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Abstract: Secondary salinization, the increase of anthropogenically-derived salts in freshwaters, threatens freshwa-
ter biota and ecosystems, drinking water supplies, and infrastructure. The various anthropogenic sources of salts
and their locations in a watershed may result in secondary salinization of river and stream networks through mul-
tiple inputs. We developed a watershed predictive assessment to investigate the degree to which topology, land-
cover, and land-use covariates affect stream specific conductivity (SC), a measure of salinity. We used spatial
stream network models to predict SC throughout an Appalachian stream network in a watershed affected by sur-
face coal mining. During high-discharge conditions, 8 to 44% of stream km in the watershed exceeded the SC
benchmark of 300 lS/cm, which is meant to be protective of aquatic life in the Central Appalachian ecoregion.
During low-discharge conditions, 96 to 100% of stream km exceeded the benchmark. The 2 different discharge
conditions altered the spatial dependency of SC among the stream monitoring sites. During most low discharges,
SC was a function of upstream-to-downstream network distances, or flow-connected distances, among the sites.
Flow-connected distances are indicative of upstream dependencies affecting stream SC. During high discharge, SC
was related to both flow-connected distances and flow-unconnected distances (i.e., distances between sites on dif-
ferent branches of the network). Flow-unconnected distances are indicative of processes on adjacent branches and
their catchments affecting stream SC. With sites distributed from headwaters to the watershed outlet, the extent of
impacts from secondary salinization could be better spatially predicted and assessed with spatial stream network
models than with models assuming spatial independence. Importantly, the assessment also recognized the multi-
scale spatial relationships that can occur between the landscape and stream network.
Key words: streams, monitoring, spatial autocorrelation, specific conductivity, surface mining, block kriging, dis-
charge, secondary salinization
Secondary salinization, the increase of anthropogenically-
derived salts in freshwaters, threatens freshwater biota and
ecosystems, drinking water supplies, and infrastructure
(Cañedo-Argüelles et al. 2013, Kaushal et al. 2018). The va-
riety of anthropogenic sources of salts and their locations in
a watershed may result in secondary salinization of river
and streamnetworks throughmultiple inputs. These salt in-
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puts into freshwaters include de-icers for roadways, side-
walks, and parking lots; weathering of concrete infrastruc-
ture; wastewater treatment plants; agricultural irrigation;
oil and gas extraction; and surface coal mining, particularly
mountaintop mining and valley fills (MTM/VF) (Cañedo-
Argüelles et al. 2013, Griffith 2014, Moore et al. 2017).
Salt inputs increase the salinity of freshwater, measured
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as specific conductivity (SC), and negatively affect the phys-
iology and ecology of freshwater biota (Cañedo-Argüelles
et al. 2013, Griffith 2017, Timpano et al. 2018a).

The ecological impacts of secondary salinization on
stream biota have been a focus of research in the Central Ap-
palachian (CAP) ecoregion of the eastern United States. In
this region, 7% of the total land area (5900 km2) was mined
over the 4-decade period from 1976 to 2015. This intense
and persistent land use has dramatically affected the land-
scape and streams (Pericak et al. 2018). MTM/VF, a type of
surface mining, results in increased stream SC in the CAP
ecoregion (Merriam et al. 2011, Bernhardt et al. 2012,Griffith
et al. 2012, Timpano et al. 2018b). SC in reference streams
tends to be low and consistent,whereas SC in streams affected
by MTM/VF tends to be ∼10-fold higher and more vari-
able (Green et al. 2000, Hartman et al. 2005, Merricks et al.
2007, Pond et al. 2008, Lindberg et al. 2011, Merriam et al.
2011, Bernhardt et al. 2012, Timpano et al. 2015, Boehme
et al. 2016,Merriam and Petty 2016, Nippgen et al. 2017). In-
creased stream SC is associated with increased concentra-
tions of sulfate, calcium, magnesium, and bicarbonate ions
(Griffith et al. 2012, Timpano et al. 2015, 2018b, Boehme
et al. 2016) and the loss of sensitive macroinvertebrates, par-
ticularly Ephemeroptera species (Pond et al. 2008, 2014,
Lindberg et al. 2011, USEPA 2011, Bernhardt et al. 2012,
Timpano et al. 2015, 2018a, Boehme et al. 2016, Clements
and Kotalik 2016). The altered chemistry of mined streams
is also associated with depressed productivity of sensitive
taxa when SC increases during summer baseflows (Voss
and Bernhardt 2017).Most ecological studies conducted pre-
viously have used catchments of small spatial extents from
0.50 to 50 km2 in size. However, a stream survey of 30 water-
sheds at the sub-basin level (HydrologicUnit Code [HUC] 8),
ranging in size from∼750 to 6000 km2, also observed amulti-
metric benthic invertebrate index negatively related to SC
(McManus et al. 2016). Nonetheless, none of these studies
incorporated the spatial configuration of the watershed’s
stream network from headwaters to outlet.

Griffith et al. (2012) and Johnson et al. (2010) noted the
need for longitudinal studies of SC over a larger spatial ex-
tent to better understand cumulative effects of MTM/VF
on downstream waters. A watershed’s stream network is
dynamic with influences such as meteorological events,
seasonal variability, and multi-annual oscillations causing
expansion and contraction of the network along longitudi-
nal, lateral, and vertical dimensions (Stanley et al. 1997,
Godsey and Kirchner 2014, Costigan et al. 2016, Fritz et al.
2018). Against this backdrop of stream dynamics, spatial in-
fluences on water chemistry measurements at sites through-
out the network can be caused by processes occurring within
the network, across the catchments surrounding the net-
work, or a combination of both (McGuire et al. 2014, Rush-
worth et al. 2015). The hierarchical, dendritic, and directional
qualities of stream networks are now better incorporated
with newer geostatistical methods of spatial stream network
(SSN) modeling (Peterson and Ver Hoef 2010, Peterson et al.
2013, Isaak et al. 2014, Ver Hoef et al. 2014). SSN models
often outperform traditional, non-spatial models that assume
spatial independence across sites in a dendritic network.
Because SSN models do not assume spatial independence,
they are better than non-spatial models at fitting data from
topologically-connected observations and using spatial re-
lationships to make predictions (Frieden et al. 2014, Isaak
et al. 2014, 2016, Scown et al. 2017). SSN modeling is versa-
tile because it can estimate relationships between a response
variable and predictor variables or covariates, predict the re-
sponse variable at unsampled locations, and use a method
known as block kriging (BK) to predict an average or total
for different portions of the stream network (Ver Hoef et al.
2006, Isaak et al. 2014, 2016, Ver Hoef et al. 2014).

SSN analysis uses the spatial autocorrelation ofmeasure-
ments collected from sites distributed over the stream net-
work by incorporating spatial autocovariance models to ad-
dress the different distance relationships among sites, that
is, Euclidean and network distances (Ver Hoef et al. 2006,
Ver Hoef and Peterson 2010). Examining spatial autocor-
relation of stream chemistry as a function of Euclidean, or
straight-line, distances among sites incorporates traditional
geostatistical autocovariance models (Ver Hoef and Peter-
son 2010). For example, sodium concentrations in Hub-
bard Brook Valley, New Hampshire, USA, and strontium
concentrations in Nushagak River, Alaska, USA, exhibited
broad-scale gradients related to Euclidean distances, with
those patterns attributed to geological features in the water-
sheds (McGuire et al. 2014, Brennan et al. 2016). Network
distances, in contrast, are more suitable for water quality
variables, which have spatial autocorrelation structured by
the network. There are 2 types of stream network distance:
flow-connected distance, which refers to sites on the net-
work that have an upstream-to-downstream relationship,
and flow-unconnected distance, which refers to sites that
are on different branches of the network with confluence
downstream (Peterson and Ver Hoef 2010, Ver Hoef and
Peterson 2010). Autocorrelation can be restricted to flow-
connected distances by specifying a tail-up autocovariance
model, which might be appropriate for stream chemistry
variables having passive downstream diffusion, serial dilu-
tion, or active advection of solutes, such as total phosphorus
concentration (Peterson and Ver Hoef 2010, Ver Hoef and
Peterson 2010, Isaak et al. 2014, Scown et al. 2017). Flow-
connected and flow-unconnected distances can bemodeled
together with a tail-down autocovariance model. One ex-
ample where this method could be useful is for fish abun-
dance among sites, given that fish can move upstream
and downstream throughout the network (Ver Hoef and
Peterson 2010, Isaak et al. 2014, 2016). The ability to specify
and combine different distance relationships and auto-
covariances illustrates the versatility of SSN modeling for
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predictive assessments of water quality in a watershed’s
stream network.

