
1.  Introduction
The flow regime of streams and rivers has been modified by human activities at a global scale (Grill 
et al., 2019; Tonkin et al., 2019). As the human population continues to grow, the increasing demand for 
water supply, flood protection, and energy production has prompted the widespread adoption of engi-
neering solutions such as the construction of dams, levees, and other hydraulic infrastructures (Couto & 
Olden, 2018; Shumilova et al., 2018; Zarfl et al., 2015). As a result, streams and rivers are under increas-
ing anthropogenic pressure and are among the most threatened ecosystems worldwide, with particularly 
high rates of species extinctions (Tickner et al., 2020). The ongoing global climate change is expected to 
further exacerbate this situation by increasing the frequency of extreme hydrologic events such as floods 
and droughts that act synergistically with other stressors affecting aquatic ecosystems (e.g. Navarro-Ortega 
et al., 2015). This is of particular concern since freshwater ecosystems support about 10% of all known spe-
cies (Strayer & Dudgeon, 2010) and are essential for human well-being, providing a wealth of ecosystem 
services (Green et al., 2015). Understanding and limiting the ecological effects of flow alteration is therefore 
fundamental for sustainable use of water resources.

The Natural Flow Regime Paradigm (Poff et al., 1997) is at the heart of the environmental flow definition 
and specifically acknowledges that river biota is adapted to seasonal and interannual variations of river 
flow. In order to mitigate the environmental impacts associated with infrastructures while maintaining 
their functioning, environmental flows (termed e-flows hereafter) should mimic the natural streamflow 
variability in terms of magnitude, frequency, duration, timing, and rate of change (Arthington et al., 2018). 
However, given the limits in the ability to mimic natural regimes in regulated rivers, e-flows policy must 
be informed by a clear understanding of the relation between river ecology and flow characteristics (i.e., 
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flow-ecology relationships), which is, however, hampered by several practical challenges. These include, 
among others: (i) the paucity of the stream and river locations for which ecological information can be 
paired with long term hydrologic records (e.g. Patrick & Yuan, 2017); (ii) the natural variation in flow re-
gime among rivers and sub-catchments, whereby ecological responses could vary significantly among in-
dividual flow regime types (Poff et al., 2010); and (iii) the spatial configuration of river ecosystems, which 
requires statistical approaches able to account for the complex autocorrelation associated with network 
topology and flow directionality (Peterson et al., 2013).

Several approaches have been used to address these challenges. Matching flow and ecological data is a 
prerequisite for quantifying flow-ecology relationships, and yet the spatial and temporal overlap between 
observed hydrologic and biological data is often poor (e.g. Mazor et al., 2018). To mitigate such limitations, 
either statistical or process-based hydrological models have been used. Statistical hydrological models aim 
to predict flow metrics at ungauged locations from the observed relation between available streamflow se-
ries and catchment characteristics (Booker et al., 2015; Patrick & Yuan, 2017), or by means of geostatistical 
interpolation (Skøien et al., 2006). Process-based hydrologic models, on the other hand, directly simulate 
streamflow time series at specific network locations by integrating the hydrological processes acting within 
the drainage area: i.e., precipitation, snowmelt, interception, evapotranspiration, infiltration, surface, and 
sub-surface flow, as well as their interactions (see e.g., Beven, 2012).

The second challenge is related to the heterogeneity of river basins where the natural streamflow regime 
and river biota differ markedly across the network. Therefore, it is necessary to classify flow regimes into 
distinct and easily interpretable classes in order to define reference flow conditions and implement target-
ed e-flows schemes, while also minimizing the effects of other co-varying environmental factors (Belmar 
et al., 2011; Booker et al., 2015). As a result, e-flows can be transferred among similar flow regimes at region-
al scales. For instance, the identification and classification of reference hydrographs are two key steps (i.e., 
“Hydrological foundation” and “River classification”) in the assessment of the “Ecological Limits of Hydro-
logic Alteration” (ELOHA), the holistic framework increasingly adopted to define regional flow standards 
(Poff et al., 2010).

The third challenge is not strictly associated with flow-ecology research, but it is related to the spatial struc-
ture of river networks. The topology of branching river networks implies that classical statistical methods 
are unable to account for the spatial autocorrelation due to the connectivity and directionality of water flow 
within the network. Failing to account for such spatial patterns may lead to spurious correlations (Isaak 
et al., 2014). However, recent advances in the field of fluvial variography (i.e., spatial statistics applied to 
river networks) have provided the tools to model these spatial dependencies over the Euclidean and wa-
tercourse dimension, while also accounting for flow directionality (Carrara et al., 2012; Ver Hoef & Peter-
son, 2010; Zimmerman & Ver Hoef, 2017). Such stream-network models have been used to derive spatially 
explicit estimates of water quality and population abundance across river basins (Isaak et al., 2017; McGuire 
et al., 2014), but applications to flow-ecology research are surprisingly scarce (Bruckerhoff et al., 2019).

In this paper, we develop and discuss a framework that addresses these challenges using the Adige River ba-
sin (northeastern Italy) as a case study. In doing so, we aim to contribute to the understanding of flow-ecol-
ogy relationships at the regional scale and evaluate potential flow-sensitive indicators, since recent works in 
the Italian Alps have shown the poor sensitivity of some of the current Water Framework Directive (WFD) 
biological indicators (e.g., Star_ICMi) to flow parameters (Larsen et al., 2019; Quadroni et al., 2017). Specif-
ically, we focused on benthic macroinvertebrates as model organisms because of their essential role in the 
functioning of lotic systems, their widespread use as biological indicators, and the availability of monitoring 
data in the region (De Pauw et al., 2006; Friberg, 2014; Larsen et al., 2019). We included both taxonomic and 
functional (traits-based) metrics, as these provide independent and complementary information that could 
be valid across biogeographic zones (Heino et al., 2013).

