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ABSTRACT: We used the presence and absence data of sentinel

invertebrates (stonefly, order Plecoptera) collected by citizen scientists __*\ DY
over 17 years to approximate trends in stream health in urban Detroit, m
Michigan, USA. Citizen science data are commonly collected based on b \\ \
availability of limited funds. Thus, survey locations lack consistent data 3 Wit
collection, and missing values are common. While citizen science data

sets can be large, on a regional and local scale, they are often undervalued Absent

but present an opportunity for managers to inform their decisions if the Present
missing data can be addressed. To overcome this hurdle, here, missing Not Sampled

values were modeled with a combination of spatial (inverse distance
weighting and spatial stream network), temporal (Bayesian state space),
and machine learning (ensemble random forest) models combining atmospheric, hydrologic, and biologic data. Using the estimated
missing values, we determined negative population trends in stoneflies driven by stream temperature via a dynamic occupancy
model. Urban streams present a challenge to resource managers because data are collected at disparate locations and frequencies and
inconsistently recorded. However, we show how a combination of methods with publicly available and citizen science data from
across disciplines can inform managers and support land-use decisions.

B INTRODUCTION stoneflies is that citizen science is a reliable source of presence or
absence data.'>"?

While some citizen science data collection projects are
functional collaborations that develop large-scale spatial—
temporal models shared between scientists, managers, and the
public,"* many community-based data collection efforts are used
as “snapshot” assessments of river segments. Annually accrued
citizen science data sets may be publicly available and aggregated
into large regulator data sets,'” but they also exist as orphaned
data sets maintained by volunteers and inefficiently used by
watershed regulators. In the state of Michigan, USA, there are 27
citizen-based watershed associations promoting riverine ecosys-
tem health and collecting data, but how much of that data is
answering the questions they were collected to answer?

Here, we use citizen science data to address the resource
management questions underpinning the community action
which prompted their collection: is the population of sentinel
invertebrates in an urban stream expanding or contracting and
why? We hypothesize that populations are changing because of
land use impacting water quality and increases in summer stream

Anthropogenic impact on water quality is a global issue
wherever rivers and cities coexist. The effect of development
on rivers is ubiquitous to the extent that the phrase “urban
stream syndrome” has come to broadly be applied to this
resource management issue." Restoration of urban streams is
influenced by integrated social, political, and environmental
factors.” Regulators must identify reference conditions and
applicable techniques for restoration while maintaining human
requirements in a data-driven process.’” Biomonitoring of
invertebrates is a common data collection response to this
challenge but is complicated by a lack of training, unavailable
funds, and inconsistent data collection.”

Biomonitoring of benthic macroinvertebrates is an estab-
lished assessment tool as macroinvertebrates are indicators of
ecological health.” Stoneflies (order Plecoptera) are among
those invertebrates which act as indicators.” These organisms
exist along the stream bed in their larval stage where they are
sensitive to low oxygen conditions and high temperatures;
stoneflies emerge from the water in winter and become mobile
active adults in order to mate.”® Urban stonefly species are also

potentially impacted by pesticides, toxic metals, and other Received: March 11, 2020
deleterious contaminates in urban runoff.” Urban land use is Revised:  April 3, 2020
generally associated with reduced stonefly populations;'” thus, Accepted:  April 3, 2020

resource managers often use stoneflies as a restoration gauge. Published: April 3, 2020

However, habitat restoration is not always successful in
. . 11 . .
returning lost stonefly populations.” One advantage in using
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temperature. With urbanization expanding rapidly throughout
the Anthropocene, watersheds will be under increased stress
from runoft laden contaminates, changing temperature regimes
as a result of a warming climate, and daylighting of streams as
overhanging trees are removed. Urban waterways are an
important resource to be managed, and here, we show how to
make the best use of incomplete data.

