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Abstract

Streams and rivers are biodiverse and provide valuable ecosystem services. Maintaining

these ecosystems is an important task, so organisations often monitor the status and trends

in stream condition and biodiversity using field sampling and, more recently, autonomous

in-situ sensors. However, data collection is often costly, so effective and efficient survey

designs are crucial to maximise information while minimising costs. Geostatistics and opti-

mal and adaptive design theory can be used to optimise the placement of sampling sites in

freshwater studies and aquatic monitoring programs. Geostatistical modelling and experi-

mental design on stream networks pose statistical challenges due to the branching structure

of the network, flow connectivity and directionality, and differences in flow volume. Geosta-

tistical models for stream network data and their unique features already exist. Some basic

theory for experimental design in stream environments has also previously been described.

However, open source software that makes these design methods available for aquatic sci-

entists does not yet exist. To address this need, we present SSNdesign, an R package for

solving optimal and adaptive design problems on stream networks that integrates with exist-

ing open-source software. We demonstrate the mathematical foundations of our approach,

and illustrate the functionality of SSNdesign using two case studies involving real data from

Queensland, Australia. In both case studies we demonstrate that the optimal or adaptive

designs outperform random and spatially balanced survey designs implemented in existing

open-source software packages. The SSNdesign package has the potential to boost the

efficiency of freshwater monitoring efforts and provide much-needed information for fresh-

water conservation and management.
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Introduction

Streams and rivers are highly biodiverse ecosystems supporting both aquatic and terrestrial

species [1, 2] and provide important ecosystem services including clean water, food, and

energy [3]. The ecological and economic importance of waterways has driven government and

non-government organisations worldwide to invest large amounts of time and money into

their monitoring, assessment and rehabilitation [4]. However, monitoring data remain rela-

tively sparse [5] because the cost of sampling makes it impossible to gather data everywhere,

on every stream, at all times. Thus, it is crucial to select sampling locations that yield as much

information as possible about water quality and aquatic ecosystem health, especially when the

stream system is large and resources for sampling are limited.

Geostatistical models are commonly used to analyse environmental data collected at

different locations and to make predictions, with estimates of uncertainty, at unobserved (i.e.

unsampled) sites [6]. These models are a generalisation of the classic linear regression model,

which contains a deterministic mean describing the relationship between the response (i.e.

dependent variable) and the covariates (i.e. independent variables). In a geostatistical model,

the assumption of independence of the errors is relaxed to allow spatial autocorrelation, which

is modelled as a function of the distance separating any two locations [7]. This provides a way

to extract additional information from the data by modelling local deviations from the mean

using the spatial autocorrelation, or covariance, between sites. However, spatial autocorrela-

tion may exist in streams data that is not well described using Euclidean distance, given the

branching network structure, stream flow connectivity, direction and volume [8]. In addition,

many traditional covariance functions are invalid if an in-stream (i.e. hydrologic) distance

measure is substituted for Euclidean distance [4, 9]. The use of covariance functions based

on Euclidean distance may produce physically implausible results; for example, implying that

two adjacent streams that do not flow into each other and that have separate watersheds are

strongly related. This led to the development of covariance functions that are specifically

designed to describe the unique spatial relationships found in streams data [4, 10]. Geostatisti-

cal models fit to streams data describe a number of in-stream relationships in a way that is

scientifically consistent with the hydrological features of natural streams and, as such, are

increasingly being used for broad-scale monitoring and modelling of stream networks; see, for

example, Isaak et al. [11] and Marsha et al. [12], both model temperature in streams, with Mar-

sha et al. [12] further considering questions of site placement and sample size based on their

data.

The theoretical properties of geostatistical models can also be exploited in optimal and

adaptive experimental designs [13–16], which are used to select sampling locations that maxi-

mize information gain and minimize costs. However, the exact locations included in an opti-

mal design will depend on the objectives of the monitoring program. Common objectives

include estimating the parameters of the underlying geostatistical model (e.g. fixed effects esti-

mates and/or covariance parameters), making accurate predictions at unsampled locations, or

both. Utility functions are mathematical representations of the objectives used to measure the

suitability of a design for a specific purpose. Depending on the objective of the sampling, the

best design might be one that includes spatially balanced sites distributed across the study area

or it could be a design that includes clusters of sites in close proximity to one another [17]. A

variety of utility functions are available [15, 16] and are described more specifically in Section

2.4. An adaptive design (i.e. sequential design) is constructed by making a series of optimal

decisions about where to put sampling sites as new information becomes available over time

[14]. For example, the spatial location of monitoring sites may change through time, with

some sites removed due to changes in access, or additional sites added as new funding
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becomes available. In these situations, the information gained from the data collected up to

that point can be used to inform where the optimal sampling locations will be at the next time

step. Hence, adaptive designs may provide additional benefits for long-term environmental

monitoring programs because one-off optimal designs ignore the evolving nature of environ-

mental processes and do not allow for adjustments as monitoring needs change [17].