Understanding how spatial variation in a stream net-
work is manifested under different hydrologic conditions
can help identify whether processes occurring instream, on
the landscape, or some combination of the 2 are influencing
predictive assessments of watersheds. In this study, we devel-
oped a watershed predictive assessment to examine the de-
gree to which topology, land-cover, and land-use covariates
affect stream SC from the headwaters to the outlet of a
CAP watershed’s stream network where surface mining oc-
curs. Spatial autocorrelation in SChas previously been exam-
ined in stream networks by geostatistical summaries and
graphics (Dent and Grimm 1999, McGuire et al. 2014) and
through SSN modeling (Peterson et al. 2006, Ver Hoef
and Peterson 2010). However, there have not been any stud-
ies to date that have characterized SC in a single stream net-
work under varying hydrologic conditions with the purpose
of comparing spatial and non-spatial models to predict the
effects of stream SC on stream biota. We leveraged monitor-
ing data to ask the following: 1) what covariates, or predictor
variables, if any, are consistently selected among models to
predict SC in the stream network?; 2) how does hydrologic
variability alter the nature and degree of spatial autocorrela-
tion in SC?; 3) to what degree does an SSN model improve
the accuracy and precision of SC prediction over a non-
spatial multiple linear regression (MLR) model?; and 4) what
portions of the stream network likely have SC levels that
would affect macroinvertebrate communities?
METHODS
To answer our research questions, we designed a moni-

toring study to collect water quality data quarterly over 2 y
from the same stream network of sites under high- and
low-discharge periods.Wemodeled observed SC as function
of landform, land-cover, and land-use covariates using non-
spatial MLR and SSN methods for each of the 8 monitoring
periods. Byfitting different spatial autocovariancemodels, we
evaluated if hydrologic variability affected spatial autocorre-
lation in SC. We compared MLR and SSN models regarding
model fit and predictive performance. Finally, we used BK to
predict what portions of the stream network likely have SC
levels that would affect macroinvertebrate communities.
Study area and monitoring design
The Right Fork of Beaver Creek (RFBC) is a 400-km2

watershed in the Eastern Coalfield Region of the Central
Appalachians, Kentucky, USA, in ecoregion 69d, the Dis-
sected Appalachian Plateau (Omernik 1987). It flows north
through Knott and Floyd Counties and includes 3 HUC12
subwatersheds: Upper, Middle, and Lower (050702030101,
050702030102, and 050702030103, respectively). The water-
shed is home to 10,079 people and has a population density of
25 people/km2 (USEPA 2019). Populated places in thewater-
shed are often clustered in the stream valleys, particularly
along the lower RFBC mainstem. In addition to commercial
and residential development, other land uses in the water-
shed include surface coal mining and valley filling, under-
ground coal mining, oil and gas production, and forestry.

We established 60 monitoring sites throughout the
∼545 stream km study area based on National Hydrogra-
phy Dataset high-resolution data of RFBC (USGS 2016;
Fig. 1). We chose site locations to create a longitudinal pro-
file of the watershed that was well-suited for SSN analysis
(Som et al. 2014). Site locations included headwaters (i.e.,
1st- and 2nd-order streams, 29%), 3rd-order (33%), 4th-order
(25%), and 5th-order (13%) streams, including the outlet (site
RFBC1). Twenty-five % of the site locations were on the
mainstem of the RFBC watershed, and 17% of the sites were
clustered near confluences.We sampled themonitoring sites
quarterly from December 2012 to August 2014 over 3 to
4 consecutive days (n 5 8 sample periods).

Wemeasured the in-situ physicochemistry variables (e.g.,
SC, temperature, dissolved oxygen, pH, and turbidity) with
a 6920-V2 multi-parameter sonde (Yellow Springs In-
struments, Yellow Springs, Ohio). We collected stream dis-
chargemeasurementswith a Flowtracker®handheldAcous-

tic Doppler Velocimeter® (SonTek, SanDiego, California) at
each site during the first 4 sampling periods. However, this
handheld instrument could not be safely used by field per-
sonnel wading at discharges greater than 6555 L/s, which
resulted in right-censored discharge observations at 1 site,
3 sites, and 5 sites on the RFBC mainstem during Decem-
ber 2012, March 2013, and August 2013 sampling periods,
respectively. For the last 4 sampling periods, we avoided
censored observations at non-wadeable sites by measur-
ing discharge with an OceanScience Q-Boat 1800P™ with
a Rio Grande Acoustic Doppler Current Profiler (Teledyne
Marine Incorporated, Thousand Oaks, California). We also
recorded global positioning system coordinates for each
site.

Geoprocessing of the stream network and covariates
We geoprocessed the spatial information of both the

stream network and covariates for SSN analysis. The same
geoprocessing was done for the monitoring sites and for
the prediction sites used in BK (see below). To produce
the landscape network (LSN) with a single streamline for
each reach, we reconditioned, or simplified, the digital
stream network of the RFBC with the STARS 2.0.4 toolbox
(Peterson and Ver Hoef 2014) in ArcGIS (version 10.3, En-
vironmental Systems Research Institute, Redlands, Califor-
nia). The LSN is a geodatabase containing a number of re-
lationship tables that report the topological relationships,
such as flow direction among all the reaches in the stream
network and branching structure of the network (Peterson
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and Ver Hoef 2014). A 1-to-1 relationship exists between
each reach and its surrounding landscape, the reach con-
tributing area (RCA).

We derived covariates from geospatial data characteriz-
ing landform, land cover, and land use (Table 1) and asso-
ciated them with their corresponding RCA sites. We in-
cluded elevation and slope (% rise) because the weathering
of natural geological inputs to stream SC might vary with
landform (USGS 2013). We also included proportion of
forested land cover (MRLC 2011) and land-use covariates:
housing density (USCB 2010), road km (USCB 2016), and
proportion surface mining disturbance (hereafter propor-
tion mined) based on National Agricultural Imagery Pro-
gram (NAIP) data (USDA 2010). Land-cover and land-use
covariates were expressed cumulatively. That is, we summed
the total amount or area of each covariate over the RCA
and divided by the accumulated area as we progressed
downstream.
Figure 1. The 60 sample locations within the Right Fork of Beaver Creek (RFBC) watershed, eastern Kentucky, USA, which includes
3 hydrologic unit code (HUC12) watersheds—050702030101, 050702030102, and 050702030103—for the Upper, Middle, and Lower
watersheds, respectively. The stream flows north, and its outlet is at RFBC1. NHD 5 National Hydrography Dataset.
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We created 2 additional covariates based on National
Pollutant Discharge Elimination System (NPDES) permits:
presence or absence of non-coal permits/RCA and counts
of coal permits/RCA (Table 1). We developed the 1st covar-
iate from a point data layer of NPDES permits (J. Blan-
set, Watershed Management Branch, Kentucky Division of
Water, personal communication), which we spatially joined
to the RCAs. We selected non-coal permits, such as waste-
water treatment plants, and excluded permits associated
with bituminous and lignite surface mining. We converted
counts to presence/absence because nearly¼ of these counts
were 0. We developed the 2nd covariate from Discharge
Monitoring Reports of surface mine outfalls monitored by
coal companies (K. Gale, Division of Mine Reclamation and
Enforcement, Kentucky Department of Natural Resources,
personal communication), which we also spatially joined
to the RCAs. Both coal and non-coal permit covariates were
expressed as cumulative variables. The response variable for
the SSN analysis was SC for each site (n 5 60) from a spe-
cific sampling period, which we log transformed to account
for skewness in the data.
Spatial stream network analysis
We completed our statistical analysis in 2 steps to iden-