To achieve the above-mentioned goals, first, we used the process-based HYPERstreamHS hydrological mod-
el (Avesani et al., 2021) to simulate the natural streamflow series of one-hundred stream reaches through-
out the Adige River basin where biological information was available. Then, we classified distinct flow 
regimes representing the natural hydrological conditions of the streams in the basin. Subsequently, we used 
spatial stream-network models (SSN) to correlate the macroinvertebrate taxonomic and functional metrics 

LARSEN ET AL.

10.1029/2020WR028496

2 of 17



Water Resources Research

with the streamflow characteristics and habitat conditions within each flow regime, while also accounting 
for spatial autocorrelation.

2.  Data and Methods
2.1.  Study Area

The study area is the Adige River basin, an Alpine catchment in northeastern Italy (Figure 1), closed at “Vo 
Destro” gauging station (drainage area 10,600 km2). The Adige River is the second-longest Italian river, with 
the typical natural streamflow regime of the Alpine region showing two seasonal maxima, one occurring in 
spring-summer due to snow and glacial melt, and the other in autumn triggered by cyclonic storms (Chi-
ogna et al., 2016; Mallucci et al., 2019). Recent analyses of historical hydro-climatic trends revealed that the 
basin is sensitive to climate change with the ongoing reduction of winter snowfall and anticipation of the 
snow-melting season (Diamantini et al., 2018; Lutz et al., 2016; Mallucci et al., 2019), which are likely to al-
ter its flow regime by the second half of 21st century (Majone et al., 2016). Such modifications may have rel-
evant socio-economic consequences in the catchment, where more than 80% of licensed withdrawn water 
is allocated to large hydropower plants, and about 6% to agriculture (Bellin et al., 2016; Zolezzi et al., 2009).

We selected 100 headwater stream reaches (Figure 1) throughout the catchment for which biological infor-
mation was available and with an almost pristine streamflow regime (i.e., no major in-stream hydraulic in-
frastructure or impoundments upstream). The selected reaches were mostly first and second order streams, 
with elevation and drainage area ranging from 170 to 1900 m a.s.l. and from 10 to 434 km2, respectively.
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Figure 1.  Map of the Adige River network (northeast Italy) showing the locations of the 100 biological monitoring 
sites for which 23 years of natural streamflow time series were simulated. Colors define the distribution of the three 
identified flow regime classes (see Section 2.4). The location of the gauging stations providing observed streamflow 
series is also shown, including those used for calibration (c) and validation (d) of the hydrological model.
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2.2.  Observational Datasets

2.2.1.  Streamflow data

The regional precipitation and temperature data set ADIGE (Mallucci et al., 2019) was used as meteoro-
logical forcing for hydrological modeling. This data set provides daily precipitations and temperatures for 
the time interval 1956–2013 at the spatial resolution of 1 km. The data set was developed by interpolating 
the measurements available at the meteorological stations within and nearby the river basin by means of 
kriging with external drift (Goovaerts, 1997; Mallucci et al., 2019). To comply with the computational grid 
adopted in the hydrologic modeling, the ADIGE data set was aggregated to the 5-km grid spacing.

Daily streamflow data collected at nine gauging stations (Figure 1) were provided by the Hydrological Office 
of the Autonomous Provinces of Trento (www.floods.it) and Bolzano (www.provincia.bz.it/hydro). Stations 
were selected according to the following criteria: i) observational period including the 1989–2013 time-
frame used for calibration and validation of the hydrological model; ii) limited gaps in records; iii) large 
distance from upstream reservoirs if present; and, iv) broad spatial coverage including the major tributaries 
of the Adige River. The gauging stations were distributed in sub-catchments of different sizes, elevation, 
geology, and land-cover, and were, therefore, representative of the hydrological regimes of the Adige basin.

2.2.2.  Macroinvertebrate Data

Macroinvertebrate data were collected by the Environmental Protection Agencies of the Provinces of Trento 
and Bolzano as part of their institutional monitoring programs (Larsen et al., 2019). Sampling was per-
formed according to the multi-habitat sampling approach defined in the AQEM (http://www.aqem.de/) 
protocol: 10-replicate Surber samples were collected within a 20–50 m reach in proportion to the micro-hab-
itats present (Hering et al., 2004). Samples were collected in the period 2009–2015, and sites were visited 
several times per year (median = 3), primarily in spring and autumn. Macroinvertebrate densities were 
averaged over all samples to remove seasonal effects, thereby obtaining a representative community com-
position of each site.

2.2.3.  Reach-scale Environmental Data

Two additional reach-scale environmental variables were included in the analyses besides streamflow re-
gime: the proportion of agricultural land-use (“Agr.landuse”), calculated within a 1-km buffer around each 
sampling location, and the physico-chemical water quality, as expressed by the “LIMeco” index (Livello 
di Inquinamento da Macrodescrittori per lo stato ecologico), one of the official WFD water quality indica-
tors used to assess the ecological status of running water in Italy (European Commission, 2000). This is a 
multi-metric indicator assigning quality scores based on threshold levels for the concentration of oxygen, 
ammonia, nitrate and total phosphorus in freshwater (see Azzellino et al., 2015). These two environmental 
descriptors were included as covariates in the quantification of the flow-ecology relationship because of 
their proven influence on the composition of benthic invertebrates in the area (Larsen et al., 2019).