Bayesian and pseudo-Bayesian methods can enhance optimal and adaptive designs. Utility

functions often depend on the parameters of the geostatistical model that one intends to fit

over the design; however, the utility function can only be evaluated when these parameter val-

ues are fixed [13]. If the values change, for example, through random variations in field condi-

tions, then the design may no longer be optimal. Bayesian and pseudo-Bayesian optimal

design addresses this issue by using simulation to construct more robust designs and to incor-

porate prior information about the distribution of the model parameters when constructing

the design [18]. A drawback is that these methods are computationally intensive [18, 19]. In

SSNdesign, we use the pseudo-Bayesian approach. This is different than a fully Bayesian

approach because we are committed to performing frequentist inference on the data we collect

from an experiment. The pseudo-Bayesian approach also does not take a Bayesian view of

uncertainty, particularly with respect to model uncertainty, and as such we do not always have

access to Bayesian utilities. Nevertheless, the pseudo-Bayesian approach allows us to incorpo-

rate prior information in the design process, which is not possible for purely frequentist

designs, and can be more computationally efficient than the fully Bayesian approach.

Although numerous software packages have been developed to implement geostatistical

models on streams and to solve experimental design problems, none have done both. The SSN
package [20] for R statistical Software [21] is currently the only software available for imple-

menting geostatistical models on stream networks [10]. However, various software packages

exist to solve experimental design problems. For example, acebayes provides an implemen-

tation of the approximate coordinate exchange algorithm for finding optimal Bayesian designs

given a user-specified utility function [22]. For spatial design problems, spsurvey [23]

implements a variety of sampling designs including the Generalised Random Tessellation

Sampling (GRTS) design for spatially balanced samples [24]. The package geospt [25]

focuses on drawing optimal and adaptive spatial samples in the conventional 2-D geostatistical

domain, with Euclidean distance used to describe spatial relationships between locations.

However, it does not allow for stream-specific distance measures and covariance functions or

it does not calculate design criteria consistent with a Bayesian or pseudo-Bayesian approach.

This is important for constructing designs that are robust to changes in parameter values that

the utility function depends on. Som et al. [15] and Falk et al. [16] made use of the geostatistical

modelling functions in the SSN package for solving design problems on stream networks, but

neither addressed adaptive design problems and both used customised code that was not made

publicly available.

To our knowledge, SSNdesign is the first software package that allows users to optimise

experimental designs on stream networks using geostatistical models and covariance functions

that account for unique stream characteristics within a robust design framework. It combines

the statistical modelling functionality found in the SSNpackage [20] with principles of pseudo-

Bayesian design [13] into a generalised toolkit for solving optimal and adaptive design prob-

lems on stream networks. In Section 2, we discuss the mathematical principles underpinning

these tools and outline the structure of the core functions in SSNdesign package along with

a summary of the package’s speed and performance. This section is extended by S1 Appendix,

which gives a deeper treatment of the required mathematics. In Section 3 we present two case

studies using real data from Queensland, Australia. S2 Appendix is the package vignette, and

provides the reader with detailed code required to reproduce the example. We conclude with a
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brief discussion of the package and future developments in Section 4. A glossary of terms is

also provided in S3 Appendix for those unfamiliar with the language of experimental design.

The SSNdesign package

Software and data availability

The SSNdesign package is publicly available at https://github.com/apear9/ SSNdesign,

along with the data used in this paper. This R package requires R version 3.5.0 or later, and

depends on the packages SSN [20], doParallel [26], doRNG [27], spsurvey [23], and

shp2graph [28]. These are downloaded from CRAN during the installation of the package.

Workflow

There are three different workflows in SSNdesign corresponding to different design types,

as well as for importing and manipulating stream network data (Figs 1 and 2). The general

process is to import a stream dataset (see Section 2.2) and if necessary, create potential sam-

pling locations and simulate data at those locations. The next step is to use the main workhorse

function optimiseSSNDesign to find optimal or adaptive designs, or use drawStream-
NetworkSamples to find probability-based designs. In the case of adaptive design prob-

lems, there are always multiple ‘timesteps’. The first timestep is important because adaptive

designs cannot be constructed without a pre-existing design. Therefore, it is not possible to

go straight from data processing to an adaptive design; as such, the first design decision must

be based on either an optimal or probability-based design before implementing the adaptive

design process in subsequent timesteps (Fig 2).