tify covariates and compare spatial autocovariances that
describe spatial relationships among monitoring sites in
the network. The 1st step addressed which covariates, if
any, were consistently selected to predict SC, and the 2nd

step addressed if the nature and degree of spatial autocor-
relation in SC is affected by hydrologic variability, our 1st

and 2nd research questions, respectively. For each sampling
period, we followed Ramsey and Schafer (2002) in our
modeling strategy to adjust for a large set of covariates.
We approached model fitting and selection to account
for as much variation in SC by non-coal covariates first
and then consider the mining covariates. We also aimed
to avoid overfitting the model. We note that other model-
ing approaches might identify a different set of covariates
as the best model. We 1st developed a non-spatial MLR
of SC with only the non-coal covariates: elevation, % rise,
housing density, proportion forested, road km, and pres-
ence/absence of non-coal permits. This analysis used
best-subsets regression (Furnival and Wilson 1974) from
Table 1. Description and sources of land-form, land-use, and permit covariates. Geoprocessing describes the steps to create the
covariate for each reach contributing area (RCA). NED 5 National Elevation Dataset, DEM 5 digital elevation model, NPDES 5
National Pollutant Discharge Elimination System permits.

Covariate Source Geoprocessing

Average elevation USGS 2013 NED 10-m DEM
(Nationalmap.gov/elevation.html)

Average elevation within an RCA. Calculated using zonal statistics.

% rise USGS 2013 NED 10-m DEM
(Nationalmap.gov/elevation.html)

Average % rise of the elevation/RCA. Calculated using zonal
statistics.

Housing density USCB 2010 (https://www.census.gov
/geographies/mapping-files/time
-series/geo/carto-boundary-file.html)

Averaged 2010 Census housing unit counts by Census block area.
Used zonal statistics with the average housing unit to calculate
housing density/RCA.

Road kilometer USCB 2016 (www.census.gov
/geographies/mapping-files/time
-series/geo/tiger-line-file.html)

Total length (km) of roads within an RCA divided by the area of an RCA.

Proportion forested MRLC 2011 (www.mrlc.gov/data) Proportion of RCA that has forested land cover. Used the tabulate area
tool in ArcMap to calculate the area of forested land (a combination
of deciduous, evergreen, and mixed forest types).

Non-coal NPDES J. Blanset, Watershed Management
Branch, Kentucky Division of Water,
personal communication, 2016

Count of non-coal NPDES permits/RCA, converted to presence/ab-
sence. Non-coal NPDES permits were selected using the Standard
Industrial Classification (SIC) attribute (SIC < or > 1221). SIC 5 1221,
represents bituminous and lignite surface mining.

Proportion mined USDA 2010 (earthexplorer.usgs.gov) The proportion of the RCA that was mined. Mining layer was created
through hand digitization of land exhibiting disturbance from surface
mining: clearly deforested, scarred and included distinct terracing,
fills, and mining roads. These areas frequently corresponded to GIS
layers of surface mining permit boundaries or points, with most of
those permits being from 1980 through early 2011.

Coal outfall density K. Gale, Division of Mine Reclamation
and Enforcement, Kentucky Depart-
ment of Natural Resources, personal
communication, 2016

Count of NPDES surface coal outfalls/RCA
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the package bestglm (McLeod and Changjiang 2018) in R
(version 3.6.2; R Project for Statistical Computing, Vienna,
Austria). We used Akaike information criterion (AIC) to
select the best set of covariates for each sampling period.
For the initial model of non-coal covariates, we selected
the model with the minimum AIC value. We then used
Akaike weights to compare 3 models: non-coal covariates,
non-coal covariates plus coal outfall density, and non-coal
covariates plus proportion mined. Akaike weight values
range from 0 to 1 with the sum of the weights of all of
the candidate models equaling 1 (Symonds and Moussalli
2011). We used the BMhyd package (version 1.2-8; Jhwueng
and O’Meara 2015) in R to calculate the weights. In all cases,
models that included the proportion mined had a much
greater Akaike weight (0.76–1.0) compared to the other
2 models (Appendix S1). Diagnostic plots of the proportion-
mined models showed some curvilinear patterns in the re-
siduals, suggesting a quadratic of mine disturbance could
improve model fit. Quadratic models had greater Akaike
weights (0.98–1.0) and better diagnostic plots than those
with solely linear terms (Appendix S1). We also examined
the variance inflation factor to see if any covariates exceeded
the threshold of 10, which indicates multicollinearity (Dor-
mann et al. 2013). We then used the final 8 MLR models, 1
for each sampling period, for SSN model fitting and predic-
tions (Appendix S2).

SSN models incorporate topological configuration and
Euclidean, flow-connected, and flow-unconnected distances
by specifying spatial autocovariance functions (Peterson
and Ver Hoef 2010, Ver Hoef and Peterson 2010). From
the spatial autocovariance functions, 3 parameters—nugget,
sill, and range—can be estimated by plotting a semivariogram
that shows how semivariance, and hence autocorrelation
strength, changes as a function of distance between sites (Pe-
terson et al. 2006). The nugget, or independent error term,
describes spatial variation occurring at a distance smaller
than the shortest distance among pairs of sites. The sill is
the value at which the autocovariance plateaus as a function
of distance. The range is the distance beyond which little
or no spatial autocorrelation occurs (Peterson et al. 2006,
Krivoruchko 2011). We used the SSN package (Ver Hoef
et al. 2014) in R with restricted estimate maximum likelihood
to fit a total of 15 autocovariance models for each sampling
period. We fitted all 1-way, 2-way, and 3-way combinations
of Euclidean, tail-up, and tail-down autocovariance models
and crossed each combination with either an exponential
or spherical structure, plus the MLR that assumed indepen-
dent observations. All 3 types of autocovariance may need
to be included in model building because of the complex
andmulti-scale patterns that occur in stream datasets (Peter-
son and Ver Hoef 2010, Frieden et al. 2014). The exponential
and spherical structures represent the shape of the semi-
variogram from which the geostatistical parameters of nug-
get, sill, and range were estimated. We compared Akaike
weights of models having the different covariance structures.
For each of the 8 sampling periods, we selected a final SSN
model that had the highest weight and lowest root mean
square prediction error (RMSPE). The RMSPE is produced
from a leave-1-out cross validation used to evaluate model
performance (Ver Hoef et al. 2014). We compared the
RMSPE of the SSN models to the RMSPE of their corre-
sponding non-spatialMLRmodels to examine the difference
between their predictive performance, thereby addressing
our 3rd research question.
Predicting stream segments with high SC
To address our 4th research question, we used BK to com-

pare SC predictions from different segments of the stream
network and identify portions that likely have SC levels high
enough to affect macroinvertebrate communities. BK can
be used to identify stream segments that either differ or
are similar to nearby streams. We used a Python script to
place prediction points at every ∼100 m throughout the
RFBC network because BK requires a set of spatially-dense
points. We then used universal kriging to predict SC at
Table 2. Summary statistics of land-form, land-use, and permit covariates for the 60 sites in the Right Fork of Beaver Creek
Network. Min 5 minimum, Max 5 maximum, Qu 5 quartile, NC NPDES 5 non-coal National Pollutant Discharge Elimination
System permits.