2.3.  Hydrologic Simulations

Hydrological simulations were performed at the daily time scale with the HYPERstreamHS model (Avesani 
et al., 2021; Laiti et al., 2018), which couples the HYPERstream routing scheme (recently proposed by Pic-
colroaz et al., 2016) with a continuous Soil Conservation Service (SCS) module for surface flow generation 
(Michel et al., 2005). Subsurface return flow was modeled by a nonlinear reservoir (Majone et al., 2010). The 
HYPERstream routing scheme is specifically designed to couple with climate models and, in general, with 
gridded meteorological datasets. HYPERstream inherits the computational grid of the climatic model, or of 
the gridded product providing the meteorological forcing, and preserves geomorphological dispersion due 
to the structure of the river network (Rinaldo et al., 1991), regardless of grid resolution. In previous studies, 
the SCS runoff module was successfully applied to two tributaries of the Adige River (Bellin et al., 2016; Pic-
colroaz et al., 2016). For a detailed description of the hydrologic modeling framework see Laiti et al., (2018) 
and Avesani et al. (2021).

The hydrological model was calibrated against daily streamflow observations in the time window 1989–2013 
using the ADIGE dataset as input meteorological forcing. The parameter space was explored for optimality, 
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according to the Nash-Sutcliffe efficiency index (NSE; Nash & Sutcliffe, 1970), by using the Particle Swarm-
ing Optimization algorithm (Kennedy & Eberhart, 1995). NSE was selected because of its effectiveness in 
assessing the performance of hydrologic models in reproducing observed streamflows. NSE is satisfactory 
when larger than 0.5 (Moriasi et al., 2007). Because hydrologic modeling was tailored to reproduce stream-
flow at unimpacted headwater locations (see Sect. Study area), four headwater gauging stations (Vermi-
glio, Rio Funes, Aurino, and Gadera in Figure 1) were calibrated simultaneously (i.e. NSE was defined as 
the average of individual efficiencies from the four stations). Subsequently, five other stations distributed 
across the basin (Saltusio, Vipiteno, Anterselva, Trento, and Bronzolo in Figure 1; drainage area ranging 
from 60 to 9000 km2) were used for validation, in order to assess how the model reproduced streamflow at 
all the relevant scales. The first two years of the time series, i.e., 1989 and 1990, were used as spin-up for 
the simulations and therefore were excluded from the computation of NSE. Finally, we used the calibrated 
hydrologic model to simulate streamflow time series (1991–2013) at the 100 gauged and ungauged locations 
where biological data were available.

As additional validation of the hydrologic model, we further compared the response of taxon richness to 
the observed and simulated flow metrics using nine locations for which measured streamflow time series 
were also available.

2.4.  Hydrologic Classification

Simulated streamflow time series at the 100 locations were first normalized by their mean annual discharge 
(MAD) to allow comparison across streams and develop flow-ecology relationships independent of stream 
size (e.g., Rosenfeld,  2017). In the following step, streamflow regimes were classified according to their 
typical seasonality as follows: first, we calculated the mean monthly hydrographs for each location from the 
MAD-normalised daily streamflow time series (Figure S1 in SM); then we performed a principal component 
analysis (PCA) on the resulting hydrographs to synthesize similarities among locations using the first two 
PC axes. Location scores on the two axes were then weighted by the proportion of variance explained in the 
PCs and used as synthetic variables in order to cluster the locations based on their flow regime (see e.g., Bel-
mar et al., 2011). A flexible-beta hierarchical clustering approach was used, with the recommended value of 
beta = −0.25 (Belmar et al., 2011; Legendre & Legendre, 2012; Mazor et al., 2018), which provides an inter-
mediate solution between chaining obtained via single linkage, and space dilation deriving from complete 
linkage. To further validate the degree of separation among the classified regimes, we ran a Permutational 
Multivariate Analysis of Variance (PERMANOVA; Anderson, 2017) based on the Euclidean distance matrix 
of the weighted PCA scores.

2.5.  Hydrologic Metrics

We used the 23 years MAD-normalised daily streamflow values to calculate 34 hydrologic metrics following 
the indicator of hydrologic alteration (IHA; Richter et al., 1997) approach (Table 1), implemented in R soft-
ware with the “IHA” package (R Core Team, 2019). These metrics were averaged over the years to quantify 
ecologically relevant components of the long-term flow regime related to magnitude, duration, frequency, 
timing, and rate of change. As an exploratory step, and to visualize and further validate the separation of 
the hydrologic classes in the multidimensional space defined by the hydrologic metrics, we plotted the 
streams on the first two PCA axes derived from the correlation matrix of the IHA metrics. However, our 
main interest was to quantify flow-ecology relationships within the distinct hydrologic regimes considered 
as management units. Therefore, we ran additional PCA analyses for each classified regime to identify the 
most relevant metrics in each group. We then selected a set of non-redundant flow metrics showing high 
correlation (>0.8) with the first or second PC axes (see Table S1 and Section 3), which reflected the key flow 
components. These flow metrics were subsequently used as predictors in stream-network models for quan-
tifying interpretable flow-ecology relationships.