Fig 1. A flow chart of the function calls used to import and prepare streams data for use in SSNdesign. Grey boxes with solid outlines indicate a

call to a function (N.B. importSSN and SimulateOnSSN belong to SSN, not SSNdesign). Clear boxes with dashed outlines indicate a file, folder

or R object that is created as a result of a function call. The one dashed line represents an action that will not always be necessary.

https://doi.org/10.1371/journal.pone.0238422.g001
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Data format, ingestion and manipulation

The SSNdesign package builds on the functionality in the package SSN [20], most notably

the S4 SpatialStreamNetwork class for stream network datasets and the function and

class glmssn which fits and stores fitted spatial stream network models. SpatialStream-
Network objects are an extention of the sp class, but are unique because they contain a set of

stream lines (i.e. edges) and a set of observed sites. Prediction sites can also be included, but

are optional. These spatial data are imported from.ssn folders, which are created using the

Spatial Tools for the Analysis of River Sytems (STARS) ArcGIS custom toolset [29]. The

importSSN found in the SSN package is used to ingest data contained in the.ssn folders,

but this function will not work if there are no observed sites in the.ssn folder. Therefore, the

SSNdesign package provides the function importStreams for creating a Spatial-
StreamNetwork object with no observed or predicted sites. Additional functions such as

generateSites are provided to add potential sampling sites to these empty networks.

Four distinct workflows for importing and preprocessing stream data are shown in Fig 1, but

the end result is a SpatialStreamNetwork object that contains streams and observed

sites where data were collected or simulated that can be used for optimal or adaptive designs.

The data processing (Fig 1) and design (Fig 2) workflows produce objects of class ssnde-
sign, which are lists containing 1) information about the way the design optimisation func-

tion (optimiseSSNdesign) was used, including the SpatialStreamNetwork objects

before and after an optimal design is found, 2) data about the optimal or adaptive design, and

3) diagnostic information about the optimisation procedure. This class also has a plot method,

plot.ssndesign, which plots the trace for the optimisation algorithm. The method

Fig 2. A flow chart of the function calls used to construct optimal (blue), adaptive (red), and probability-based (green) designs for stream

networks. The yellow box is discussed in more detail in Fig 1. Grey boxes with solid outlines represent a call to a function (N.B. glmssn belongs to

SSN, not SSNdesign). Clear boxes with dashed outlines indicate a file, folder or R object that is created as a result of a function call. The dash-dot-dot

lines represent optional steps or connections between function calls that do not always occur.

https://doi.org/10.1371/journal.pone.0238422.g002
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plot.SpatialStreamNetwork from the package SSN can be used to visualise the loca-

tions of the selected sites. Further details are provided in the package vignette (S2 Appendix).

The vignette is intended as a practical guide that demonstrates the functionality and workflow

of the package and as a practical reference for managers.

Expected utility estimation and maximisation

There are many ways to configure a fixed number of monitoring sites. Each potential configu-

ration represents a ‘design’ d, and the set of all possible configurations is denoted as D. The

goal of optimal design theory as applied to stream networks is to find which configuration of

sites is most suitable to achieve a purpose (e.g. precise parameter estimation in a statistical

model). We refer to the optimal configuration of sites as d�. Inside SSNdesign, the quality of

a design and its suitability for a stated goal is measured using a function called the expected

utility U(d) [13]. Larger values of U(d) indicate better designs and the calculation of U(d) is

linked to the utility function, U(d, θ, y). The utility function may depend on elements of the

geostatistical model fitted over the design, including its parameters θ and either observed or

predicted data y [13]. However, in many cases of pseudo-Bayesian utility functions, the utility

function does not depend on y and can be written U(d, θ) [16]. This function mathematically

encodes the criterion used to compare designs. Examples of utility functions can be found in

Section 2.1.2. The utility function, however, cannot be used directly to assess the quality of

designs. This is because U(d, θ, y) depends on specific values of θ and y and the relative rank-

ings of designs may change, sometimes dramatically, if there are small variations in these

two quantities. Therefore, the parameters θ and the data y must be integrated out such that

the values used to rank designs depend only on the designs themselves. We achieve this using

Monte-Carlo integration [13]. Further details are provided in S1 Appendix.