Covariate Min 1st Qu Median Mean 3rd Qu Max

% rise 0.0 2.1 5.7 7.2 10.1 24.2

Average elevation (m) 195.0 208.0 230.0 237.0 264.0 312.0

Housing density (#/km2) 3.4 7.6 8.8 9.5 10.5 22.8

Road kilometer (km/km2) 0.36 1.06 1.21 1.21 1.36 2.10

Proportion forested 0.579 0.793 0.826 0.812 0.853 0.918

NC NPDES density (#/km2) 0.00 0.00 0.028 0.080 0.117 0.451

Proportion mined 0.00 0.028 0.059 0.072 0.083 0.303

Coal outfall density (#/km2) 0.00 0.25 0.66 1.24 1.04 9.19
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5120points.Universalkriging incorporatespredictions from
the covariates, with adjustments for spatial autocorrelation,
along with the SSN models that had the highest Akaike
weights and lowest RMSPE (Cressie 1993). To check for
unreasonable predictions and extrapolations, we compared
the minimum and maximum values of the covariates at the
prediction sites to the minimum and maximum values of
the covariates at the 60 monitoring sites (Table 2). By pre-
dicting at such a high density of points on the network,
it was then possible to integrate predicted SC over differ-
ent portions of the network through BK. This technique
allowed us to predict average SC and estimate a 95% predic-
tion interval for specific portions of the network within each
sampling period. We used BK over the 60 monitoring site
locations and integrated the SC predictions from universal
kriging that were upstream of the monitoring site locations
to predict an average SC for those portions of the network.
We compared those predicted average SC and 95% confi-
dence intervals to the conductivity benchmark of 300 lS/cm
for CAP streams (USEPA 2011) to identify which parts of
the network were consistently below or above that bench-
mark over the 8 sample periods. This comparison identified
what portions of the stream network likely had SC levels
that would affect macroinvertebrate communities.
RESULTS
Exploratory data analysis

We visually classified the quarterly synoptic samples into
2 groups, high stream discharge and low SC vs low stream dis-
charge andhigh SC (Fig. 2A, B), basedon streamdischarge and
SC descriptive statistics.When discharge was high (December
2012, March 2013, August 2013, and April 2014; median5
240 L/s), SC had a median value of ≤450 lS/cm. When dis-
charge was low (June 2013, November 2013, June 2014, and
August 2014; median 5 40 L/s), SC had a median value of
≥800 lS/cm. SCminimum (66 lS/cm) was recorded in Au-
gust 2013 (a high-discharge sample) at the LIF site, a tributary
of Saltlick Creek in the Lower RFBC (see Fig. 1 for site loca-
tions), and SC maximum (2445 lS/cm) was recorded in No-
vember 2013 (a low-discharge sample) at the FMB site, a trib-
utary of Jones Branch in the Middle RFBC. The LIF site also
recorded the discharge minimum (0.02 L/s) in August 2014,
Figure 2. Box plots of specific conductivity (lS/cm) (A) and stream discharge (L/s) (B) for the Upper (U), Middle (M), and Lower
(L) Right Fork of Beaver Creek watersheds for each of the 8 sample periods (month/year). H indicates a high-discharge sample period,
and L indicates a low-discharge sample period. The thick horizontal line is the median, the bottom of the box is the 1st quartile, the
top is the 3rd quartile, and the vertical lines from each box extend to 1.5-fold greater than the interquartile range. The dots are the
observed values.
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which corresponded to that site’s maximum SC (348 lS/
cm). Discharge maximum (8210 L/s) was recorded at the
watershed outlet (the RFBC1 site in the Lower RFBC) in April
2014.

Across the 8 sampling periods, the coal covariates had
the most consistent association with SC (Fig. 3, Table 3,
Appendix S1). The strongest positive correlations were
between SC and the 2 mining covariates, proportion mined
(q 5 0.65–0.81) and coal outfall density (q 5 0.61–0.85).
The strongest negative correlation was between SC and
proportion forested (q 5 20.72 to 20.37). Housing den-
sity and road km were positively correlated with each other
Figure 3. Scatter plot matrix of land-use, land-cover, and permit covariates—housing density (Houses, #/km2), road kilometer
(Road, km/km2), proportion forested (Prop. forest), proportion mined (Prop. mine), and coal outfall density (Coal outfalls, #/km2)—
and log of specific conductivity (SC) from the December 2012 sample period for the 60 sites in the Right Fork of Beaver Creek net-
work. Spearman rank correlations are shown in the upper matrix, and histograms appear along the diagonal. A locally weighted
smoothing (LOESS) line, shown in black with a gray band, indicates the 95% confidence interval of the LOESS line.
Table 3. Spearman rank correlations between log specific conductivity (SC) from each of the 8 sample periods and land-use, land-
cover, and permit covariates for the 60 sites in the Right Fork of Beaver Creek Network. H indicates a high-discharge sample period,
and L indicates a low-discharge sample period.

Log(SC) Housing density Road kilometer Proportion forested Proportion mined Coal outfall density

Dec 2012 (H) 0.13 0.19 20.68 0.72 0.81

Mar 2013 (H) 0.08 0.19 20.70 0.76 0.78

Jun 2013 (L) 0.14 0.06 20.51 0.76 0.72

Aug 2013 (H) 0.14 20.11 20.37 0.65 0.61

Nov 2013 (L) 0.08 0.05 20.54 0.80 0.75

Apr 2014 (H) 0.17 0.17 20.72 0.81 0.85

Jun 2014 (L) 0.09 0.03 20.52 0.78 0.74

Aug 2014 (L) 0.04 20.01 20.50 0.75 0.68
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(q 5 0.62). Both had weak associations with SC (q 5
20.11–0.19), as did the land-form covariates of average el-
evation (q 5 20.36–0.06) and % rise (q 5 20.08–0.12)
(Appendix S1).
MLR and SSN models
Non-spatial MLR modeling produced 3 results. First,

models with the proportion-mined covariate, which had
a positive slope, always had the greatest Akaike weights
compared to either the non-coal covariates alone or non-
coal covariates plus coal outfall density (Appendix S1).
Adding coal outfall density produced no change in the
weights of the non-coal covariate-only models. Models
with the proportion-mined covariate had Akaike weights
that ranged from 0.759 (August 2013) to 0.999 (June 2014).
Second, adding the quadratic term for proportion mined
produced models with Akaike weights ranging from 0.982
to 0.999 compared to non-coal covariates plus proportion-
mined models with weights of 0.001 to 0.018 (Appendix S1).
Third, proportion mined and its quadratic term were always
selected in the MLR models across all 8 sampling periods
(Table 4). Among the other covariates, proportion forested
was selected most often and had a negative slope in 4 of
the 8 sampling periods. Those negative slopes, which always
occurred during high-discharge, low-SC periods, differed
from 0 in December 2012, March 2013, and April 2014,
but not in August 2013. All of the non-coal covariates se-
lected in the non-spatial MLR models had variance infla-
tion factors <10 (Appendix S1), indicating that they were
not affected by multicollinearity. The positive relationship
between proportion mined and SC remained when we
modeled for spatial autocorrelation in the SSN analysis,
but that was not always the case with the slopes of other co-
variates (Table 4).