2.6.  Data Analysis

We derived a set of taxonomic and functional metrics from the macroinvertebrate community data. Our aim 
was to examine the sensitivity of different metrics to streamflow conditions to derive valid alternatives to 
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those currently implemented under the WFD. We included metrics related to the diversity of the communi-
ty, such as taxonomic richness, Shannon diversity (as effective number of species of order q = 1; Jost, 2006), 
Functional Dispersion (FDis, which is minimally influenced by taxonomic richness), as these have been 
shown to reflect flow alterations elsewhere (e.g., Kennedy et al., 2016). We additionally included metrics 
describing the proportion of different feeding groups (i.e., grazers, shredders, gatherers, filterers, and preda-
tors) and the proportion of relatively small and large sized (range 0.25–0.5 mm and 20–40 mm, respectively) 
invertebrates. We focused on feeding traits as they convey information about the functional role of organ-
isms in the ecosystems and on size traits that are a proxy of multiple life-history characteristics like e.g. life 
cycle duration, longevity (Poff et al., 2006) and may respond to variation in shear stress (e.g., Merigoux & 
Doledec, 2004). Finally, we also examined how the WFD Star_ICMi index responded to flow characteristics. 
The Star_ICMi is the official Biological Quality Element used in Italy to classify the status of running water 
in line with the WFD requirements (Buffagni & Erba, 2007; Buffagni et al., 2006). The index is formulated 
combining six normalized and weighted metrics, including richness, diversity, and taxa sensitivity to organ-
ic pollution (Buffagni et al., 2006).

Information for functional traits of the taxa was gathered from the online database of freshwater ecology 
(www.freshwaterecology.info; Schmidt-Kloiber & Hering, 2015). For the calculation of FDis, we included 
13 traits (Tab. S2) in order to provide an inclusive measure of functional diversity. Feeding information was 
available for all taxa included in the analysis, whereas size traits were available for about 50% of the taxa. As 
such, taxa with no information for a given trait were not considered in the analyses.

2.6.1.  Flow-ecology Relationships

Spatial stream-network models (SSN; Ver Hoef et al., 2014; Ver Hoef & Peterson, 2010) were run separately 
for each flow regime to quantify the relation between the biotic and hydrologic metrics while accounting 
for the autocorrelation structures of the dendritic network. The LIMeco index and Agr.landuse indicator 
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Flow component IHA flow metric name Description

1 - Magnitude of monthly flow conditions (12 
parameters)

January, February, March, April, May June, 
July, August, September, October, November, 

December

Mean flow for January, …, December

2 - Magnitude and duration of extreme conditions 
(11 parameters)

1, 3, 7, 30, 90 Day Min Minimum flow, 1, 3, 7, 30, 90 days mean

1, 3, 7, 30, 90 Day Max Maximum flow, 1, 3, 7, 30, 90 days mean

Base index 7 days minimum/mean flow

3 - Timing of extreme flow conditions (2 
parameters)

min Julian Mean Julian date of annual 1-day minimum

max Julian Mean Julian date of annual 1-day maximum

4 - Frequency and duration of high and low pulses 
(4 parameters)

Low pulse number Number of flow events below 25thpercentile

High pulse number Number of flow events above 75th percentile

Low pulse length Number of days below 25th percentile

High pulse length Number of days above 75th percentile

5 – Rate of change and variation (5 parameters) Rise rate Median of all positive differences between 
consecutive values

Fall rate Median of all negative differences between 
consecutive values

Reversals Number of times flow period switches from rising 
to falling and vice-versa

y.CV Average annual coefficient of variation (SD/mean)

m.CV Average monthly coefficient of variation (SD/
mean)

Note. Metrics in bold Were Selected for the Examination of Flow-ecology Relationship in the SSN Models.
Abbreviations: IHA, indicator of hydrological alterations. SSN, spatial stream-network models.

Table 1 
List of the IHA Flow Metrics Computed From the 23 Years Simulated Streamflow Time Series

http://www.freshwaterecology.info
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were included as additional covariates in the models. ArcMap 10.5 and the STARS toolset (Peterson & 
Hoef, 2014) were used to generate the spatial data necessary to analyze stream-network models. The full 
set of autocovariance functions were used to model spatial autocorrelation, including Euclidean, in-stream 
flow-connected (locations in which water flows from one to the other) and flow-unconnected (connected 
within the network, but not reflecting the directionality of the water flow) functions. This approach allows 
accounting simultaneously for the along-channel and across-basin (flow-unconnected and Euclidean, re-
spectively) patterns of autocorrelation, while also distinguishing locations linked by direct water flow (i.e., 
flow-connected). In particular, SSN models take the form:

     TU TD EUy X z z z� (1)

where y is the response variable (i.e., macroinvertebrate metrics in this study), X is the matrix of predictors 
(flow metrics, LIMeco, and Agr.landuse) with associated β regression parameters, while zTU + zTD + zEU are 
zero-mean random variables with autocorrelation structure based on tail-up (TU), tail-down (TD) and Eu-
clidean (EU) functions, respectively, and ε is the random independent error. The TU and TD functions are 
moving-averages functions autocorrelated in an upstream and downstream direction, respectively. The tail-
up function assigns different weights to locations upstream of a given site according to the catchment area, 
used here as a proxy of streamflow. In this way, the moving-average autocorrelation is split at confluences 
so that upstream locations with larger catchments have a stronger influence on downstream communities. 
The reader can refer to Peterson et al. (2013) and Ver Hoef and Peterson (2010) for a detailed description of 
the SSN framework.