B MATERIALS AND METHODS

Data. The citizen science-generated data we used to
determine sentinel invertebrate population changes were
collected on the River Rouge in urban Detroit, Michigan, USA
(Figure 1). The river name sporadically appears as Rouge River
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Figure 1. River Rouge watershed is heavily urbanized within the city of
Detroit. National Oceanographic and Atmospheric Administration
(NOAA) weather stations, United States Geologic Survey (USGS)
stream temperature sites, and Friends of the Rouge (FOTR) winter
stonefly (order Plecoptera) citizen science survey data were combined
to estimate stonefly occupancy, site extinction rate, site colonization
rate, and observer efficacy within the River Rouge.

in available literature; here, we use the United States Geologic
Survey (USGS) nomenclature “River Rouge”. The River Rouge
watershed is 92% urban, subject to intensive industrial use, and
impacted by soil and groundwater contamination.'®"” Friends
of the Rouge (FOTR) was established in 1986 to promote and
clean the River Rouge through outreach and citizen science
participation. FOTR winter stonefly surveys have been
conducted annually in January from 2002 to 2018 using
procedures detailed in the Michigan Clean Water Corps
guidance documents (micorps.net/ stream-monitoring/stream-
documents/). Each site was surveyed for a minimum of 30 min
by sampling all available habitats along a 100-m of riverbank with
D-frame nets. FOTR recorded the presence or absence of
stoneflies at 103 invertebrate survey sites; however, the data

collection was sporadic. Every site was not sampled every year.
Thus, of the 1751 potential data points, the FOTR data set had
447 recorded values. The missing values were modeled in order
to assess the stonefly population changes that have occurred
over the 17 years of the data set (Table 1, Supporting
Information, and Movie, Supporting Information).

Missing FOTR values were modeled using summer stream
temperature and land-use data. Annual summer stream
temperatures were not available at the stonefly survey sites;
models were used to estimate these values based on National
Oceanic and Atmospheric Administration (NOAA) National
Centers for Environmental Information (www.ncei.noaa.gov)
weather data and USGS National Water Information System
(waterdata.usgs.gov/nwis) stream data. Data sets across the
2002—2018 range were available at five NOAA weather stations
(daily minimum air temperature) and 10 USGS stream stations
(mean daily temperature) (Figure 1). Land use was defined by
the U.S. Environmental Protection Agency (EPA) National
Aquatic Resource Survey StreamCat database (www.epa.gov/
national-aquatic-resource-surveys/streamcat).'® Available with-
in StreamCat, the benthic invertebrate multimetric index
(BMMI) defined as a 0 to 1 scale of biological conditions for
benthic invertebrate assemblages was used in the missing FOTR
stonefly model to define land use. However, 25 of the 103 stream
segments of the River Rouge with FOTR sites were not defined
(Figure 1); thus, BMMI had to be predicted for those sections.
Groundwater baseflow estimates per stream segment within the
watershed were retrieved from the Michigan GIS Open Data
website (https:// gis-michigan.opendata.arcgis.com/ ).

Models. We used a dynamic occupancy model (DOM) to
determine the occurrence, extinction, colonization, and
detection probabilities for winter stoneflies in the River Rouge
watershed. In order to use the DOM, we first used a combination
of initial models in order to define land use, determine summer
temperature at the stonefly FOTR sites, and estimate the
missing FOTR values (Figure 2).

While stonefly species are sensitive to poor water quality,
water quality data for the stonefly sites were not available. BMMI
was used as a proxy for water quality as it is defined by land use at
the stonefly FOTR sites. To estimate the 25 stonefly FOTR sites
which were excluded from the StreamCat database, we used a
machine learning approach. BMMI values available through
StreamCat were estimated using a random forest model which
included 198 land use variables which are also available in the
StreamCat database.'” We recreated the BMMI analysis and
filled in the missing BMMI River Rouge values by creating an
ensemble of 50 models predicting BMMI from the 154 land use
variables available for the River Rouge watershed. The 50
models were randomly constructed as either a random forest or
gradient boosting model using the h20 package in R.>°~** Each
of the 50 models was randomly given 50 land use variables of the
available 154 to avoid overfitting. Here, 80% of the 78 stonefly
FOTR sites with BMMI were used to train the models and 10%
to validate the models, while 10% were withheld to test the
model predictions. Model outputs were incorporated in an
ensemble random forest model, and BMMI was predicted for
the 25 omitted sites.