The set of possible designs D is usually large and, due to time and computational con-

straints, we cannot find d� by evaluating U(d) for every d 2 D. SSNdesign deals with this

problem in two ways. Firstly, we do not treat the design problem as a continuous one. That is,

we do not allow sites to shift to any place along the stream edges during the search for the best

design. The user must first create a set of N candidate points, and a design containing n points

is chosen from among them. This ensures that D has a finite size. Secondly, we reduce the

computational load of finding d� [19] by applying a coordinate exchange algorithm called the

Greedy Exchange Algorithm (S1 Appendix, Algorithm 1). This algorithm rapidly converges

on highly efficient designs, although this efficient design may not be the best design [30]. Note

that the Greedy Exchange Algorithm has previously been used for optimal designs on stream

networks [16].

Utility functions for optimal and adaptive experimental designs

The utility functions implemented in the SSNdesign package are suitable for solving either

static optimal design problems or evolving, adaptive design problems. For optimal design,

there are six utility functions for common monitoring objectives including parameter estima-

tion and prediction (Table 1; S1 Appendix). For adaptive design, there are three utility func-

tions for similar monitoring objectives that are appropriate for adaptive decision-making.

These are intended to be used with the function optimiseSSNDesign. We also provide

two utility functions for finding space-filling designs (Table 1), using the optimisation function

constructSpaceFillingDesigns. These designs contain roughly equally spaced and

unclustered sets of monitoring sites along the stream network [31, 32].

To solve adaptive design problems, we use a myopic design approach; that is, when making

an adaptive design decision at a given point in time, we try to find the best decision for the
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next time step only [33]. An alternative method is to use backward induction, which involves

enumerating all possible future decisions for a set number of time steps and then choosing the

best series of decisions from among them [14]. However, this approach is often computation-

ally prohibitive. Here we use an algorithm that assumes an initial design d0 that we seek to

improve by adding sites or by rearranging the existing ones. We know a priori that, instead of

solving this problem once, we will have to make a further T decisions in the future about the

arrangement of the design points (Algorithm 2, S1 Appendix). At each step t = 1, 2, . . ., T in

this iterative process, we fit a model to the existing design at dt−1 and summarise the fit of the

model using the summary statistic Ot(θ). The summary statistic can be arbitrarily defined,

though it should be low-dimensional and preferably fast to compute [14]. In evaluating the

designs at each timestep t, we incorporate the summary statistic Ot−1(θ) in the calculation of

the expected utility given the previous design decisions U(d|d0:t−1, y0:t−1). Data simulated from

the likelihood at time t, p(y|θt, d), can involve real data collection. However, for most design

studies, this step will simply involve generating predictions, with associated errors, from an

assumed model. As with optimal design problems, the best design d�t at step t is the one which

maximises U(d|d0:t−1, y0:t−1). We also update the priors on the parameters for each new design.

The process is repeated until the best design has been found for each of T time steps. For the

objectives of covariance parameter estimation and fixed effects parameter estimation, we have

defined utility functions specifically. Note that the main difference between the adaptive and

static utility functions is the use of the summary statistic Ot(θ) from the model fitted to the

existing sites (Table 1; Supplementary Information A). These utility functions can be used

with optimiseSSNDesign.

Table 1. Utility functions implemented in SSNdesign. Empirical utility functions are utility functions where the covariance parameters are estimated from

data simulated using the prior draws. θ = a vector of covariance parameters from a geostatistical model; and y = data that is either directly observed from a process

or simulated from it. OP = optimal design; AD = adaptive design. n/a = no covariance parameters involved. I(θ) = the expected Fisher Information Matrix;

b̂gls ¼ the estimates of the fixed effects; Varðb̂gls Þ ¼ covariance matrix for the fixed effects. sz = a prediction site; S = the set of all prediction sites.

ŷðszÞ ¼ the predicted value at a prediction site. VarðŷðszÞÞ ¼ the kriging variance. Ot(θ) = a summary statistic from the existing design. D(xi, xj) = the distance

between two points xi and xj. The distance can be measured as Euclidean distance or hydrological distance along the stream network [10]. D = a sorted vector of non-zero

distances in a distance matrix; J = the number of times each distance occurs in one triangle of the matrix. The subscript w = 1, 2, . . ., W counts the W unique non-zero

entries in the distance matrix. p = a weighting power, with p� 1. In the Empirical column, × means No, ✓ means Yes.

