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Abstract 

Baseflow is essential for stream ecosystems and human water uses, particularly in areas 

with Mediterranean climates. Yet the factors controlling the temporal and spatial variability 

of baseflow and its sources are poorly understood. Measurements of oxygen and hydrogen 

isotopic composition (δ
18

O and δ
2
H) were used to evaluate controls on baseflow in the stream 

network of a 64 km
2 

catchment in western Oregon. A total of 607 water samples was 

collected to contrast baseflow in a year of near average precipitation (2016) to a year with 

low winter snowpack and subsequent summer drought conditions (2015). Spatial 

autocorrelation structures and relationships between surface water isotopic signatures and 

geologic and topographic metrics throughout the network were determined using Spatial 

Stream Network models. Isotope values varied widely in space and between years, indicating 

disparate baseflow water sources. During average flow conditions, the spatial variation in 

δ
18

O was primarily related to elevation, reflecting the influence of prior precipitation and 

input of water from snowmelt at higher elevation. In contrast, during drought conditions, the 

spatial variation in δ
18

O was also related to terrain slope and roughness – proxies for local 

water storage in deep-seated earthflows and other Quaternary deposits. A prominent spring-

fed tributary with high unit baseflow discharge illustrated the importance of subsurface water 

storage in porous volcanic bedrock. As drought increases in a warming climate, baseflow in 

mountain catchments may become more dependent on storage in geologic and geomorphic 

features.  
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1 Introduction 

Baseflow is the primary source of water for streams during periods with little 

precipitation inputs. Spatial and temporal variability in baseflow determines water 

availability for aquatic ecosystems and for human uses (Alexander et al., 2007; Freeman et 

al., 2007; Meyer et al., 2001). Declining snowpack is expected to reduce summer baseflow 

for much of the western US and other mountain regions (Mote et al., 2018; Verfaillie et al., 

2018). Yet, little is known about how such changes will affect spatial and temporal dynamics 

of baseflow.  

Baseflow is influenced by subsurface characteristics and by the amount and form of 

precipitation inputs, which in turn are controlled by surface characteristics (i.e., elevational 

gradient). Soil depth and the permeability of geologic and geomorphic features control deep 

water storage (Bloomfield et al., 2009; Farvolden, 1963; Jefferson et al., 2006; Tague & 

Grant, 2004) and water transit times (Hale & McDonnell, 2016; McGuire et al., 2005; Pfister 

et al., 2017; Tetzlaff et al., 2009). For example, deep-seated earthflows and Quaternary 

deposits can store and release water on inter-annual time scales (Swanson & Swanston, 

1977). Elevation gradient influence baseflow through orographic effects on precipitation and 

temperature, which increase precipitation amount as well as snowpack depth and duration at 

high elevation. In addition other topographic characteristics such as slope and drainage area 

are frequently correlated to baseflow dynamics and soil moisture (Beven & Kirkby, 1979; 

Price, 2011; Woods et al., 1997; Zimmer & Gannon, 2018). Despite widespread recognition 

of the influence of surface and subsurface factors on baseflow, few studies have attempted to 

disentangle the effects of surface topography and subsurface characteristics on baseflow 

dynamics.  

The oxygen and hydrogen stable isotope chemistry of water can be used to study 

hydrologic flow paths by providing mass balance constraints on stream flow that isolate 
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different sources of water contributing to baseflow. For example, spatial variability in water 

isotopic composition can be used to distinguish water sources and identify physiographic 

controls on rainfall-runoff generation processes (Blumstock et al., 2015; Mountain et al., 

2015; Nickolas et al., 2017; Ogrinc et al., 2008; Peralta-Tapia et al., 2015; Singh et al., 2016; 

Soulsby et al., 2000; Tetzlaff & Soulsby, 2008). Baseflow sources have been investigated 

using water stable isotopes in relatively large (>1500 km
2
), humid systems (Tetzlaff & 

Soulsby, 2008), and in small (<10 km
2
) alpine (Fischer et al., 2015; Zuecco et al., 2018), and 

temperate catchments (Singh et al., 2016). Although many studies have used spatial sampling 

of water stable isotopes to detect sources of baseflow, we are not aware of any studies using 

dense sampling of baseflow in mid-size (50-100 km
2
) catchments to understand baseflow 

response to climate variability.  

Geostatistical models of stream networks (Peterson & Ver Hoef, 2010; Ver Hoef & 

Peterson, 2010) can leverage spatial sampling to create spatially explicit models of isotope 

signatures, called ‘isoscapes’ (Bowen, 2010; Bowen et al., 2007; Kendall & Coplen, 2001). 