Biotic metrics expressed as proportions (i.e., feeding and size traits) were logit-transformed as recommend-
ed (Warton & Hui, 2011), and maximum-likelihood was used for parameter estimation in all SSN models. 
For each biotic metric, the most supported model was selected based on the root-mean-square prediction 
errors (RMSPE), which focus on model predictive power (Ver Hoef et al., 2014). The model was developed 
in a stepwise fashion, following guidelines provided in Ver Hoef et al. (2014). We first included all predictors 
(the selected flow metrics, LIMeco, Agr.landuse), and the full set of autocovariance functions (i.e., tail-up, 
tail-down, and Euclidean). Then we manually removed non-significant predictors and subsequently refined 
the spatial components. These can be defined by considering different autocovariance functions, including 
e.g., exponential, Mariah, spherical, linear-with sill, though spatial stream-network models appear little 
influenced by their mis-specification (Garreta et al., 2009; Isaak et al.,  2014). We compared or removed 
different functions for the Euclidean, tail-up, and tail-down components and selected the final model with 
the lowest RMSPE. If different models had identical RMPSE values, the most parsimonious solution was 
selected based on Akaike Information Criterion (AIC). The spatial autocovariance functions were refined 
after the selection of the model predictors since the model accounts for spatial correlation in the error term 
after the effects of the covariates are removed (Frieden et al., 2014).

The SSN package (Ver Hoef et al., 2014) for R software (R Core Team, 2019) was used to run the stream-net-
work models.

3.  Results
3.1.  Hydrologic Simulations and Classification

The capability of HYPERstreamHS hydrological model to reproduce the observed daily streamflow time 
series in the Adige River was validated in the period 1991–2013 by computing NSE at the nine gauging sta-
tions described in Section 2.4 (Figure 1). The parameters of the hydrologic model were inferred by maximiz-
ing the average NSE at Vermiglio, Rio Funes, Aurino, and Gadera gauging stations. Calibration produced a 
satisfactory mean NSE of 0.623 (range: 0.58–0.70; Figures S2 and S3). At the validation stations, mean NSE 
was 0.620 (range: 0.48–0.79), with lower values in the smaller subcatchments (Saltusio, Isarco, and Anter-
selva; Figure S2), and higher values at the larger downstream subcatchments of Trento and Bronzolo (0.74 
and 0.79, respectively; Figures S2 and S3). The limited reduction of NSE efficiency at Saltusio, Vipiteno, and 
Anterselva gauging stations is in line with the general understanding that accurate reproduction of observed 
streamflows in small catchments would require accurate and spatially well-resolved precipitation and tem-
perature fields at small spatial scales (e.g., Heisterman & Kneis, 2011). A further validation of the hydrologic 
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model emerged from the consistent response of taxon richness to the IHA flow metrics across observed and 
simulated flow data, with qualitatively similar patterns for 25 out of 30 flow metrics (Figure S4).

The calibrated model was subsequently used to simulate flow time series for the period 1991–2013 in the 
100 reference locations for which biological data were available, and to perform the flow regime classifica-
tion. Three hydrologic classes with distinct flow regimes were identified by the flexible beta-clustering of 
the first two weighted PC scores (explaining 92% of the variation) derived from the scaled monthly hydro-
graphs (Figure 2). The first hierarchical division separated typically “pluvial” streams (n = 38), with peak 
flow in autumn, from those with spring and summer peaks. The second division further distinguished 
streams with “nivo-glacial” regime (n = 30) with summer peak flows and winter low flows, from interme-
diate “nivo-pluvial” streams (n = 32), with earlier spring peak flows and relatively higher autumn flows. A 
PERMANOVA based on Euclidean distances further validated the separation among the three groups with 
R2 = 0.85. Figure 1 shows the distribution of the flow regime classes in the Adige River network. The three 
flow regimes were distributed along an altitudinal gradient, which reflects also the gradient of anthropo-
genic influence in the catchment (Figure 3). Indeed, pluvial streams at lower altitudes were characterized 
by more eutrophic (higher LIMeco scores) waters and a higher proportion of agricultural land-use in the 
adjacent area.

The three hydrologic classes identified in the previous step formed three groups in the first PCA facto-
rial plane (i.e., the first two PCs) derived from IHA metrics, explaining about 80% of the total variation 
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Figure 2.  Dendrogram of the study reaches based on flexible beta-clustering of the first two weighted principal components (explaining 92% of variation) of 
the MAD-normalised monthly hydrography (expressed as the proportion of mean annual discharge). Lower panels show the mean across sites (±SD) of MAD-
normalised hydrographs for each identified streamflow regime. MAD, mean annual discharge.
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(Figure 4). This analysis provided additional evidence of the separation among the flow regimes and al-
lowed identifying the metrics that differed the most among them. For instance, as also evident from the 
annual hydrographs shown in Figure 2, nivo-glacial streams displayed higher flow maxima during summer 
months (June, July; Figures 4 and S5) as well as faster fall and rise rates. Conversely, streams with pluvial 
regimes showed higher flow minima (e.g., 30 Day Min) and Base index, but more frequent low flow events 
(Figure S5). Nivo-pluvial streams systematically showed flow metrics that were intermediate between the 
nivo-glacial and pluvial regimes.