Name Purpose Application Empirical Definition of the expected utility Reference

CP-optimality Covariance parameters OP × log det[I(θ)−1] [16]

D-optimality Fixed effects parameters OP × logdet ½Varðb̂glsÞ
� 1
� [15, 16]

ED-optimality Fixed effects parameters OP ✓ logdet ½V̂arðb̂glsÞ
� 1
� [15, 16]

CPD-optimality Fixed effects and covariance parameters, a mixture of CP- and D-

optimality

OP × logdet ½Varðb̂glsÞ
� 1
� þ logdet ½IðyÞ� 1

�

K-optimality Predictions OP, AD × ð
P

sz2S
VarðŷðszÞÞÞ

� 1 [15, 16]

EK-optimality Predictions OP, AD ✓ ð
P

sz2S
V̂arðŷðszÞÞÞ

� 1 [15, 16]

Sequential CP-

optimality

Covariance parameters AD × log det[(I(θ)+ Ot(θ))−1] S1

Appendix

Sequential D-

optimality

Fixed effects parameters AD × logdet ½ðVarðb̂glsÞ þ OtðyÞÞ
� 1
� S1

Appendix

Sequential ED-

optimality

Fixed effects parameters AD ✓ logdet ½ðV̂arðb̂glsÞ þ OtðyÞÞ
� 1
� S1

Appendix

Maximin Space-filling, with an emphasis on increasing the minimum

distance between pairs of points

OP n/a mini6¼j D(xi, xj) [32]

Morris-Mitchell Space-filling, with an emphasis on increasing separations larger

than the minimum

OP n/a � ð
PW

w¼1
ðJwDwÞ

p
Þ

1=p [31]

https://doi.org/10.1371/journal.pone.0238422.t001
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Users may also define their own utility functions since the optimiseSSNDesign func-

tion has the flexibility to accept utility functions as an argument. The utility function must

be defined in this format: utility.function(ssn, glmssn, design, prior.
parameters, n.draws, extra.arguments). The exact requirements in terms of

input type and additional data accessible within the function optimiseSSNDesign are

described in the function documentation. It is not necessary to use all the arguments inside the

function. Ultimately, the only requirement for a working user-defined utility function is that

the function returns a single number, representing the expected utility.

Other standard designs

The SSNdesign package focuses on optimal and adaptive design problems, but we also

include a number of standard designs such as simple random sampling and GRTS [24]. We

have also included heuristic sampling schemes designed specifically for stream networks, such

as designs with sites allocated to headwater streams (i.e. streams at the top of the network), to

outlets (i.e. most downstream location on the network), or in clusters around stream conflu-

ences (i.e. junctions where stream segments converge; Som et al., [15]). These are all options

for the function drawStreamNetworkSamples (Table 2).

Computational performance

The optimisation of Bayesian and pseudo-Bayesian experimental designs via simulation is

notoriously slow [19]. Other experimental design packages explicitly warn users to expect

this (e.g. acebayes [22]). In our case, we have parallelised the functions (compatible with any

OS) to increase computational efficiency for large problems. However, in many common sit-

uations users can expect run-times of hours, to days, and even weeks. The expected computa-

tion time in hours is given by K × L × T × n × (N − n)/(3600 × C), where K is the number of

random starts that are used to seed the algorithm, L is the number of times the algorithm

must iterate before converging, T is the time in seconds that is required to calculate U(d) for

a single design, n is the number of desired sampling locations, N is the number of potential

sampling locations, and C is the number of CPUs allocated to the task. The parameter K is

specified by the user in optimiseSSNDesign, but L is more difficult to constrain. The

number of times the algorithm must iterate until convergence is stochastic but, in our experi-

ence, L = 2 is most common; though we have observed L 2 {3, 4, 5}. Unsurprisingly, the

number of potential sampling locations and the number of desired sampling locations

Table 2. Standard designs from Som et al. [15]. Note that ‘name in package’ is the string argument that must be

passed to the drawStreamNetworkSamples function to use the sampling scheme.

ID Name in package Description

SRS SRS Simple random sampling. An unstratified random sample of sites.

G1 GRTS GRTS. Spatially balanced design [24].

G2 GRTSmouth GRTS with one site always assigned to the stream outlet.

G4 GRTSclus GRTS with clusters of sites around confluences.

H1 Headwater.Clusts.and.

Singles

Headwater samples. One site allocated to the outlet and others preferentially

allocated to tributaries.

C3 Trib.Sets.Head.Singles.

sample

Clustered triplets. As many points as possible are allocated to triplets clustered

where each segment meets at a confluence. All remaining points are assigned

to tributaries.

C4 Trib.Sets.Head.Singles.

Mouth.sample

C3 with a single point allocated to the outlet segment.

https://doi.org/10.1371/journal.pone.0238422.t002
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strongly influence computing time, and these make the largest contribution when n� N/2.

Large problems N� 300 generally take at least a day, if not more, to compute. Our second

case study below with N = 900 required approximately 4 days to complete using 20-32 CPUs

and n� N. Using complicated or intensive utility functions will also add significantly to

computation time. The empirical prediction or estimation utilities are particularly prone to

computational inefficiences because they rely on iteratively fitting and predicting from geos-

tatistical stream network models. This is compounded by the fact that larger n is often associ-

ated with larger T values, due to the increased size of the matrices (e.g. covariance matrix,

design matrix) that must be created and/or inverted.