These geostatistically-based isoscape models include autocovariance structures that account 

for stream-connected distances and network topology as well as landscape and network 

features, including volume and direction of flowing water. Thus, these models simultaneously 

describe, and quantitatively explain the drivers of, spatial pattern. Network geostatistical 

models have been applied to infer spatial controls on stream temperature (Isaak et al., 2010; 

Isaak et al., 2014; Steel et al., 2016), fish populations (Isaak et al., 2017), and 
87

Sr/
86

Sr ratios 

in streams (Brennan et al., 2016), but they have not been used to infer spatial controls on 

baseflow. 

The goal of this study was to evaluate how elevational gradient and subsurface 

storage influence spatial patterns of baseflow during a year with an average snowpack and a 

drought year with little or no snowpack. We took advantage of detailed spatial data on 
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climate, topography, geology, and geomorphology in the HJ Andrews Experimental Forest, a 

64 km
2
 mountain catchment, to model the spatial structure of baseflow isotopic composition. 

We expected that: 

1) The spatial pattern of the isotopic composition of baseflow would be related 

elevational gradients during average flow conditions, because precipitation amount, 

precipitation type, and isotopic signature are controlled by orographic processes and this is 

reflected in the stream water, and 

2) The spatial pattern of the isotopic composition of baseflow would be more strongly 

influenced by subsurface storage (i.e., groundwater and storage in low-slope, deep-soil areas) 

during drought flow conditions because the water stored in these areas and released to 

baseflow over prolonged dry periods will be a greater fraction of the total flow during dry 

conditions.  

2 Study Area and Methods 

This study was conducted in the H.J. Andrews Experimental Forest (hereafter “Andrews 

Forest”) located in the Western Cascades of Oregon (44.2N, 122.25W) (Figure 1). The 64 

km
2
 fifth-order Lookout Creek catchment has four tributaries: Cold, Lookout, Mack, and 

McRae Creeks (Figure 1). The climate is Mediterranean with wet winters and dry summers. 

More than 80% of precipitation falls between November and May, and streamflow is 

dominated by baseflow from July to September. Elevation ranges from 430 to over 1600 

m.a.s.l. Annual precipitation varies from about 2,300 mm at low elevation to over 3,550 mm 

at the highest elevation. In most years snowpacks persist from mid-November to the end of 

June at elevations above 1,000 m, but snow rarely persists more than two weeks at lower 

elevations (Jennings & Jones, 2015; Jones & Perkins, 2010). Vegetation is coniferous forest 

dominated by Douglas-fir (Pseudotsuga menziesii) and western hemlock (Tsuga heterophylla) 

at lower elevation and by noble fir (Abies procera) and Pacific silver fir (Abies amabilis) at 
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upper elevations. The catchment is underlain by multiple rock types of volcanic origin 

(Figure 1). Ridges are underlain by Miocene lava flows, which have relatively high porosity, 

while lower elevation areas are underlain by ash flows, air fall tuffs, and alluvial tuffaceous 

sediments. Some areas consist of steep slopes with shallow soils, while others are associated 

with deep-seated, slow-moving earthflows and have relatively low-gradient slopes and high 

roughness (Swanson and James 1975) (Figure 1). 

2.1 Sampling of Precipitation and Surface Water 

Composite precipitation samples were collected between November 2014 and November 

2016 at two meteorological stations (Figure 1). Samples were collected weekly at PRIMET 

(at 430 m, n=83) and at 3-week intervals at H15MET (at 922 m, n=30). The precipitation-

sampling collectors meet IAEA recommendations to prevent evaporation (Groning et al., 

2012; Nickolas et al., 2017). Precipitation samples included snow, which was collected in 

plastic bags and thawed at room temperature before isotopic analysis.  

Surface water was sampled over the entire mainstream network of the Andrews Forest 

on three sampling campaigns during baseflow conditions: July–September, 2015, June 2016, 

and September 2016. Each campaign was completed within an 8-day period during which 

there was little streamflow variation (coefficient of variation in discharge at Lookout Creek 

was < 9%). Although in 2015 the samples in McRae Creek were collected over a single week, 

two months prior to samples in other locations, the isotopic composition of baseflow on a 

single sampling location in McRae Creek did not vary over the two-month period (range 

between -10.64‰ and -10.56‰ for δ
18

O; p-value of one-way ANOVA=0.3). A total of 607 

grab samples was obtained: 168 samples in 2015, 238 samples in June 2016, and 201 samples 

in September 2016. In each campaign, samples were collected at ~ 100 meter intervals over a 

stream length of 24.9 km (2015), 39.7 km (June 2016), and 30.0 km (September 2016) in the 

2
nd

 to 5
th

 order streams of Cold, Lookout, Mack, and McRae Creeks (Figure 1). Locations 
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were recorded using a Garmin 30x GPS unit (accuracy 3m). The stream distance surveyed in 

2015 was shorter than in 2016 due to a more contracted network and logistical constraints in 

accessing some sites.  