Summer stream temperature was modeled by a combination
of spatial and temporal analysis. USGS stream temperature sites
were used to predict summer stream temperature at the stonefly
FOTR sites; however, the USGS sites were not active all year nor
were they active during all years of the FOTR survey range. To
model stream temperature on the unobserved days at each
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Figure 2. River Rouge stonefly population occupancy was modeled with a dynamic occupancy model (DOM); however, prior to the DOM several data
sets had missing values which were estimated. Data on stonefly presence and absence were collected by the Friends of the Rouge (FOTR) citizen
science organization. Weather data were downloaded from the National Oceanographic and Atmospheric Administration (NOAA). Stream data were
downloaded from the United States Geologic Survey (USGS). Five initial models were used to establish a complete data set of stoneflies for the DOM.

USGS site, a model combining atmospheric temperature and
groundwater baseflow was developed. Atmospheric temperature
was available throughout the temporal range of the FOTR
surveys; however, the NOAA were not co-located with USGS
sites. To predict the atmospheric temperature at the USGS sites
using the NOAA data, inverse distance weighting (IDW) spatial
analysis was used.”’ Baseflow estimates associated with the
stream segments containing USGS sites and daily minimum air
temperature modeled via IDW were used predictor variables in a
Bayesian state-space model of available USGS daily mean stream
temperatures in a time series context. Sites had an independent
coeflicient relating stream temperature to air temperature. A
single coefficient for the effect of baseflow was used for all sites.
Uninformative priors were used. Gelman Rubin convergence
was used to assess if an adequate number of burn-in iterations
had been reached, and autocorrelation plots were used to
establish an adequate thin.”* The area between daily stream
temperature estimates and 18 °C was calculated from the
combined modeled mean daily stream temperature and
observations to establish an annual estimate of heat in summer
months at the USGS sites.”® The over 18 °C area allowed us to
establish a representative value for the summer stream
temperature at the USGS sites. The over 18 °C area was then
used to estimate the summer stream temperature at the FOTR
sites with a spatial stream network (SNN).”® The SSN was fit

using a Gaussian distribution, elevation as predictor variable,
and year as a random effect, and from this SSN, the annual
summer stream temperature was estimated at the FOTR sites
(Figure 2).

Predicted annual summer stream temperature and BMMI
were then used as predictor variables in a final SSN fit to the
stonefly survey data. The final SSN was fit with a binomial
distribution and treated each site as a random effect. The
predicted presence and absence of stoneflies at unobserved sites
were extracted from the final SSN and used to complete the
stonefly data set in the DOM (Figure 2).

B RESULTS AND DISCUSSION

The stonefly DOM used to predict occupancy changes in the
River Rouge was built on observations and predictions from a
SSN; the SSN was generated with land use as a proxy for water
quality (BMMI) and summer stream temperature (Figure 2).
The BMMI retrieved from StreamCat ranged from 0.164 and
0.5787; the machine learning ensemble of predicting BMMI at
the 25 unobserved stream segments had a root-mean-square
error (RMSE) of 0.019 and a R* of 0.922. Daily mean stream
temperature was estimated at USGS stations from IDW-
predicted minimum air temperature and baseflow in a state-
space model. In the Bayesian state-space model of daily mean
stream temperature, the site-independent coefficients relating
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each site stream temperature to air temperature ranged from
0.151 to 0.211, and the baseflow coefficient was —0.0015. All
were significantly different from zero. Daily stream temperature
represented summer temperature by calculating the area
represented at each site above 18 °C that had a mean value of
313 and standard error (SE) of 10. Summer stream temperature
area above 18 °C was predicted at the FOTR sites based on a
SSN of USGS stations temperature predicted by year as a
random effect and elevation as a fixed effect. Leave-one-out
cross-validation (LOOCV) estimates of R*> and root-mean-
square prediction error were 0.93 and 35.3, respectively.”’
Elevation was a significant predictor of summer temperature (p
< 0.001).

The SSN to predict missing stonefly absence or presence was
built with BMMI and summer temperature as predictor variables
and sites as random effects. BMMI was not a significant
predictor (p = 0.75), while temperature was significant (p =
0.02), and LOOCV correctly predicted 82% and 76% of
unoccupied and occupied sites, respectively. The SSN used to
model the missing data is a flexible tool for resource managers
investigating citizen science data within streams. In lieu of
absence and presence data, if species abundance or diversity data
were of interest, the SSN model could be fit using Poisson or
Gaussian distributions. The predicted values for those missing
data could then be used in further ecological models, as here the
predicted missing FOTR values were used in a DOM.