Specifying spatial autocovariance models through the
SSN analysis always fit the data better, based on greater
Akaike weights, compared to non-spatial MLRmodels; how-
ever, different autocovariances were selected under different
stream discharge conditions (Table 4, Appendix S3). For pe-
riods with high stream discharge (December 2012, March
2013, August 2013, and April 2014) both tail-up and tail-
down autocovariance models were selected, and Akaike
weights for the SSN models were 1.0 vs <0.001 for the MLR
models. The tail-up and tail-down autocovariance models
were also selected forNovember 2013 (low streamdischarge),
with an Akaike weight of 0.966 vs 0.034 for the MLR model.
For the 3 summer periods with low stream discharge (June
2013, June 2014, and August 2014), the tail-up model was
selected, and the Akaike weights were 0.670, 0.993, and
0.999, respectively.

Weused leave-1-out cross validation to evaluateMLRand
SSNmodel performance (Table 4). The SSNmodels from the
high-discharge periods had 58 to 85% lower RMSPE than
their corresponding MLR models. For the low-discharge pe-
riods of November 2013 and August 2014, the SSN models
had ∼18% lower RMSPE than MLR models. In both June
2013 and June 2014 (low discharge), the RMSPE was similar
for SSN and MLR models. For the SSN models, semivario-
gram range, the distance beyond which little or no spatial
autocorrelation in SC occurred, was 57 to 246 km.

The variance decomposition differed markedly between
the SSN andMLRmodels (Table 5). In the SSNmodels, the
covariates accounted for 53 to 79% of the variation in the
data, and in the MLR models, covariates accounted for 62
to 74% of the variation. The nugget, or proportion of unex-
plained variation in the data, never exceeded 14% for the
SSN models but was 26 to 38% for the MLR models. When
tail-up and tail-down autocovariances were specified in 5 of
the SSN models, they accounted for 21 to 31% of the vari-
ation. When only tail-up autocovariances were specified in
the other 3 SSNmodels, they accounted for 33 to 42% of the
variation. This difference in variance decomposition be-
tween the SSN and MLR models showed that spatial struc-
ture explained a sizeable portion of SC variation in the
RFBC stream network.
Block kriging of SC
The%of streamkmexceeding the 300lS/cmbenchmark,

the subject of our 4th research question, is based on average
SC and 95% prediction intervals from BK (Figs 4, S1A, B).
During year 1, which had 3 high-discharge periods and
1 low-discharge period, 10 to 44% of stream km exceeded
the benchmark during high discharge. During low discharge
(June 2013), 98% of stream km exceeded the benchmark.
During year 2, which had 3 low-discharge periods and
1 high-discharge period, 96 to 100% of stream km exceeded
the benchmark during low discharge. During high discharge
(April 2014), 8% of stream km exceeded the benchmark.

At times, extrapolations of the 5120 predictions from
universal kriging occurred when the values of the covariates
for those predicted points exceeded the covariate values of
the 60 monitoring sites. The extrapolation of proportion
mined produced unrealistically-low point predictions of
SC, such as 0 lS/cm in June 2014, which was the result of
a few predicted sites with high proportion-mined values
coupled with the use of the quadratic function. For propor-
tion mined, 5% of the predicted sites exceeded the maxi-
mum of the observed sites, but no extrapolation occurred
at the lower limit because both predicted and observed sites
had the same minimum value of 0. The other land-use co-
variates ranged in the percentages of prediction sites that
exceeded themaximumorwere less than theminimum val-
ues at observed sites: housing density: 2% predicted > ob-
served, 5% predicted < observed; proportion forested: 18%
predicted > observed, 4% predicted < observed; road km:
6% predicted > observed, 24% predicted < observed. The
maximum road covariate from the 60 observed sites in
themodel was 2.1 km, but themaximum at a prediction site
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was 8.2 km. This greater road covariate value resulted in an
extrapolated prediction of 10,000 lS/cm in June 2013 at a
few sites, which is unlikely, but greater observations of SC
in the CAP have been reported (USEPA 2011).
Model extrapolation issues, such as unrealistic or extreme
predictions,must be considered when interpretingmodel re-
sults.Whilewe had extrapolations, these few extreme predic-
tions had little effect when averaged over all the other sites in
Table 4. Parameter estimates for spatial stream network (SSN) and multiple linear regression (MLR) models fit to specific conductivity
at 60 sites in the Right Fork of Beaver Creek network from the 8 sample periods. N/A 5 not applicable, NC NPDES Y/N 5 non-coal
National Pollutant Discharge Elimination System permits yes/no, Quad. 5 quadratic, TU 5 tail-up, TD 5 tail-down, Weight 5 Akaike
weight of the 2 models within a sample period, RMSPE 5 root mean square prediction error, * indicates p < 0.05. The – indicates a
parameter was not selected for a particular model, and N/A indicates that the spatial autocovariance parameters are not applicable to
the MLR models.

Dec 2012 Mar 2013 Jun 2013 Aug 2013

Model Parameters SSN MLR SSN MLR SSN MLR SSN MLR

Intercept 7.33* 7.17* 7.60* 8.45* 4.78* 4.94* 7.40* 5.06*

% rise – – – – – – – –

NC NPDES Y/N – – 0.05 20.22* – – – –

Housing density – – – – – – 0.004 0.034

Road kilometer – – – – 0.38* 0.30* – –

Proportion forested 22.72* 23.22* 22.69* 23.46* – – 22.54 22.33

Average elevation 1.9 � 10–4 3.4 � 10–3* – – 0.003 0.003* 24.3 � 10–5 0.008*

Proportion mined 10.37* 9.23* 8.70* 9.48* 10.92* 10.71* 11.01* 15.75*

Quad. proportion mined 222.21* 220.58* 216.17* 223.02* 221.94* 221.39* 223.78* 245.15*

Autocovariance TU, TD N/A TU, TD N/A TU N/A TU, TD N/A

Spherical TU partial sill 0.064 N/A 0.097 N/A 0.089 N/A 0.061 N/A

Spherical TU range (km) 246.0 N/A 246.0 N/A 156.0 N/A 246.0 N/A

Spherical TD partial sill 0.226 N/A 0.124 N/A – N/A 0.724 N/A

Spherical TD range (km) 246.0 N/A 246.0 N/A – N/A 246.0 N/A

Weight 1.0 <0.001 1.0 <0.001 0.670 0.330 1.0 <0.001

RMSPE 0.162 0.296 0.169 0.312 0.318 0.327 0.276 0.437

Nov 2013 Apr 2014 Jun 2014 Aug 2014

SSN MLR SSN MLR SSN MLR SSN MLR

Intercept 5.42* 5.02* 8.88* 7.81* 5.58* 5.32* 6.18* 6.17*

% rise – – – – – – 0.006 0.011

NC NPDES Y/N – – – – – – – –

Housing density – – – – – – – –

Road kilometer 0.32* 0.33* – – 0.20 0.19 – –

Proportion forested – – 23.01* 23.68* – – – –

Average elevation 0.002 0.004* 20.005* 0.003 0.001 0.003* – –

Proportion mined 9.52* 11.54* 9.70* 11.96* 11.72* 10.94* 9.66* 9.02*

Quad. proportion mined 220.22* 228.02* 220.10* 230.14* 229.05* 223.91* 218.01* 216.44*

Autocovariance TU, TD N/A TU, TD N/A TU N/A TU N/A

Spherical TU partial sill 0.019 N/A 0.085 N/A 0.094 N/A 0.115a N/A

Spherical TU range (km) 194.0 N/A 246.0 N/A 246.0 N/A 57.0a N/A

Spherical TD partial sill 0.296 N/A 0.493 N/A – N/A – N/A

Spherical TD range (km) 246.0 N/A 246.0 N/A – N/A – N/A

Weight 0.966 0.034 1.0 <0.001 0.993 0.007 0.999 0.001

RMSPE 0.206 0.242 0.214 0.337 0.256 0.255 0.237 0.281
a Exponential TU autocovariance was selected.