Case studies

We present two case studies where we illustrate how SSNdesign can be used to address

common monitoring challenges. Field data collection can be expensive, so existing monitoring

programs often need to reduce sampling effort due to resource constraints. In the first case

study, we demonstrate how to ensure that the remaining survey sites are optimally placed to

minimize information loss when sampling effort is reduced. In the second case study, we show

how adaptive sampling can be used to design a monitoring program in a previously unsampled

area, by gradually adding additional survey sites year-by-year. The R code used to create these

examples is provided in Supplementary Information B so that readers can re-create them and

also apply these methods to their own data.

In a model-based design problem, a ‘true model’ must be specified. Here, a true model

refers to the statistical model which most adequately characterises the underlying spatial pro-

cess given what we know about the system. If a historical dataset from the study area exists, a

standard model-selection process can be used to determine which model has the most support

in the data using a range of approaches (e.g. information criteria or cross validation). If histori-

cal data are not available, simulated data can also be used to implement the model-based

design. In this case, the general approach is to:

1. Specify the form of the statistical model;

2. Identify which potential covariates should be related to the response (e.g. temperature

affects the solubility of dissolved oxygen in water) based on prior knowledge of the system,

or similar systems; and

3. Set priors that specify the likely relationship between covariates and the response based on

previously collected data, expert opinion and/or a literature review.

The same process must be undertaken to specify the spatial covariance structure and

covariance parameters for the model. The SimulateOnSSN function from SSN [20] can

then be used to simulate data that are subsequently used to implement the model-based

design. Needless to say, the quality of the design will depend strongly on the quality of the

prior information.

Case study 1: Lake Eacham

Water temperature samples were collected at 88 sites along a stream network near Lake Eacham

in north Queensland, Australia (Fig 3) [34]. The dataset includes a shapefile of streams, the 88

observed sites with rainfall data and GIS-derived urban and grazing land use percentages in the

catchment, and 237 prediction sites with the same covariates. Most survey sites were clustered

at stream confluences, with multiple sites located in the upstream and downstream segments.

In a similar experiment to that of Falk et al. [16], we used optimal experimental design to reduce
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the number of survey sites by half, with the least amount of information loss possible. More spe-

cifically, we wanted to retain the ability to 1) estimate the effect that land use and rainfall are

having on water temperature and 2) accurately predict temperature at unsampled locations. In

the former case, we optimised the design using CPD-optimality, which is maximised when

uncertainties in both the fixed-effects and covariance parameters are minimised (Table 1). In

the latter case, we used K-optimality, which is maximised when the total prediction uncertainty

across all sites is minimised. Note that this situation where two designs are built separately

using different utility functions is not ideal. There is no way to reconcile the two resulting

designs into a single one. Ideally, we would be able to use the EK-optimality function. This util-

ity function aims to maximise prediction accuracy but also involves a parameter estimation

step, and therefore serves as a dual purpose utility function that yields designs that are efficient

for parameter estimation and prediction. However, it was not practical to use the EK-optimality

function because it is extremely computationally expensive, even for this dataset with only 88

potential sites.

We fit a spatial stream-network model to the temperature data, using riparian land use (i.e.

percent grazing and urban area) and the total rainfall recorded on the sampling date (mm) as

covariates. The covariance structure contained exponential tail-up and tail-down components

[10]. Log-normal priors were set on the covariance parameters using the natural logarithm of

Fig 3. The Lake Eacham stream network (blue lines) with all potential sampling sites (red squares). The width of

the stream lines is proportional to the catchment area for each stream segment. The inset shows the spatial distribution

of sampling sites around a confluence in the stream network.

https://doi.org/10.1371/journal.pone.0238422.g003
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the estimated covariance parameters as the means and the log-scale standard errors of {0.35,

0.56, 0.63, 0.69, 0.68}, which were also estimated from the existing data using restricted maxi-

mum likelihood (REML).

We set about finding CPD- and K-optimal designs with 44 sites by removing one site at a

time from the original 88 sites. An alternative approach would be to optimise for a 44 site

design with no intermediate steps. However, we chose to remove one site at a time because it

helps reveal differences in the decision process between the CPD- and K-optimality utility

functions that would otherwise be difficult to identify. Note that this is not an adaptive design

because the model is not refit and the priors on the covariance parameters are not updated at

each step. The expected CPD- and K-optimal utilities were calculated at each step using 500

Monte Carlo draws.