The first two PCA axes extracted separately within each flow regime accounted for 75%, 81%, and 76% of 
variation in IHA metrics across the nivo-glacial, nivo-pluvial and pluvial regime, respectively. The loadings 
of the IHA metrics on the PC axes are shown in Table S1, and were used for a parsimonious selection of 
non-redundant flow metrics to include in the SSN models. After removing correlated metrics, the selection 
included: February and July streamflow, low pulse number, fall rate, and annual CV (y.CV). These metrics 
represent the magnitude, frequency, and rate of change of streamflow according to the IHA classification, 
respectively (Tab. 1). However, February and July flow magnitude were strongly correlated with minimum 
and maximum flows as well as with the Base index, and thus represented a proxy for the Magnitude and 
Duration of extreme flow conditions in the IHA classification.

3.2.  Flow-ecology Relationship

A total of 64 invertebrate taxa were identified, mostly at the family and genus level (see Table S3). The SSN 
models identified several significant relationships between biotic and hydrologic metrics and the covariates 
related to water quality and land-use (Figure 5; Table S4). The relations differed among the flow regimes 
both in terms of explained variance and selected covariates. Overall, the influence of water quality (LIMeco 
index) and land-use on macroinvertebrate communities was consistent among flow regimes, with a positive 
effect of LIMeco and a negative effect of local agricultural land-use.

Conversely, few response variables responded consistently to the hydrological metrics across flow regimes, 
and rather, flow-ecology relationships often displayed divergent patterns (Figure  6). For instance, while 
the magnitude of February flows appeared important for most biotic metrics, the strength and pattern of 
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Figure 3.  Boxplot of selected environmental descriptors for each identified streamflow regime. The following boxplot 
representation is adopted: horizontal line for median; a box for the inter-quartile range; whiskers for 1.5 times the inter-
quartile range; dots for outliers. The LIMeco index and the percentage of local agricultural land-use (Agr.landuse) were 
included as covariates in the SSN models. SSN, spatial stream-network models.
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responses varied. Taxon richness declined significantly with February flow magnitude in pluvial streams, 
but it tended to increase in the nivo-glacial streams, where instead it declined significantly with increas-
ing July flow. Similarly, while Shannon diversity increased with the LIMeco index consistently across flow 
regimes, it showed a positive association with the number of low pulses, but only in the pluvial streams. 
Trait-based metrics also displayed rather unique patterns for each flow regime. The proportion of grazers 
displayed different relations with February flows across the three regimes. In addition, grazers increased 
significantly with annual flow variation (y.CV) only in nivo-glacial streams, while the proportion of filter 
feeders declined with increasing February flow, but only in the pluvial streams (Figure 6).

Overall, spatial autocorrelation, considering the flow-connected, flow-unconnected and Euclidean dimen-
sions (i.e. zTU, zTD, zEU in Equation 1), explained a larger proportion of variance (respectively 50%, 77%, and 
44% in the nivo-glacial, nivo-pluvial and pluvial streams) than the model predictors (X β in Equation 1), 
which explained 13%–26% of the variance (Figure  7). The tail-up and tail-down components (reflecting 
autocorrelation along the watercourse dimension) explained more residual variance (mean across flow re-
gime: 35.3%) than the Euclidean spatial component (mean: 21.5%).

4.  Discussion
In this study, we developed and applied a framework to assess the relationship between river ecology and 
flow characteristics while overcoming some of the challenges typically associated with flow-ecology re-
search. By employing the HYPERSstreamHS hydrological model, we were able to reproduce natural stream-
flow time series at 100 ungauged biological sampling stations throughout the Adige River basin. Remarkably, 
the average value and range of variation of NSE efficiency did not deteriorate from calibration to validation 
sites, suggesting that the model parameters are representative of the entire river basin. An important val-
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Figure 4.  Biplot of the PCA based on 34 IHA flow metrics (direction and loading indicated by the blue arrows) derived from the 23 years streamflow series for 
the 100 investigated study sites. The sites are grouped according to the streamflow regime previously determined by the flexible beta-clustering approach. IHA, 
indicator of hydrologic alternations; PCA, principal component analysis.
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idation of the model also stems from the consistent relationship between taxon richness and flow metrics 
obtained from the observed and simulated streamflow. This is key when hydrological models are used to 
investigate ecological responses (Kiesel et al., 2020), as the uncertainty associated with modeled streamflow 
is a fundamental limitation hampering the study of the flow-ecology relationship at the pan-European scale 
(Vigiak et al., 2018). We subsequently identified three distinct flow regime classes within which flow-ecolo-
gy relationships were examined using spatially explicit geostatistical approaches. This allowed us to account 
for the natural variability of flow regimes, while also controlling for the spatial autocorrelation patterns of 
dendritic river networks.

The three identified flow regimes represent typical hydrologic patterns of the Alpine region. Low-order 
streams at higher elevation are fed primarily by glacial melt, snowmelt, and associated groundwater flow; 
streams at intermediate elevations by snowmelt and rain, and those at lower elevation mirror rainfall tim-
ing. While realistically representing a gradient of conditions, the three regimes were distinct enough to form 
separate groups according to both mean annual flow series and flow metrics. As such, they showed distinct 
flow-ecology relationships, especially dependent on high and low streamflow conditions and interannual 
variability in discharge. The three flow regimes were also separated along a gradient of anthropogenic in-
fluence represented by water quality and riparian land-use. This further highlights how classifying regimes 
can help minimize the effect of confounding factors in flow-ecology research: as streams with different flow 
regimes often occupy separate sections of the catchment, systematic differences in elevation, anthropogenic 
land-use, and underlying geology may confound the influence of streamflow characteristics, hindering the 
robust identification of flow-ecology relationships.