The DOM predicted that 21.2% (4.3%, SE) of sites were
occupied by stoneflies in the FOTR survey area. The probability
an unoccupied site is colonized was 1.6% (0.4% SE), and the
probability of a site occupied by stoneflies going extinct was
6.4% (1.7% SE). The probability that stoneflies are observed at
an occupied site is 81% (3.1% SE).

Missing data are long-standing hurdles in watershed-scale
modeling efforts and citizen science data collection. In the
FOTR-collected data, 103 sites were represented by 447
recorded values and 1304 missing values. The data used to
model the missing FOTR values were rife with missing data.
BMMI was missing from 25 of the 103 stream segments with
FOTR sites. Daily summer temperature was not available at the
FOTR sites, and the USGS temperature data that were available
contained missing data. The air temperature data used to model
the missing stream temperature data were missing data.
Moreover, the FOTR, USGS, and NOAA sites were all in
different locations. However, research questions can be
addressed using novel combinations of spatial (IDW and spatial
stream networks) and statistical (machine learning and Bayesian
state space) models to estimate missing values (Figure 2). With
limited funds available to address urban stream syndrome,
adapting and generating results from incomplete citizen science
data can establish which restoration effort and land-use policy
should be adopted.

Observer error is a fundamental concern with citizen science
data. However, our estimates indicate that an occupied site was
recorded as present 81% of the time. The high eflicacy of
sampling is due to the citizen science training conducted by
FOTR and the ecology of the winter stonefly. FOTR uses a
Quality Assurance Project Plan where a tiered system of highly
trained team leaders oversees each group of citizen scientists.
The stonefly dark color against light-colored sampling trays
makes stoneflies ideal target species to find. Additionally,
accounting for the missing data enabled an estimate of
occupancy across the study system (21%). While early
emergence of adult stoneflies due to specific annual site

conditions could result in individuals being missed by the
FOTR survey, the impact of this over the 17 years of the data set
would be minimal, and the occupancy metric should be used by
urban resource managers as a benchmark of sampling efficacy
and future restoration population increases. Managers establish-
ing projects to assess sentinel invertebrates via citizen science
projects should consider site selection, the number of samples,
and the number of years required as used by the methodology
presented (Figure 2). Sites should be added until representative
of holistic conditions of the BMMI and temperature throughout
the watershed. The number of samples over time can then be
increased and our method used to informatively gap fill both
spatially and temporally missing data. The number of sampling
events required to adequately estimate colonization and
extinction rates should be determined by the size of the
parameter confidence intervals which will represent the
uncertainty in observations and incorporate variability from
early emergence.

A holistic picture of site colonization and extinction is
important to derive management strategies for urban streams.
Observations of organisms in river segments where they had not
appeared previously could give a false impression of stream
health. Our approach defines stoneflies occurring within the
River Rouge watershed as a metapopulation, treating each
survey site as a local population.”**” Migration between local
populations happens along stream segments as adults.”® The
metapopulation of macroinvertebrates is dynamic and will
expand into sites even as overall more sites are going extinct. Our
results show the stonefly metapopulation decreasing (6.4%
extinction probability compared to 1.6% colonization) in the
River Rouge watershed as a result of changes in temperature
rather than adjacent land use. The practical application of this
result is that as development continues within the River Rouge
watershed it will be advantageous to maintain overhanging trees
along the river course to shade and reduce water temperatures.
Additionally, these results suggest that the urban stream
population of stoneflies can be enhanced by reducing urban
heat island effects with reduced imperviousness and use of
reflective building materials along the river. Ameliorating urban
stream syndrome is a global resource issue, and strategies
compatible with continued mixed use are needed to improved
social, political, and environmental factors.

B ASSOCIATED CONTENT

@ Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.estlett.0c00206.