Table 5. Variance components from multiple linear regression (MLR) and spatial stream network (SSN) models fit to specific conduc-
tivity at 60 sites in the Right Fork of Beaver Creek network from the 8 sample periods. The – indicates a parameter was not selected
for a particular model.

Proportion of variance in sampling period

Model Variance component Dec 2012 Mar 2013 Jun 2013 Aug 2013 Nov 2013 Apr 2014 Jun 2014 Aug 2014

MLR Covariates 0.74 0.74 0.63 0.62 0.71 0.74 0.71 0.63

MLR Unexplained variance 0.26 0.26 0.37 0.38 0.29 0.26 0.29 0.37

SSN Covariates 0.79 0.77 0.53 0.70 0.67 0.74 0.60 0.57

SSN Tail-up spherical
autocovariance

0.05 0.10 0.33 0.02 0.02 0.04 0.37 0.42a

SSN Tail-down spherical
autocovariance

0.16 0.13 – 0.28 0.29 0.22 – –

SSN Nugget 2.4 � 10–6 3.0 � 10–5 0.14 3.8 � 10–3 0.02 5.7 � 10–5 0.03 7.6 � 10–9
a TU exponential was fit.
Figure 4. Block-kriged predictions of the lower 95% prediction limit of specific conductivity from spatial stream network models
fit to each sample period. Percentages indicate what portion of the stream network had a lower 95% prediction limit greater than the
specific conductivity benchmark of 300 lS/cm. H indicates a high-discharge sample period, and L indicates a low-discharge sample
period.
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the network to produce the BK predictions of SC. Extrapola-
tions are not advantageous for any predictivemodel, but they
can be minimized in an SSN study by examining the covari-
ate distribution of the proposed observed and predicted sites
(Scown et al. 2017, Marsha et al. 2018).
DISCUSSION
We modeled SC in an Appalachian stream network af-

fected by surface coal mining and identified stretches with
SC levels that exceeded a threshold for negative macro-
invertebrate effects. These predictions revealed seasonal
and discharge-related patterns in SC, but some portions
of the stream network consistently exceeded the threshold.
We assessed the effect of hydrologic variability on spatial
autocorrelation in the model and found that, although flow-
connected autocorrelation always influenced stream SC,
flow-unconnected autocorrelation also influenced stream
SC during high-discharge periods. To understand the degree
to which mining and non-mining covariates influenced SC,
we identified covariates that consistently affected SC in both
non-spatial MLR and spatial SSN models. Finally, we com-
paredMLRand SSNmodels in terms of their ability to predict
SC. SSNmodels had better predictive performance, especially
when stream discharge was high, which supports incorpora-
tion of spatial data into modeling for comprehensive analysis
of mining impacts throughout stream systems.
Network predictions of SC
By modeling SC from headwaters to outlet of a stream

network, we were able to accurately describe spatial varia-
tion in SC and make whole-network BK predictions of SC.
To our knowledge, this is the first application of compar-
ing BK predictions on a stream network to a water quality
benchmark (Isaak et al. 2014). Our results add to prior pre-
dictive work on the effect of surface mining area on stream
SC (Bernhardt et al. 2012, Merriam et al. 2015b) by incor-
porating the influence of spatial autocorrelation. Studies
on the effects of surface mining on stream water quality
and biota have often compared mined streams to reference
streams and have focused on the extremes of SC distribu-
tion instead of looking at the gradient along the network
(Pond et al. 2008, Timpano et al. 2015, Boehme et al.
2016, Voss and Bernhardt 2017). Geographically, these
studies were done in the upper portion of the stream net-
work in small catchments <50 km2 in size. We found that
some unmined tributaries in the RFBC exhibited low and
less-variable SC, often below the benchmark. We also
found that mined tributaries with high average SC and high
variation were always above the benchmark, regardless of
discharge condition. However, large portions of the RFBC
stream network had average SC values intermediate to
these extremes and exhibited seasonal patterns of SC related
to discharge. Those network portions had high SC that sur-
passed the benchmark during low discharge, then eithermet
the benchmark or were below it during high discharge.

SeasonaldischargeeffectsonSChave implications formon-
itoring. For example, monitoring under high discharge could
predict what portions of the network likely have chronically-
high SC because those portions of the network would exceed
the benchmark, such as the FMB stream reaches did, when
the other portions of the network would likely be below the
benchmark. Seasonal discharge effects on stream SC have
been observed before in this region but were based on sam-
pling small catchments (Johnson et al. 2010, Boehme et al.
2016, Nippgen et al. 2017, Voss and Bernhardt 2017, but
see Timpano et al. 2018a), not over an entire network from
headwaters to outlet as was done in this study.

Discharge-related shifts in SC over the network also have
ecological implications. Elevated SC in small catchments is
associated with ecological changes, including loss of sensi-
tive Ephemeroptera species and decreased macroinver-
tebrate secondary productivity (Pond et al. 2008, Cormier
et al. 2013, Boehme et al. 2016, Voss and Bernhardt 2017).
In larger catchments up to ∼200 km2 in size, elevated SC
has been hypothesized to affect quantity and quality of
macroinvertebrate prey for some fishes (Hitt et al. 2016).
Maps of average conductivity and confidence limits over a
continuous stream network, rather than at discrete catch-
ments, provide the means to investigate whether, and to
what degree, such ecological patterns persist longitudinally.
For example, one could use such maps to design a study to
compare macroinvertebrate secondary productivity in por-
tions of the network with variable SC to other portions of
the network that have consistently-lowor high SC. Such com-
parisons could identify the extent of the network over which
secondary production differs from expectations based on
the River ContinuumConcept in which stream biotic struc-
ture and production and their relationships with the riparian
zone are predicted to vary longitudinally along the stream
network (Voss and Bernhardt 2017, Larsen et al. 2019).
Hydrologic variability and spatial autocorrelation
We found that hydrologic variability altered the degree

and nature of spatial autocorrelation in SC. We observed
the greatest semivariogram ranges at high discharge, and
our finding of generally-smaller semivariogram ranges under
summer low-discharge conditions is complementary to pre-
vious research (Dent and Grimm 1999). Additionally, our
smallest and greatest semivariogram ranges encompass the
range of spatial autocorrelation in SC in a stream network
in southeast Queensland, Australia (Ver Hoef and Peterson
2010, Isaak et al. 2014). Our greatest semivariogram range
was 4-fold greater than the largest upstream-to-downstream
distance betweenmonitoring sites, which indicates that at all
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of the sites within the watershed are correlated with one an-
other in terms of SC. Our smallest semivariogram range of
∼60 stream km indicates that sites beyond that distance are
uncorrelated in stream SC, but sites closer together were
more correlated to one another. This smallest range occurred
during the lowest summer discharge period.

