HSI), which describes nesting, vegetative, and foraging compo
nents important to waterthrush (Wood et al., 2016) that could also be 

correlated to these alternative terrestrial subsidies sought. Productivity 
and biomass of insects on and off stream are linked (Burdon and Har
ding, 2007) where further research of avian predator-prey interactions 
and feedback loops are needed. Since terrestrial insects are considered 
lower quality prey (Twining et al., 2016), waterthrush are still vulner
able to carryover effects from the breeding grounds which may result in 
reduced survival (Latta et al., 2016). 

The three % gas land use covariates were not significant in the initial 
non-spatial models (Table 1). These three variables were non-normal 
and could not approximate normality with traditional transformations, 
so technically were not appropriate for the linear models. Waterthrush 
have a negative demographic response to the physical presence of shale 
gas at localized levels of the nest or territory (Frantz et al., 2018a, 
2018b), as well as their aquatic prey (Frantz et al., 2018b), so it is un
clear the extent to which waterthrush foraging may change due to 
catchment-level shale gas disturbance. However, Merovich Jr. et al. 
(2022) found a weak and mixed but detectable response of macro
invertebrate assemblages and water chemistry parameters at a smaller 
sub-catchment scale at our study site due to shale gas disturbance. The 
mixed benthic results and different spatial scale from Merovich Jr. et al. 
(2022) likely contributed to no shale gas association to FPI. GLIMPSS 
scores were lower downstream of shale gas disturbance in 2011 when 
shale gas activity was at its highest compared to sampling in 2013 and 
2014 (Merovich Jr. et al., 2022). Water chemistry appeared to lag in 
response to disturbance in 2011 (Merovich Jr. et al., 2022), suggesting 
short-term chronic condition consequences to food webs from persistent 
land use activities in the same manner land use legacies can influence 
environmental variables and in turn biota (Maloney et al., 2008). 

There are undisturbed stream segments and ephemeral tributaries on 
every stream giving opportunities to forage elsewhere (Wood et al., 
2016), and waterthrush can compensate for food loss (Mulvihill et al., 
2008). While this suggests to some extent adaptability in selecting 
foraging locations, shale gas disturbed areas have the potential to serve 
as sink habitats (Frantz et al., 2018a), so waterthrush may be unaware of 
breeding or foraging in an ecological trap (Gates and Gysel, 1978; 
Robertson and Hutto, 2006; Frantz et al., 2019). Additionally, water
thrush in shale gas disturbed areas have been found to bioaccumulate 
more heavy metals associated to the drilling process than those at un
disturbed shale gas areas at our study site and elsewhere (Latta et al., 
2015) with potential sex-specific influences on gene expression (Frantz 
et al., 2020). Foraging on macroinvertebrates is likely one way the heavy 
metals bioaccumulate, and we do not know how that factors into FPI. 
Shale gas well pad construction and drilling typical of our study site and 
others occur in “pulses” (Brittingham et al., 2014), making ephemeral 
disturbances such as sedimentation or potential runoff entering a stream 
system where waterthrush hold breeding territories difficult to quantify. 
SSNMs that can treat both spatial and temporal effects and allow non- 
linear data structures may be better suited to model these relation
ships (O’Donnell et al., 2014; Rushworth, 2014; Rushworth et al., 2015). 

While our spatial models performed better than non-spatial models, 
they still had poor predictive power (Table 5, Fig. 4). Aquatic prey 
community responses were weaker in 2013–2014 at a nest and territory 
level than in 2011 in relation to shale gas activity levels (Frantz et al., 
2018b) where this may also be true of predictive power at the 
catchment-level. Additionally, Friedan et al. (2014) found that 
spatial-weighting schemes made a substantial difference in model per
formance and affected variables differently. Our only spatial weighting 
scheme consisted of reach contributing area (RCA) (i.e. catchment area, 
Horizon Systems Corporation, 2007) and represented the aerial extent 
that contributes overland flow to a stream line segment. Some other 
spatial-weighting options to consider are Shreve (1967) or consideration 
of slope at stream segments. While catchment area may have been an 
appropriate scale for gas land use variables, a spatial weighting scheme 
such as slope that reflects local scale variability may have been more 
appropriate for headwater streams (Friedan et al., 2014). Our headwater 
streams have steep topography and many ephemeral tributaries, and 

Table 4 
AIC model comparison for WVSCI and GLIMPSS spatial models with Exponential 
Euclidean, Exponential tail down (TD), Spherical TD, and Linear plus sill TD 
autocovariance components in comparison to the non-spatial model with less 
parameters. Lowest leave-one-out cross-validation root-mean-square-prediction 
error (RMSPE), AIC, and ΔAIC values <2 were used to assess which models to 
select for final autocovariance components (VAC) model comparison.  

Variance component AIC ΔAIC RMSPE 

WVSCI 
Exponential TD + Nugget 40.469 0.000 0.233 
Exponential Euclidean + Nugget 41.250 0.781 0.233 
Spherical TD + Nugget 41.971 1.502 0.236 
Linear plus sill TD + Nugget 42.898 2.429 0.236 
Non-spatial + Nugget 243.057 202.588 0.346  

GLIMPSS 
Exponential TD + Nugget 42.981 0.000 0.234 
Exponential Euclidean + Nugget 43.691 0.710 0.235 
Spherical TD + Nugget 45.036 2.055 0.238 
Linear plus sill TD + Nugget 45.969 2.988 0.238 
Non-spatial + Nugget 243.403 200.422 0.346  

Table 5 
Final autocovariance components (VAC) of the WVSCI and GLIMPSS spatial 
models that best explain foraging probability index (FPI) based on AIC model 
comparison. The nugget captures variability due to measurement error and/or 
spatial variability at less than the sampling distance. The range represents the 
distance at which the covariate is no longer spatially autocorrelated. The partial 
sill (sill minus nugget) assesses variance of a covariate without the nugget effect. 
Percent VAC is the percentage of residual variance accounted for by each 
autocovariance component.  