Table 1: annual observed absence and presence data,
along with total unsampled sites (PDF)

Movie: sampling results and spatial distribution of sites
from 2002 to 2018 (MP4)

B AUTHOR INFORMATION

Corresponding Author
Timothy J. Maguire — Great Lakes Institute for Environmental
Research, University of Windsor, Windsor, Ontario, Canada N9B
3P4; ® orcid.org/0000-0002-7742-769X; Email: maguiret@

uwindsor.ca

Author
Scott O. C. Mundle — Great Lakes Institute for Environmental
Research and Department of Chemistry and Biochemistry,

https://dx.doi.org/10.1021/acs.estlett.0c00206
Environ. Sci. Technol. Lett. XXXX, XXX, XXX—XXX


https://pubs.acs.org/doi/10.1021/acs.estlett.0c00206?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.estlett.0c00206/suppl_file/ez0c00206_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.estlett.0c00206/suppl_file/ez0c00206_si_002.mp4
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Timothy+J.+Maguire"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-7742-769X
mailto:maguiret@uwindsor.ca
mailto:maguiret@uwindsor.ca
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Scott+O.+C.+Mundle"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
pubs.acs.org/journal/estlcu?ref=pdf
https://dx.doi.org/10.1021/acs.estlett.0c00206?ref=pdf

Environmental Science & Technology Letters

pubs.acs.org/journal/esticu

University of Windsor, Windsor, Ontario, Canada N9B 3P4;
orcid.org/0000-0001-5976-9656

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.estlett.0c00206

Notes
The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

The authors would like to acknowledge the Friends of the Rouge
for sharing their data and support. Funding was provided by
Canadian Natural Sciences and Engineering Research Council's
(NSERC) Discovery Grant program (SOCM).

B REFERENCES

(1) Booth, D. B;; Roy, A. H; Smith, B,; Capps, K. A. Global
Perspectives on the Urban Stream Syndrome. Freshw. Sci. 2016, 35,
412—420.

(2) Findlay, S. J.; Taylor, M. P. Why Rehabilitate Urban River
Systems? Area 2006, 38, 312—325.

(3) Nilsson, C.; Jansson, R.; Malmqvist, B.; Naiman, R. J. Restoring
Riverine Landscapes: The Challenge of Identifying Priorities,
Reference States, and Techniques. Ecol. Soc. 2007, 12, 16.

(4) Morse, J. C.; Bae, Y. J.; Munkhjargal, G.; Sangpradub, N.; Tanida,
K,; Vshivkova, T. S.; Wang, B.; Yang, L.; Yule, C. M. Freshwater
Biomonitoring with Macroinvertebrates in East Asia. Front. Ecol.
Environ. 2007, 5, 33—42.

(5) Gaufin, A. R. Use of Aquatic Invertebrates in the Assessment of
Water Quality. In Biological Methods for the Assessment of Water Quality;
ASTM International, 1973.

(6) Baumann, R. W. Nearctic Stonefly Genera as Indicators of
Ecological Parameters (Plecoptera: Insecta). Great Basin Nat. 1979,
241-244.

(7) Nebeker, A. V. Effect of Water Temperature on Nymphal Feeding
Rate, Emergence, and Adult Longevity of the Stonefly Pteronarcys
Dorsata. J. Kansas Entomol. Soc. 1971, 21-26.

(8) Nebeker, A. V. Effect of Low Oxygen Concentration on Survival
and Emergence of Aquatic Insects. Trans. Am. Fish. Soc. 1972, 101,
675—679.

(9) Macneale, K. H; Kiffney, P. M.; Scholz, N. L. Pesticides, Aquatic
Food Webs, and the Conservation of Pacific Salmon. Front. Ecol.
Environ. 2010, 8, 475—482.

(10) Moore, A. A.; Palmer, M. A. Invertebrate Biodiversity in
Agricultural and Urban Headwater Streams: Implications for
Conservation and Management. Ecol. Appl. 2005, 15, 1169—1177.

(11) Violin, C. R;; Cada, P.; Sudduth, E. B.; Hassett, B. A.; Penrose, D.
L.; Bernhardt, E. S. Effects of Urbanization and Urban Stream
Restoration on the Physical and Biological Structure of Stream
Ecosystems. Ecol. Appl. 2011, 21, 1932—1949.

(12) Fore, L. S.; Paulsen, K; O’Laughlin, K. Assessing the
Performance of Volunteers in Monitoring Streams. Freshwater Biol.
2001, 46, 109—123.

(13) Edwards, P. M. The Value of Long-Term Stream Invertebrate
Data Collected by Citizen Scientists. PLoS One 2016, 11,
No. e0153713.