The distinct responses to flow metrics among the stream types indeed represent a key finding of the pres-
ent work; had we combined all streams in the same analysis, we would have drawn different conclusions 
regarding the response of some biotic metrics, such as taxon richness and the proportion of grazers (cfr 
gray dashed line with individual fits in Figure 6). The few studies that have compared flow-ecology rela-
tions across classified flow regimes (e.g., Bruckerhoff et al., 2019; Mims & Olden, 2012), also showed that 
ecological responses can often diverge. Yet, while the classification of flow regimes is a common endeavor 
in hydrologic research (e.g., Belmar et al., 2011; Di Prinzio et al., 2011; McManamay et al., 2012; Snelder & 
Booker, 2013), its applications in flow-ecology studies remain surprisingly rare.

Besides the range of anthropogenic influence, the three streamflow types analyzed here are characterized 
by different levels of environmental severity, which declines with decreasing glacial influence (Brighen-
ti et al., 2021). This could explain some of the specific flow-ecology patterns. Richness, for instance, de-
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Figure 5.  Heatmap showing the standardized SSN coefficients (β) of the covariates included in the most supported models for each biotic metric in the three 
flow regimes, according to the RMSPE. “NS” indicates a non-significant predictor (p > 0.05). RMSPE, root mean squared prediction error; SSN, spatial stream-
network models.
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clined with increasing July flows in the nivo-glacial streams (representing the summer peak of snow- and 
glacial-melt), while in the pluvial regime, richness declined with increasing February flows (representing 
the winter low rainfall periods). Summer discharge is high in nivo-glacial streams, where increasing flows 
could cause higher drift rates and thus lower the observed benthic richness (e.g., Brittain & Eikeland, 1988). 
Conversely, in temperate streams characterized by pluvial regimes, minimum densities often occur in win-
ter (Brittain & Eikeland, 1988; Naman et al., 2016), when higher-than-average flows could further decrease 
benthic richness. In the nivo-pluvial and pluvial streams, in fact, the magnitude of February flows appeared 
to limit the biotic metrics mainly related to community diversity (i.e., richness, Star_ICMi, Fdis). Overall, 
the magnitude of February discharge appeared to be the most influential flow metric, with mostly negative 
effects. On the other hand, the number of low flow pulses displayed a mainly positive association with both 
diversity and trait-based metrics across flow regimes. Low flow pulses can increase local diversity by pre-
venting excessive drift while also favoring the deposition of fine organic matter, as suggested by the positive 
response of gatherers. Together with the positive association of both grazers and gatherers with the annual 
coefficient of variation in nivo-glacial streams, these results indicate how natural flow variation is funda-
mental for sustaining aquatic biodiversity.

The SSN models revealed how the STAR_ICMi index mostly responded to streams' physico-chemical pa-
rameters and riparian land-use. In agreement with recent investigations (Larsen et  al.,  2019; Quadroni 
et al., 2017), these results provide additional evidence of the limited sensitivity of WFD biological quality 
indicators, such as the Star_ICMi index, to stream hydrologic conditions. Like most present bioindicators 
(Friberg, 2014), the Star_ICMi is designed to reflect organic pollution and habitat degradation and should 
be used for hydrologic assessment or guide e-flows with great caution. Indeed, one of the aims of the present 
study was to evaluate alternative metrics that could serve as flow-sensitive indicators to be included in as-
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Figure 6.  Scatterplot of selected flow-ecology relationships within each flow regime. Solid and dashed fit lines, 
respectively, indicate significant and non-significant relationships according to the SSN models. Gray dashed line 
indicates the overall relationship observed combining all three flow regimes. SSN, spatial stream-network models.
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sessment schemes like the one of the European WFD. To this end, species life-history traits can provide the 
mechanistic link between river biota and flow conditions that could be valid across large spatial scales (Hei-
no et al., 2013; Mims & Olden, 2012). In the Adige River basin, the relative proportion of different feeding 
habits and body size structure appeared relatively sensitive to hydrologic conditions across flow regimes and 
thus deserve further investigation. The sensitivity of grazers to flow conditions, for example, can derive from 
their reliance on attached algae, which can be scoured during high flows or buried by fines during low flows 
(Buchanan et al., 2013; Doretto et al., 2020; Kennen et al., 2010). Nonetheless, our results suggest that their 
response to flow conditions can differ substantially across flow regimes. The response of body size structure 
to the magnitude of high and low flows may reflect the sensitivity of different developmental stages to shear 
stress, especially for insect larvae (e.g., Merigoux & Doledec, 2004), but detailed information on body size 
was not available for many taxa, and this response requires further examination.

While the SSN modeling revealed idiosyncratic responses of the biotic metrics to flow conditions, the effect 
of water quality (LIMeco) and the extent of local agricultural land-use appeared generally consistent with 
a positive and negative effect, respectively. This has both practical and fundamental implications. From 
an applied perspective, it implies that ecological responses to flow alterations can be contingent on local 
eco-hydrologic conditions, a caveat that must be considered when setting regional flow standards. In the 
Adige Basin, for instance, sustaining invertebrate richness, or specific feeding groups would require distinct 
management of high and low flows among the identified flow regimes. On a more fundamental level, it 
indicates that the often-observed nonlinear flow-ecology relationships (Rosenfeld, 2017) can reflect the dis-
tinct response of multiple flow regimes in the basin. More generally, the “shape” of flow-ecology relation-
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Figure 7.  Proportion of variance of each biotic metric explained by the covariates (i.e. flow metrics, water quality, and local land-use) and by the spatial 
components modeled with tail-up, tail-down and Euclidean autocovariance functions across the three flow regimes. The nugget represents the residual 
variance.
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ships is likely to be scale-dependent and determined by the range of hydrologic conditions in the region and 
the size of the species pool included.