Complex patterns in stream SC semivariance were re-
lated to flow-connected, flow-unconnected, and Euclidean
distances, which suggests that a combination of fine-scale
patchiness and broad-scale gradients affected stream SC
(McGuire et al. 2014). We observed that SC among sites al-
ways had a flow-connected relationship, and that during
high-discharge conditions a flow-unconnected relationship
often also explained spatial variation.Our results are consis-
tent with an SSN analysis of conductivity in streams of
Queensland, Australia, in which Ver Hoef and Peterson
(2010) fitted tail-up and tail-down spatial autocovariance
models. They noted that the data had relatively-strong auto-
correlation among flow-connected sites and weaker, but
still substantial, autocorrelation among flow-unconnected
sites. Most of our SSN analyses also fitted tail-up and tail-
down spatial autocovariancemodels.However, during sum-
mer low-discharge conditions, only a tail-up model was
selected, indicating that variation in SC was a function of
upstream-to-downstream distances between sites and co-
variates. Correlations between SC at flow-connected sites
is characteristic of hydrologic transport, such as active ad-
vection of conserved ions from weathering and land-use
point sources, and of upstream spatial dependence (Isaak
et al. 2014, McGuire et al. 2014). The amount of variation
in SC explained by this longitudinal connectivity was sub-
stantial—from 33 to 42%. This spatial variation in SC under
summer low-discharge conditions was likely due to mine
disturbance containing valley fills that are a steady source
of elevated SC and contribute a greater proportion to
streamflow during baseflow periods (Nippgen et al. 2017).
Spatial variation in stream SC may also be influenced by
point sources, such as wastewater treatment plants, but
our analysis did not partition that variation by point vs
non-point sources.

Spatial variation in SCwas also a function of distances be-
tween sites on other branches (flow-unconnected). Under
all 4 high-discharge conditions, the tail-up and tail-down
autocovariance models were selected over the other models,
indicating that SC at high discharge was affected by both lon-
gitudinal transport and catchment processes (Peterson
and Ver Hoef 2010, McGuire et al. 2014, Rushworth et al.
2015). For these high-discharge periods, flow-unconnected
distances accounted for more variation than longitudinal
connectivity, which may be because of catchment processes
such as shallow subsurface flow, bank storage release, or
overland flow (Fritz et al. 2018). The tail-up and tail-down
models were also selected in the November 2013 sampling
period, which had the lowest median discharge. Under that
low discharge condition, the amount of variation explained
by longitudinal connectivity was only 2% but was 29% for
catchment processes. We infer that the lack of evapotranspi-
ration after leaf-off in the autumnmay have supported spatial
variation in SC as a function of flow-connected and flow-
unconnected distances even at low stream discharge. This
inference is supported by previous research that showed
that autumnal vegetation dormancy was associated with
changes in stream discharge (Doyle 1991) and that leaf litter
in streams was associated with increased stream SC (Slack
and Feltz 1968). Additionally, groundwater seepages could
have contributed to elevated SC, and, as Nippgen et al. (2017)
observed, mined areas can contribute the majority of stream-
flow during baseflow periods.
Regional models and conductivity predictions
Our watershed assessment of covariates that influenced

SC in the RFBC watershed showed that SC was consistently
related to proportion mined and, at times, to proportion
forested, road density, and elevation. These findings were
largely consistent with results from other studies in this re-
gion (Lindberg et al. 2011, Bernhardt et al. 2012, Cormier
et al. 2013, Merriam et al. 2015b). We found that propor-
tion mined had a positive relationship with SC, and others
who have also used NAIP aerial imagery have similarly ob-
served such a relationship (Lindberg et al. 2011, Merriam
et al. 2015b). However, we also observed a curvilinear rela-
tionship between SC and proportion mined, which was il-
lustrated in the case of monitoring site FMB, the site with
the highest levels of measured SC in 7 of the 8 monitoring
periods. FMB had a proportion mined of 0.24, whereas
4 sites with greater proportionmined, up to 0.30, were found
to have slightly-lower SC measurements. The FMB site has
long-term active mining operations including a process-
ing plant and coal refuse/waste pond within the catchment
with outfalls in or near the stream. Coal processing areas
and waste refuse storage effluents often have high SC levels
that discharge from outfalls on a consistent basis. These dis-
charge sources within the FMB catchmentmay help explain
how lower proportion mined can have higher stream SC
when compared to other catchments with more proportion
mined. The 4 sites with higher proportion mined but lower
SC, clustered on tributaries of Saltlick Creek in the Lower
RFBC, are downstream of coal mining activities that are
inactive or reclaimed. These sites also show residential de-
velopment along their streams, as substantiated by NAIP
imagery, and previous research has shown that catchments
with combinedmining and development can have lower SC
than catchments with only mining (Merriam et al. 2015a).
Alternatively, there could be an unmeasured covariate,
such as mining-activity intensity, or an interaction affecting
SC values at these sites. The quadratic form that provided
good fit in our models may not produce the best fit across
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other sets of sites that do not have this complex pattern of
land use.

The associations of forests, roads, and elevation with SC
were not as consistently selected in models as proportion
mined, but their influences on stream SC are worth explor-
ing. The negative relationship between SC and proportion
of forest cover has previously been observed in this ecoregion
(Cormier et al. 2013). Its consistent selection during high-
discharge conditions could indicate that the interception of
precipitation by forests and the ability of upper soil horizons
in forested areas to enhance infiltration of precipitation lead
to less runoff. Except in the case of saturation excess overland
flow, a lower amount of runoff would then contact and
weather valley fills (Evans et al. 2015), leading to lower stream
SC. Elevation was often positively associated with SC in non-
spatialmodels, whichmay indicate that once its variationwas
accounted for by spatial autocorrelation in the SSN anal-
ysis, that association was no longer detected (Ver Hoef
et al. 2014). A negative relationship between elevation and
SC was only detected in April 2014, the sample period with
greatest discharge. This negative slope might indicate run-
off contributing to SC at lower elevations during a period of
maximum recorded discharge.

Benefits of spatial over non-spatial modeling
Our comparison of spatial and non-spatial modeling re-

vealed several benefits to including spatial autocorrelation
in models of stream chemistry throughout a stream net-
work. First, SSN models allowed for partitioning of vari-
ance that was unexplained by covariates into spatial com-
ponents that previous non-spatial studies were not able to
address. For example, in the West Virginia, USA, portion
of the CAP ecoregion, stream SC increased with increasing
% catchment area mined, but ∼50% of variation in SC was
unexplained and was attributed to temporal variation in
streamflow (Bernhardt et al. 2012; Table 6). Such temporal
variation is illustrated in our results, but including spatial
autocorrelation in our models also allowed for partitioning
of spatial effects and detection of alternations in stream net-
work relationships (i.e.,flow-connected andflow-unconnected
relationships) due to streamflow. This partitioning of spatial
effects, beyond the variation attributable to covariates, can
suggestmechanisms for patterns in stream chemistry, which
is an advantage of SSN models (Isaak et al. 2014).

Next, including spatial autocorrelation in our models im-
proved our ability to predict stream SC. Previous research in
the CAPmodeled and predicted SC as a function of multiple
SC sources (i.e., surface mining, underground mining, and
structure density; Table 6) but assumed independence be-
tween sites (Merriam et al. 2015b). Some slight spatial auto-
correlationwas detected in posteriori analysis, indicating that
the inclusion of network relationships could be useful. Our
incorporation of spatial autocorrelation was advantageous
because our standard error estimates for both regression
coefficients and SC predictions were not artificially small,
which would occur had we assumed independence among
sites (Cressie 1993, Legendre 1993, Krivoruchko 2011). Ig-
noring spatial autocorrelation’s effect on stream chemistry
(e.g., by assuming sites along a stream network are indepen-
dent) produces predictions with smaller confidence intervals
than when spatial autocorrelation is considered and, there-
fore, underestimates uncertainty (Krivoruchuko 2011). This
too-narrow confidence interval is produced because its nu-
merator only contains the standard deviation. In contrast,
Table 6. Characteristics of regional studies that examined relationships between specific conductivity and land use and land cover
(LULC) in the Central Appalachian ecoregion. NAIP 5 National Agricultural Imagery Program, NLCD 5 National Land Cover
Database, MLR 5 multiple linear regression, NPDES 5 National Pollutant Discharge Elimination System, SLR 5 simple linear regression,
SSN 5 spatial stream network, WVSAMB 5 West Virginia State Address Mapping Board.