(14) Sullivan, B. L.; Wood, C. L.; Lliff, M. J.; Bonney, R. E.; Fink, D ;
Kelling, S. EBird: A Citizen-Based Bird Observation Network in the
Biological Sciences. Biol. Conserv. 2009, 142, 2282—2292.

(15) Poisson, A. C.; McCullough, I. M.; Cheruvelil, K. S.; Elliott, K. C.;
Latimore, J. A.; Soranno, P. A. Quantifying the Contribution of Citizen
Science to Broad-scale Ecological Databases. Front. Ecol. Environ. 2020,
18, 19—26.

(16) Murray, K. S.; Rogers, D. T.; Kaufman, M. M. Heavy Metals in an
Urban Watershed in Southeastern Michigan. J. Environ. Qual. 2004, 33,
163—172.

(17) Lenaker, P. L.; Corsi, S. R; Borchardt, M. A.; Spencer, S. K;
Baldwin, A. K; Lutz, M. A. Hydrologic, Land Cover, and Seasonal

Patterns of Waterborne Pathogens in Great Lakes Tributaries. Water
Res. 2017, 113, 11-21.

(18) Hill, R. A;; Weber, M. H,; Leibowitz, S. G.; Olsen, A. R;
Thornbrugh, D. J. The Stream-Catchment (StreamCat) Dataset: A
Database of Watershed Metrics for the Conterminous United States. J.
Am. Water Resour. Assoc. 2016, 52, 120—128.

(19) Hill, R. A; Fox, E. W,; Leibowitz, S. G; Olsen, A. R;
Thornbrugh, D. J.; Weber, M. H. Predictive Mapping of the Biotic
Condition of Conterminous U.S. Rivers and Streams. Ecol. Appl. 2017,
27,2397-2415.

(20) LeDell, E.; Navdeep, G.; Aiello, S.; Fu, A.; Candel, A.; Click, C.;
Kraljevic, T.; Nykodym, T.; Aboyoun, P.; Kurka, M.; Malohlava, M.,
et al. h20: R Interface for ‘H20’; R package, version 6.0-84, 2019.
https://cran.r-project.org/web/packages/h20/index.html (accessed
April 2020).

(21) R Core Team. R: A Language and Environment for Statistical
Computing, version 3.4.2; R Foundation for Statistical Computing:
Vienna, Austria, 2017. https://www.R-project.org/ (accessed April
2020).

(22) RStudio Team. RStudio: Integrated Development Environment for
R; RStudio, Inc.: Boston, MA, 2016. https://rstudio.com/ (accessed
April 2020).

(23) Pebesma, E. J. Multivariable Geostatistics in S: The Gstat
Package. Comput. Geosci. 2004, 30, 683—691.

(24) Brooks, S. P.; Gelman, A. General Methods for Monitoring
Convergence of Iterative Simulations. J. Comput. Graph. Stat. 1998, 7,
434—458S.

(25) Baskerville, G. L.; Emin, P. Rapid Estimation of Heat
Accumulation from Maximum and Minimum Temperatures. Ecology
1969, 50, 514—517.

(26) Isaak, D. J.; Peterson, E. E.; Ver Hoef, J. M.; Wenger, S. J.; Falke, J.
A; Torgersen, C. E,; Sowder, C.; Steel, E. A.; Fortin, M.-].; Jordan, C.
E,; Ruesch, A. S;; Som, N.; Monestiez, P. Applications of Spatial
Statistical Network Models to Stream Data. Wiley Interdiscip. Rev.:
Water 2014, 1, 277—-294.

(27) Isaak, D.J.; Ver Hoef, J. M.; Peterson, E. E.; Horan, D. L.; Nagel,
D. E. Scalable Population Estimates Using Spatial-Stream-Network
(SSN) Models, Fish Density Surveys, and National Geospatial
Database Frameworks for Streams. Can. J. Fish. Aquat. Sci. 2017, 74,
147-156.

(28) Levins, R. Some Demographic and Genetic Consequences of
Environmental Heterogeneity for Biological Control. Bull. Entomol. Soc.
Am. 1969, 15, 237-240.

(29) Hanski, L. Single-Species Metapopulation Dynamics: Concepts,
Models and Observations. Biol. J. Linn. Soc. 1991, 42, 17—38.