The three identified flow regimes formed geographically separated clusters along a north-south axis, reflect-
ing the orography of the basin. While this further validated our flow regime classification, it also introduced 
possible autocorrelation issues. The SSN models revealed that most variation in macroinvertebrate metrics 
was in fact associated with spatial patterns. This is typical for communities dwelling in complex habitats, 
such as river networks, whose geometry and flow directionality influence environmental and eco-evolu-
tionary dynamics (Frieden et al., 2014; Isaak et al., 2014; Larsen et al., 2019). For some biotic metrics, the 
spatial autocorrelation was by far the most important component, explaining more than 80% of the varia-
tion (e.g., Shannon diversity and gatherers in both nivo-glacial and nivo-pluvial streams). Not surprisingly, 
given the dendritic configuration of river networks and the directionality of water flow, autocorrelation 
along the watercourse dimension (i.e., tail-up and tail-down) appeared stronger than over the isometric 
Euclidean dimension. However, the influence of autocorrelation differed across regimes, being particularly 
large in the nivo-pluvial streams, where the tail-up flow-connected component accounted for more than 
40% of the residual variance. This could be due to the distribution of multiple sampling sites along the same 
river segments, as occurred in the eastern section of the basin. However, the Euclidean component, which 
reflects large scale variability across the basin, also accounted for more than 35% of the variance in nivo-plu-
vial streams. This may be due to the fact that streams with nivo-pluvial regimes were relatively more widely 
distributed throughout the basin. These findings are in line with a recent study from the US where SSN 
models were used to examine variation in fish community traits (Bruckerhoff et al., 2019). However, com-
parison across studies is challenging as the effects of spatial autocorrelation in a given model depend on the 
response variable and the covariates included, as well as on the spatial relationship of samples. Therefore, 
spatial effects may vary substantially across regions, but they are likely relevant for flow-ecology studies 
when these are paralleled with flow regime classification in which sites might be spatially structured (e.g., 
Bruckerhoff et al., 2019; Snelder & Booker, 2013). Ignoring such spatial dependency could lead to increased 
Type I error rates (“false positive”; Legendre & Legendre, 2012), with important implications for the success 
of e-flows design.

An additional issue to consider is that, although we selected streams with no evident alteration of flow re-
gime, the influence of other factors on stream invertebrates was evident. The negative effect of agricultural 
land-use on multiple biotic metrics was evident (e.g., richness, Star_ICMi), especially in the nivo-glacial 
and nivo-pluvial streams, while water quality had the strongest (positive) influence on the lower gradient 
pluvial streams (e.g., increasing diversity, shredders, predators). These results are not surprising and in line 
with a recent study that included a larger sample of locations throughout the basin (Larsen et al., 2019). 
However, this highlights how defining a baseline flow-ecology relationship under natural conditions might 
become increasingly difficult as river catchments are modified globally (Tickner et al., 2020). In addition, 
alteration of flow regimes is often accompanied by changes in water temperature and in-stream habitat 
structure (e.g., Zolezzi et al., 2009). Therefore, non-hydrologic factors must be incorporated in e-flow frame-
works to identify circumstances that might limit the desired outcome of flow management (Poff, 2018).

At the management level of e-flows setting, the present work represents the first data-driven classification 
of natural flow regimes in Italy that is paralleled by an ecological assessment. Previous catchment region-
alization schemes were produced at the national scale (Di Prinzio et al., 2011), but they focused primarily 
on estimating streamflow at ungauged sites. Results demonstrated that flow-ecology relationships can sub-
stantially vary among flow regimes, highlighting the importance of developing e-flows tailored to specific 
eco-hydrologic contexts. Moreover, although analyses were conducted within a single river basin, and thus 
minimized the influence of larger-scale confounding factors, spatial patterns accounted for most of the 
variance in the data. The importance of using spatially explicit approaches to model empirical data in river 
networks is increasingly recognized (Frieden et al., 2014; Isaak et al., 2017; Larsen et al., 2019), and our 
results further support their application in flow-ecology research (Bruckerhoff et al., 2019).

In conclusion, we addressed three main challenges of flow-ecology research derived from (i) the limited 
availability of streamflow time series at sampling sites, (ii) the natural variability of flow regimes, and (iii) 
the spatial autocorrelation unique to dendritic river networks. In doing so we also completed the first two 
steps of the ELOHA framework (Poff et al., 2010), namely developing the hydrological foundation and clas-
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sifying natural flow regimes across the catchment; to our knowledge, it is the first time that this is applied 
to a very heterogeneous Alpine river catchment.

Future developments should address the challenge of incorporating hydrologic variability when setting 
environmental flows, and of assessing the ecological effects of specific flow events or sequence of events 
without relying on stationary long-term flow records as baseline reference (Horne et al., 2019; Poff, 2018). 
The framework presented in this paper could thus be extended to include future climate scenarios to feed 
the hydrologic model. Simulated projections of streamflow could then be used to estimate future ecological 
responses to flow alteration.

Data Availability Statement
Data supporting this research are archived in the Dryad and are publicly available at: https://doi.org/10.5061/
dryad.vdncjsxt1.
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