The three surface water sampling campaigns represent different hydrologic conditions, 

based on long-term flow records (Daly & McKee, 2016). The 2015 sampling period 

represented some of the lowest baseflow conditions on record, whereas the 2016 sampling 

periods represented near average early baseflow (June) and late baseflow (September) 

conditions. In 2015, mean monthly air temperature was up to 3.9 C higher and precipitation 

and snow water equivalent (SWE) were lower than in 2016 (Figure 2). In the 2015 water 

year, mean daily discharge in Lookout Creek (USGS gauge No. 14161500) was the 7
th

 

lowest, whereas in 2016 it was the 19
th

 lowest, in the 59-year record. Relative to the 59-year 

record of daily flows, daily streamflow in June and September was below the 5
th

 percentile 

during the 2015 sampling (Kaylor et al., 2019) and below the 10
th

 percentile during the 

sampling in September 2016, whereas daily streamflow during the sampling in June 2016 

roughly corresponds to the 50
th

 percentile for July 15 (Figure 2 C). Therefore, we refer to the 

June and September 2016 sampling period as “average” and the 2015 period as “drought” 

conditions. All precipitation and grab samples were collected in 20 mL borosilicate glass 

vials with conical inserts and capped without headspace in order to prevent isotopic 

fractionation. Samples were stored in dark, cool (<15°C) conditions and analyzed at the 

Watershed Processes Laboratory of Oregon State University.  

2.2 Isotopic Analysis 

Water stable isotopes were measured in a total of 607 stream water and 113 

precipitation samples using a cavity ring down spectroscopy liquid and vapor isotopic 

measurement analyzer (Picarro L2130-i, Picarro Inc, CA). Two internal standards were used 

to develop calibration equations, and a third standard was used to assess accuracy. All the 
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standards were calibrated against the IAEA primary standards for Vienna Standard Mean 

Ocean Water (VSMOW; δ
18

O=0.0‰, δ
2
H=0.0‰), Standard Light Antarctic Precipitation 

(SLAP; δ
18

O=-55.5‰, δ
2
H=-427.5‰), and Greenland Ice Sheet Precipitation (GISP δ

18
O=-

24.76‰, δ
2
H=-189.5‰). Precision was 0.21‰ and 0.03‰ for δ

2
H and δ

18
O based on the 

comparison of 49 duplicated samples. Assuming uncorrelated errors, the internal precision 

for deuterium excess, defined as d-excess =  𝛿2𝐻 − 8𝛿18𝑂 (Craig, 1961), was 0.22 ‰. The 

accuracy was 0.24±0.0045‰ and 0.06±0.0008‰ for δ
2
H and δ

18
O based on the comparison 

of 59 estimated values to a known internal standard.  

Isotope values were reported in parts per thousand (‰) deviation relative to Vienna 

Standard Mean Ocean Water (VSMOW): 

𝛿 = (
𝑅𝑠

𝑅𝑠𝑡𝑑
− 1) × 1000   (eq. 1) 

where Rs and Rstd are the isotope ratio (
2
H/H or 

18
O/

16
O) in the samples and standard 

(VSMOW) respectively (Craig, 1961). Values for δ
2
H, δ

18
O, and d-excess in precipitation are 

presented in terms of mean mass weight isotopic composition denoted 𝛿18𝑂𝑝 ̅̅ ̅̅ ̅̅ ̅̅ , 𝛿2𝐻𝑝 ̅̅ ̅̅ ̅̅ ̅̅ , and 

d-excess where the overbar represents the precipitation amount weighting, to distinguish 

them from values for individual samples. 