As expected, the results revealed differences between the intermediate and final designs dis-

covered under CPD- and K-optimality. Both utility functions preserved clusters in groups of at

least three sites around confluences (one on each of the upstream segments and one on the

downstream segment). However, CPD-optimality appeared to remove single sites that were

not part of clusters in preference to sites within clusters. By comparison, K-optimality

appeared to reduce clusters around confluences down to three sites much more quickly, while

preserving sites that were located away from confluences. This reflects the previously observed

tendency of designs constructed for parameter estimation to favour spatial clusters and the

tendency of designs that optimise prediction to contain sites spread out in space, with some

clusters to characterise spatial dependence at short distances [15, 16]. These results suggest

that clusters located around confluences provide valuable information about the covariance

structure that is needed to generate precise parameter estimates and accurate predictions.

We tracked the information loss from the design process over time and compared the per-

formance of our final 44-site optimal designs against 20 random and GRTS designs of the

same size (Fig 4). We compared them to multiple GRTS and random designs because these

designs have many potential configurations. Therefore, we needed to characterise the range of

their performances under the chosen expected utilities. Information in this context is mea-

sured as relative design efficiency; a ratio of the expected utility of a given design and the

expected utility of the ‘best’ design, which in this case contained all 88 sites. There was a linear

reduction of information available for parameter estimation as sites were eliminated from the

design (Fig 4a). While the optimal design containing 44 sites provided only 20% of the infor-

mation gained from 88 sites, it provided significantly more information than the random and

GRTS designs. These results suggest that reducing sampling effort by 50% would signficantly

impact parameter estimation. However, the same was not true for prediction. We observed

only minor reductions in the efficiency of the optimal 44-site design compared to the full

88-site design, while also demonstrating considerable gains in efficiency over random and

GRTS designs (Fig 4b). As such, a 50% reduction in sampling effort would have little impact

on the predictive ability of the models.

The findings from this case study fit inside the framework established by Falk et al. [16] and

Som et al. [15], and broadly agree with their findings. However, for us, SSNdesign stream-

lined the process of discovering these results. The same code sufficed for both the CPD- and

K-optimality experiments, with only a few lines’ difference to account for the change in utility

function (S2 Appendix). If required, we could easily have changed the covariance function

underpinning the spatial relationships in the Lake Eacham network or the priors on the covari-

ance parameters. SSNdesign will enable aquatic scientists and statisticians to construct

designs for their own monitoring programs or make decisions about them with ease. Bespoke

code will no longer be required, expanding access to the sophisticated methodologies of opti-

mal and adaptive design.
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Case study 2: Pine River

In the second case study, we demonstrate how additional sites can be selected to complement

the information provided by a set of legacy sites using simulated data. The objective of the

adaptive design process is to generate a design that can be used to accurately predict dissolved

oxygen over the stream network at unsampled locations.

We did not actually have data at legacy sites. Therefore, for this example, we started by sim-

ulating four years of maximum daily dissolved oxygen (DO, mg/L) data at 900 locations

throughout the river network. We then selected 200 of these sites using a GRTS design, which

were treated as legacy sites. The first two years of data from the legacy sites were treated as his-

torical data and used to estimate the fixed effects and covariance parameters using a spatial

statistical stream-network model (S2 Appendix). Five random starts were used to find an adap-

tive design which maximises the K-optimality utility function (Table 1). We estimated U(d)

using M = 500 Monte-Carlo draws from our independent log-normal priors on the covariance

parameters. The results were used to select an additional 50 sites in year 3; after which the

model was refit to the full dataset and an additional 50 sites were selected in year 4. Thus, the

final dataset included 300 sites, giving rise to 950 observed DO measurements collected across

four years (Fig 5). The result is shown in Fig 6.

We validated the adaptive design by computing its relative efficiency compared to 20 GRTS

and 20 random designs of the same size. The GRTS designs were sequentially constructed

using the ‘master sample’ approach [35]. We compared relative efficiency by computing the

sum of the kriging variances for the same 900 prediction sites that were used when optimising

Fig 4. Information loss in our optimal designs as we remove sites one-by-one using the (a, c) CPD-optimal and (b, d) K-optimal utility functions.