Study characteristics Bernhardt et al. 2012 Merriam et al. 2015b This study

Duration of stream site
measurements

1997–2007, Spring–Summer
(April–August)

2010–2011, Summer
(July–August)

2012–2014, quarterly sampling

LULC data source
and time span

Landsat (1976, 1985, 1995, 2005),
NLCD (2001)

NAIP (2011), NPDES permits,
WVSAMB (2003)

See Table 1

SC model SLR MLR SSN

Sample unit and spatial
characterization

Point and contributing catchment
area (<50 km2)

Point and contributing
catchment area (<40 km2)

Point on continuous stream
network (≤400 km2)

Spatial assumption Independent observations Independent observations Autocorrelated observations

Spatial extent (km2) 19,581 20,795 400

Sample size (density) 223 (0.011 sites/km2) 170 (0.008 sites/km2) 60 (0.15 sites/km2)

Stream kilometers 13,128 24,180 545

Headwaters to outlet
configuration

No No Yes
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if positive spatial autocorrelation is present, the numerator
contains the product of the standard deviation and spatial
autocorrelation (Cressie 1993, Legendre 1993, Krivoruchko
2011). Also, standard errors, and consequently confidence
limits, of predictions from non-spatial MLR models are sim-
ilar in size regardless of network position, but standard errors
from SSN models show the expected kriging pattern of be-
ing smaller near monitoring sites and increasing as distances
from those sites increase (Ver Hoef et al. 2006, Isaak et al.
2014).

Incorporating spatial autocorrelation also improved our
ability to predict stream SC by reducing the potential for
incorrectly identifying effects. Using MLR models, we de-
tected strong associations between some covariates and SC
that we did not detect with SSN models. When spatial
autocorrelation was included in SSN models, some of the
standard errors for those covariates’ coefficients were wider,
and the coefficients no longer presented an effect. This con-
trast in modeling outcomes suggests a false detection of ef-
fect, or Type I error, for the MLR models. Such a result has
also been shown in other SSN analyses (VerHoef et al. 2006,
2014, Isaak et al. 2014). In addition, our SSNmodels both fit
the data better and gave better predictions thanMLRmodels
did (as evidenced by larger AICweights and smaller RMSPE,
especially at high discharge). Similar to our findings, spatial
models of conductivity inMaryland, USA, streams produced
better predictions of conductivity based on smaller mean
square prediction error vs non-spatial MLR (Peterson et al.
2006). Our results support that kriging methods such as
SSN, which make use of the spatial characteristics of data,
are preferable when sample size, spatial density, and config-
uration of site requirements can be met (Som et al. 2014).

Finally, our spatial models had an advantage over MLR
models in their ability to handlemultiple spatial relationships
that occurred in stream data (Peterson and Ver Hoef 2010).
Our SSN models accounted for intermediate-scale variation
not incorporated through the covariates bymodeling Euclid-
ean, tail-up, and tail-down autocovariances (Peterson and
Ver Hoef 2010). Implementing an SSN study design requires
careful consideration of site locations at the outlet, headwa-
ters, and confluence-based clusters to capture spatial auto-
correlation at a variety of spatial scales and consideration
of multiple types of distances (Peterson et al. 2006, Som
et al. 2014). Our models, along with themodels of Bernhardt
et al. (2012) and Merriam et al. (2015b), used covariates to
capture large-scale variation in SC in the CAP ecoregion. Al-
though all 3 studies were used to spatially predict estimates of
impaired stream km (Table 6), the data used for predictions
by Bernhardt et al. (2012) and Merriam et al. (2015b) were
based on sampledmonitoring sites constrained to catchment
sizes of <50 or 40 km2, respectively, covering just part of the
stream network in their larger study areas. Our predictions
were based on data frommonitoring sites over a large contin-
uum of catchment sizes from 1.4 to 400 km2, and our inclu-
sion of spatial modeling allowed us to treat the entire stream
network as continuous. We were, thus, able to integrate, or
average, predictions over the entire network and detect mul-
tiple levels of spatial autocorrelation in stream SC.

Secondary salinization often occurs as a result of multiple
sources within a watershed (Griffith et al. 2012, Cañedo-
Argüelles et al. 2013, Moore et al. 2017, Kaushal et al.
2018). In parts of the CAP ecoregion, secondary salinization
often occurs in the headwaters of stream networks. Studies
that incorporate an integrative watershed assessment from
headwaters towatershed outlet, through the inclusion of spa-
tial dependence, provide a clearer understanding of saliniza-
tion effects throughout the network than do studies without
a spatial component. Assessments that consider the multi-
scale spatial relationships that can occur between the land-
scape and stream network can provide inference about flow-
connected and flow-unconnected, as well as catchment-scale,
effects of land-cover and land-use covariates (Peterson and
Ver Hoef 2010). Our novel geostatistical analysis showedwhere
and when SC exceedance of the benchmark of 300 lS/cm
in the stream network would likely affect aquatic life (USEPA
2011). A strengthof our studywas examining howhydrologic
variability altered the nature and degree of spatial autocor-
relation and incorporating that autocorrelation into SCpre-
dictions. Acknowledging the unique spatial characteristics
of stream ecosystems can improve freshwater research and
management (Peterson and Ver Hoef 2010).
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SUPPLEMENTAL MATERIALS
Appendix S1. A zipped folder containing files of: 1) an html file, FWSci_Html_S1.html, showing the analytical workflow for themultiple

linear regression analysis; 2) the R code, FWSci_Html_S1.Rmd; 3) data, FWSci_Model_Fit_Data_20200424.RData; and 4) data dictionary
providing the covariates, their data sources, and variable names used in R coding. Available at the Environmental Protection Agency Sci-
ence Hub repository (https://doi.org/ 10.23719/1518672).

Appendix S2. A zipped folder containing files of: 1) an html file, FWSci_Html_S2.html, showing the analytical workflow for the spatial
stream network (SSN) analysis; 2) the R code, FWSci_Html_S2.Rmd; and 3) data, FWSci_Model_Predict_Data_20200424.RData. Available
at the Environmental Protection Agency Science Hub repository (https://doi.org/10.23719/1518673).

Appendix S3. Akaike information criterion and root mean square prediction error values, and other statistics, for the 15 autocovariance
models evaluated in each of the 8 sampling periods, FWSci_TableS1 SSN_ModelSelectStats.csv. Available at the Environmental Protection
Agency Science Hub repository (https://doi.org/10.23719/1518570).

Fig. S1. Block-kriged predictions and 95% prediction limits at the 60monitoring sites for each of the 8 sampling periods: December 2012
to August 2013 (A) and November 2013 to August 2014 (B). The monitoring site names are on the left-hand side of the plots and are hy-
drologically ordered with the station furthest upstream, ISF, at the top, and the outlet of the watershed, RFBC1, at the bottom. The Upper,
Middle, and Lower on the right-hand side indicate the 3 subwatersheds. Tributaries with only a single monitoring site are in gray, whereas
major tributaries and themainstemwithmultiple sites are in non-gray colors, with stations on the same tributary ormainstem assigned the
same color. The mainstem sites have the monitoring site name of RFBC and are listed as Mainstem in the Stream Sites legend. The other
names listed in the legend are major tributaries (Ck 5 Creek, Fk 5 Fork). The colored dot (no outline) is the block-kriged specific con-
ductivity with its 95% prediction interval shown as a horizontal line. The colored dot with the black outline is the observed value at that site.
The black vertical line is at 300lS/cm, which is the specific conductivity benchmark for the Central Appalachian region. Available at the
Environmental Protection Agency Science Hub repository (https://doi.org/10.23719/1518674).