2.3 Data Analysis 

2.3.1 Variability in Precipitation and Surface Water Isotopic Composition 

We analyzed the temporal and spatial variability of δ
2
H, δ

18
O, and d-excess in 

precipitation and grab samples and compared the isotopic composition of precipitation to the 

isotopic composition of stream water. The average, variance, and lapse rates of the isotopic 

composition of baseflow (δ
18

O, δ
2
H, and d-excess) were computed for each sampled tributary 

and each sampling campaign, and used to characterize the spatial variability. The relative 

water contribution of three tributaries (Cold, Mack, and McRae Creeks) to the total baseflow 
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in Lookout Creek at their tributary junctions (Figure 1) was estimated assuming a two-

component end-member mixing model. The stream mass balance at each tributary junction in 

the network was computed from two equations: 

F1(δ18O1) + F2(δ18O2) = δ18Oi    (eq. 2) 

F1 + F2 = 1       (eq. 3) 

where δ
18

Oi is δ
18

O for the sample downstream of two tributaries, δ
18

O1 and δ
18

O2 are the 

δ
18

O values of tributaries 1 and 2, and F1 and F2 represent the fractions of the total flow 

downstream of the two tributaries. The uncertainty in the two-end member model was 

propagated (Genereux, 1998) and the calculations were repeated with δ
2
H in place of δ

18
O. 

The error-weighted average of the fractional contribution obtained with both tracers is 

presented in the results.  

2.3.2 Stream Network Models to Predict Isoscapes  

We used Spatial Stream Network (SSN) models to estimate the relative importance of 

surface topography and subsurface storage on baseflow water sources and to predict baseflow 

isotopes at the network scale. An SSN model consists of a multiple linear regression model 

for the mean dependent variable (δ
18

O) and a model for the variance that accounts for spatial 

autocorrelation within the network. This model thus avoids bias related to spatial 

autocorrelation. We fitted models for each sampling campaign considering covariates that 

describe the influence of orographic effects on precipitation amount and snow storage (both 

measured by elevation) and the effects of subsurface storage (measured by geology, slope, 

and topographic roughness) (Table 1). Pairs of covariates that were correlated (R>0.6) were 

not included in the same model (Table 1). In the models, elevation was included to represent 

the orographic effects on precipitation amount and form and the almost universal observation 

that precipitation becomes more depleted of heavy isotopes (
18

O, 
2
H) with increasing 

elevation (i.e., rainout effect) due to fractionation during Rayleigh (or Rayleigh like) 
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distillation, i.e., progressive isotopic depletion of precipitation as elevation and/or distance 

from the original vapor source increases (Araguas-Araguas et al., 2000; Dutton et al., 2005; 

Wassenaar et al., 2009; Williams & Rodoni, 1997; Yonge et al., 1989). Geologic 

characteristics (e.g., rock permeability) were used as an indication of potential storage. 

Models included the percentage of area underlain by lava, which likely has relatively high 

permeability (Saar & Manga, 2004) (Figure 1, Table 1) and ash-flow tuff, which weathers to 

low-permeability clays and is thus associated with deep-seated slow-moving earthflows 

(Taskey et al., 1978). Models also included topographic characteristics (slope and roughness). 

Slope angle and surface roughness are often used to indicate variability in soil depth 

(McKenzie & Ryan, 1999; Patton et al., 2018; Pelletier et al., 2016). Low slope and relatively 

high roughness are characteristic of deep, slow-moving earthflows in the Andrews Forest, 

which may store water for long periods (Swanson & Swanston, 1977).  

The influence of covariates on the mean δ
18

O in the five tributaries: Cold, upper 

Lookout (above Cold Creek), Lookout (below Cold Creek), Mack, and McRae Creeks was 

estimated within models that permitted slopes and intercepts to vary among the tributaries 

(hereafter, “estimation models”). In these models, for each covariate, we considered a model 

that assumed a common, fixed-effect slope but different fixed-effect intercepts for each 

tributary, and a model that allowed both the fixed-slope and fixed-effect intercept to vary 

among tributaries. These models thus allow for different relationships between the mean δ
18

O 

and the covariates for each tributary. Models were developed to predict the mean δ
18

O in the 

entire network including locations for which no samples were collected (hereafter, 

“prediction models”). These models included a single common slope and intercept 

throughout the stream network for each covariate as opposed to different slopes or intercepts 

by tributary because the prediction model includes tributaries that were not sampled. All 

models were fitted using an Andrews Forest stream network derived from LiDAR (Johnson 
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& Lienkaemper, 2016; Spies, 2016) corrected for topological errors (Peterson & Ver Hoef, 

2014; Ver Hoef & Peterson, 2010). Each covariate (Table 1) was calculated for the 

contributing area for each of 1,600 reaches in the network.  