The panels (a) and (b) have axes for efficiency fixed between 0 and 1. Panel (c) is zoomed on the y-axis range 0-0.3 and panel (d) on the y-axis range 0.7-

1.0. Efficiency represents a ratio of the expected utilities of each design and the full 88 site design. The black line indicates the efficiency of the optimal

design with a certain number of sampling sites. The 20 red dots and 20 blue dots in each panel represent the efficiencies of 44-site GRTS and random

designs, respectively. These serve as a baseline measure of comparison for the optimal design, which should have higher relative efficiency. We only

compare the efficiencies of the GRTS, random and optimal designs when there are 44 sampling sites in the design because the 44 site monitoring

program is the final result.

https://doi.org/10.1371/journal.pone.0238422.g004
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the design. Note that the sum of the kriging variances is simply the inverse of the expected util-

ity. For the purpose of validation, this expected utility was computed using 1000 prior draws to

ensure our approximations to the expected utility were accurate. We did not include the 200

fixed GRTS sites in the validation procedure because we wanted to assess whether there were

Fig 5. A schematic diagram showing the adaptive design process over four years. Green rectangles indicate new sites (i.e. sampling locations) that

have been added to the monitoring program, and blue rectangles indicate that sites have been retained from previous years.

https://doi.org/10.1371/journal.pone.0238422.g005

Fig 6. The Pine River stream network. The sites on the network represent the evolution of the adaptive design through time.

https://doi.org/10.1371/journal.pone.0238422.g006
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any additional benefits gleaned from the adaptive design. Thus, the efficiencies for each design

(i.e. adaptive, GRTS, and random) were based on the 150 measurements collected at 100 loca-

tions in years 3 and 4.

The results showed that the adaptive design was more efficient than both the GRTS and

random designs, which had 74.5-84% relative efficiency. In terms of variance units, using the

adaptive design reduces the total variance across 900 prediction sites by approximately 545-

1004 variance units compared to GRTS and random designs (Fig 7). This demonstrates that

adaptive design represents a far better investment in terms of predictive ability than designs

formed without optimisation.

Conclusions

The SSNdesign package brings together a large body of work on optimal spatial sampling,

pseudo-Bayesian experimental design, and the complex spatial data processing and spatial sta-

tistical modelling of stream network data. We demonstrate how the package can be used in

two contexts which should prove useful for scientists and managers working in stream ecosys-

tems; particularly where monitoring programs lack the resources to comprehensively sample

the network, but must nevertheless estimate parameters for complicated spatial processes and

accurately predict in-stream conditions across broad areas.

Compared with other packages for spatial sampling, such as geospt [25] and spsurvey
[23], SSNdesign represents a significant advance in functionality for stream network data.

The SSNdesign package integrates directly with the data structures, modelling and model

diagnostic functions from a well-established R package for streams, SSN [20]. As a result, the

hydrological distance measures and unique covariance functions for streams data can also be

used in the design process. This cannot be accomplished using other packages for spatial

design, which are restricted to using Euclidean distance in the conventional 2-dimensional

domain of geostatistics. SSNdesign has been written specifically to deal with problems of

Fig 7. The sum of kriging variances for both Generalised Random Tessellation Sampling (GRTS) and random designs computed using 1000

draws from the priors set on the covariance parameters. The dashed red line represents the sum of the kriging variances for the adaptive design. The

performance of the adaptive design is plotted this way as opposed to as a boxplot because there is only one adaptive design.

https://doi.org/10.1371/journal.pone.0238422.g007
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model-based design (i.e. obtaining the best information from a model given that a spatial sta-

tistical model for in-stream processes can be specified). This distinguishes SSNdesign from

packages such as spsurvey [23], which selects designs based on factors such as the inclusion

probability for a site given characteristics of the underlying stream segments. However, note

that we also include tailored functions to simplify the process of generating designs for stream

networks as per Som et al. [15], which include designs that can be formed using spsurvey.

In addition to the existing functionality in SSNdesign, there are opportunities for further

development. In particular, the authors of the SSN package [20] are working on extending its

functionality to include computationally efficient models for big data (Personal Comm., J. Ver

Hoef) and we expect there will be major performance boosts for the empirical utility functions

where spatial stream network models must be fit iteratively. Computationally efficient spatial

stream network models also open up possibilities to include new functionality within the

SSNdesign package. For example, users must currently specify a single spatial stream net-

work model as the ‘true’ model underpinning the design problem. This raises several impor-

tant questions about the possibility of true models, and the uncertainty about which of several

plausible, competing models ought to be chosen as the true model. Increased computational

efficiency would allow us to implement a model-averaging approach [36] so that users will be

able to specify several plausible models as reasonable approximations for the true model.

Expected utilities for designs will then be averages of the expected utilities of the design under

each plausible model. This approach would make optimal and adaptive designs more robust

because the averaging mitigates the possibility that designs are being chosen to obtain the best

information about the wrong model. Our hope is that managers of freshwater monitoring pro-

grams can more efficiently allocate scarce resources using optimal and adaptive designs for

stream networks, which we have made accessible through the SSNdesign package.
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