Variance component WVSCI GLIMPSS 

Tail down Autocovariance function Exponential Exponential  

Range 494.821 494.117  
Partial sill 0.128 0.128  
VACTD (%) 0.98 0.98 

Tail down Autocovariance function Spherical Spherical  
Range 282.836 NA  
Partial sill 0.129 NA  
VACTD (%) 0.97 NA 

Euclidean (EUC) Autocovariance function Exponential Exponential  
Range 462.148 459.309  
Partial sill 0.128 0.128  
VACEUC (%) 0.98 0.98 

Nugget Nugget 0.0003 0.0003  
VACNugget (%) 0.002 0.002  
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headwaters are known to have high between stream variability of 
habitat and high macroinvertebrate beta diversity within and among 
catchments (Clarke et al., 2008). 

Waterthrush have linear territories on the stream (Mulvihill et al., 
2008) and typically fly up and down the stream corridor rather than 
around it (M. Frantz, Personal observation). As such it makes sense that 
tail-down (TD) autocovariance structure explained the most model 

variability as it allows correlation of samples between flow-connected 
and -unconnected stream segments. Euclidean distance having almost 
equal explanation of model variability likely reflects some combination 
of terrestrial components to waterthrush ecology and territory-scale or 
higher attributes. Trevelline et al. (2016) found that terrestrial Lepi
doptera was in 92% of waterthrush nestling diets where phenological 
shifts in the availability of terrestrial insects may play an additional 

Fig. 4. Model performance. Leave one out cross validation predictions (LOOCV) and standard error (SE) against the observed data for the top WVSCI and GLIMPSS 
spatial models as one means of assessing model performance. 

Fig. 5. Prediction map. An example of prediction values mapped for WVSCI (solid circles) in relation to collected WVSCI data (open circles). The larger the solid 
circle, the more confidence in the prediction value (note most circles are small). Red values have a higher foraging probability index (FPI) than blue values. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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unfactored role here. However predictive power depends not only on 
autocovariance structure but the covariates themselves (Friedan et al., 
2014). For instance, FPI was likely not representative on Carpenter Run 
which could have introduced some unnecessary variability in the data 
(Fig. 2). Priority during our six year (2009–2011, 2013–2015) water
thrush demography project was to accurately delineate waterthrush 
territories, with emphasis on collecting new location points that re
flected all boundaries of a waterthrush territory. While we monitored 
Carpenter Run for nests in 2013, we did not start collecting territory and 
foraging observations until 2014. Introducing stream (n = 14) as a 
random effect post-hoc in the WVSCI and GLIMPSS models may have 
explained between 4.6 and 6.5% of model variance (e.g. AIC = 41.81, 
RMSPE = 0.232 for WVSCI with Exponential TD autovariance +
Stream). This emphasizes the importance of not only thorough obser
vation collection but accounting for headwater stream heterogeneity. 

Physical features of the landscape affect aquatic-terrestrial food web 
interactions (Witman et al., 2004) like forest streamside vegetation 
(Sweeney, 1993). While we did not include habitat covariates in our 
models to relate to the stream channel components that compose FPI, 
our study site remained relatively forested (>95%) and intact despite 
localized landscape disturbance from shale gas (Merovich Jr. et al., 
2022). Waterthrush were previously found to have a weak positive 
relationship to forest canopy disturbance due to shale gas development 
(Frantz et al., 2018) which could be related to increased net primary 
production (Johnson et al., 2015) or increased abundance of specific 
prey items (Barton, 2016). Merovich Jr. et al. (2022) found the strongest 
macroinvertebrate assemblage dissimilarities upstream and down
stream of shale gas disturbance in 2011 using GLIMPSS when shale gas 
intensity was highest, but not during our foraging study except for 
specific indicator genera. Where waterthrush were found foraging in our 
study demonstrate how macroinvertebrate prey is controlled by local 
environmental conditions and how placement or emergence of these 
food resources in part can explain insectivore densities and distributions 
(Gray, 1993). 

Collecting large data sets due to stream monitoring programs is 
becoming commonplace (Rushworth et al., 2015), stressing the need to 
use the proper statistical tools that will provide optimal performance and 
prediction power. While our spatial models had poor performance power, 
we can still produce predictive maps that can direct us to potentially 
important waterthrush foraging areas to evaluate further such as upper 
reaches of headwater tributaries (Fig. 5). The utility of SSNMs have been 
used previously to predict fish densities (Isaak et al., 2016), and now for an 
apex avian predator that habits the aquatic-terrestrial interface, and thus 
has the potential for land managers with waterthrush occurrence data to 
prioritize management or conservation areas given the waterthrush’s role 
as a bioindicator of aquatic stream integrity (O’Connell et al., 2000; 
Mulvihill et al., 2008). Our exploratory SSNM analyses are a starting point 
to inquire further into food-web interactions between waterthrush, 
macroinvertebrates, and potential surface water contamination, and 
serves as an example of how spatial autocorrelation coming from multiple 
sources and scales may influence study implications. 
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