(30) Macneale, K. H.; Peckarsky, B. L.; Likens, G. E. Stable Isotopes
Identify Dispersal Patterns of Stonefly Populations Living along Stream
Corridors. Freshwater Biol. 2005, 50, 1117—1130.

https://dx.doi.org/10.1021/acs.estlett.0c00206
Environ. Sci. Technol. Lett. XXXX, XXX, XXX—XXX


http://orcid.org/0000-0001-5976-9656
http://orcid.org/0000-0001-5976-9656
https://pubs.acs.org/doi/10.1021/acs.estlett.0c00206?ref=pdf
https://dx.doi.org/10.1086/684940
https://dx.doi.org/10.1086/684940
https://dx.doi.org/10.1111/j.1475-4762.2006.00696.x
https://dx.doi.org/10.1111/j.1475-4762.2006.00696.x
https://dx.doi.org/10.5751/ES-02030-120116
https://dx.doi.org/10.5751/ES-02030-120116
https://dx.doi.org/10.5751/ES-02030-120116
https://dx.doi.org/10.1890/1540-9295(2007)5[33:FBWMIE]2.0.CO;2
https://dx.doi.org/10.1890/1540-9295(2007)5[33:FBWMIE]2.0.CO;2
https://dx.doi.org/10.1577/1548-8659(1972)101<675:EOLOCO>2.0.CO;2
https://dx.doi.org/10.1577/1548-8659(1972)101<675:EOLOCO>2.0.CO;2
https://dx.doi.org/10.1890/090142
https://dx.doi.org/10.1890/090142
https://dx.doi.org/10.1890/04-1484
https://dx.doi.org/10.1890/04-1484
https://dx.doi.org/10.1890/04-1484
https://dx.doi.org/10.1890/10-1551.1
https://dx.doi.org/10.1890/10-1551.1
https://dx.doi.org/10.1890/10-1551.1
https://dx.doi.org/10.1111/j.1365-2427.2001.00640.x
https://dx.doi.org/10.1111/j.1365-2427.2001.00640.x
https://dx.doi.org/10.1371/journal.pone.0153713
https://dx.doi.org/10.1371/journal.pone.0153713
https://dx.doi.org/10.1016/j.biocon.2009.05.006
https://dx.doi.org/10.1016/j.biocon.2009.05.006
https://dx.doi.org/10.1002/fee.2128
https://dx.doi.org/10.1002/fee.2128
https://dx.doi.org/10.2134/jeq2004.1630
https://dx.doi.org/10.2134/jeq2004.1630
https://dx.doi.org/10.1016/j.watres.2017.01.060
https://dx.doi.org/10.1016/j.watres.2017.01.060
https://dx.doi.org/10.1111/1752-1688.12372
https://dx.doi.org/10.1111/1752-1688.12372
https://dx.doi.org/10.1002/eap.1617
https://dx.doi.org/10.1002/eap.1617
https://cran.r-project.org/web/packages/h2o/index.html
https://www.R-project.org/
https://rstudio.com/
https://dx.doi.org/10.1016/j.cageo.2004.03.012
https://dx.doi.org/10.1016/j.cageo.2004.03.012
https://dx.doi.org/10.2307/1390675
https://dx.doi.org/10.2307/1390675
https://dx.doi.org/10.2307/1933912
https://dx.doi.org/10.2307/1933912
https://dx.doi.org/10.1002/wat2.1023
https://dx.doi.org/10.1002/wat2.1023
https://dx.doi.org/10.1139/cjfas-2016-0247
https://dx.doi.org/10.1139/cjfas-2016-0247
https://dx.doi.org/10.1139/cjfas-2016-0247
https://dx.doi.org/10.1093/besa/15.3.237
https://dx.doi.org/10.1093/besa/15.3.237
https://dx.doi.org/10.1111/j.1095-8312.1991.tb00549.x
https://dx.doi.org/10.1111/j.1095-8312.1991.tb00549.x
https://dx.doi.org/10.1111/j.1365-2427.2005.01387.x
https://dx.doi.org/10.1111/j.1365-2427.2005.01387.x
https://dx.doi.org/10.1111/j.1365-2427.2005.01387.x
pubs.acs.org/journal/estlcu?ref=pdf
https://dx.doi.org/10.1021/acs.estlett.0c00206?ref=pdf