All models were fitted using a two-step process to (1) describe the spatial autocorrelation 

structure of δ
18

O and (2) to identify covariates that explain the variability in the network 

mean δ
18

O. In the first step, models with varying autocorrelation structures were fitted to 

identify the best structure of δ
18

O including all covariates and allowing the slope and 

intercept for each covariate to vary by each tributary (estimation) or assuming a single slope 

and intercept per covariate for all tributaries (prediction). The spatial structure uses a moving 

average construction for autocorrelation based on the shortest distance along the stream 

network, allowing the spatial autocorrelation to propagate using spatial weights (upstream 

drainage area). We tested ‘tail-up’ (TU), Euclidean (EU), and both TU and EU distance 

models (Ver Hoef & Peterson, 2010). The TU places more weight on samples upstream, and 

therefore emphasizes the impact of upstream water inputs. The EU method is unbiased with 

respect to flow direction, and consequently emphasizes geographically local inputs. In the 

second step, models were fitted to predict the mean δ
18

O with varying combinations of 

covariates (Table 1), using the best-fit autocorrelation structure from step 1.  All models in 

steps 1 and 2 were fitted using maximum likelihood. Best-fit models were selected based on 

the lowest value of the Akaike’s Information Criterion (AIC) supplemented by AIC weights 

(Burnham & Anderson, 2002) (Table 2). Final estimates of parameters in the best-supported 

models were obtained using restricted maximum likelihood.   
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3 Results 

3.1 Precipitation Isotopic Composition  

Between November 2014 and November 2016 values of (precipitation-weighted) 

𝛿18𝑂𝑝 ̅̅ ̅̅ ̅̅ ̅̅  and 𝛿2𝐻𝑝 ̅̅ ̅̅ ̅̅ ̅̅ were higher at PRIMET (the low elevation weather station) than at 

H15MET (the high elevation weather station) (Figure 2 D). At both locations, the mean 

𝛿18𝑂𝑝 ̅̅ ̅̅ ̅̅ ̅̅  and 𝛿2𝐻𝑝 ̅̅ ̅̅ ̅̅ ̅̅ averaged over the 12 months prior to sampling was significantly higher for 

2015 sampling than for 2016 (Figure 2 D). The distinctly drier and warmer conditions 

experienced in the 2014–2015 period resulted in less precipitation and a more enriched signal 

(i.e., higher 
18

O and 
2
H). The isotopic composition of the precipitation in 2016 was similar to 

the means reported for the Andrews Forest for 2001 to 2003 (McGuire et al., 2005) and 2006 

(Brooks et al., 2010). Precipitation d-excess between November 2014 and November 2016 

ranged from 5‰ to 20.8‰. The (precipitation weighted) d-excess over this period was lower 

at PRIMET (10.75±0.05‰) than at H15MET (11.39±0.08‰, t-test, p=0.00001).  

3.2 Variability in Summer Surface Water Isotopic composition 

The isotopic signature of baseflow varied in space and time (Figure 3). Overall, surface 

water δ
18

O varied from -11.78‰ to -10.4‰ and δ
2
H from -80.6‰ to -71.49‰ (Figure 3). 

Streamflow δ
18

O and δ
2
H values were higher in 2015 (Figure 3 D) than in June 2016 (Figure 

3 E) or September 2016 (Figure 3 F). The isotopic composition of streamflow also varied in 

space. Cold Creek had consistently lower δ
18

O and δ
2
H values compared to other high-

elevation sites in Lookout and McRae Creeks (Figure 3 D-F and Figure 4).  

Baseflow amount was not related to drainage area. The two-end member-mixing model 

indicated that Cold Creek contributed 60.3–72% of the Lookout Creek baseflow during 

average conditions (June and September 2016, Figure 3 B-C) and 88% of the baseflow during 

the drought (2015, Figure 3 A). In other words, Cold Creek (91.3 ha) delivered 15 times more 
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water per unit area during baseflow than the remainder of Lookout Creek above the 

confluence with Cold Creek (539.6 ha). In contrast, baseflow contributions from Mack Creek 

were roughly proportional to drainage area (Mack Creek is 33% of the drainage area of 

Lookout Creek at their confluence and contributed 21–25% of baseflow during average 

conditions and 43% of baseflow during the drought, Figure 3 A-C), whereas baseflow 

contributions from McRae Creek were relatively low (McRae Creek is 45% of the drainage 

area of Lookout Creek at their confluence and contributed only 5–13%) during average 

baseflow (Figure 3 B-C).  

Values of δ
18

O, δ
2
H, and d-excess from stream samples indicate temporal and spatial 

differences in the relative importance of contributions to baseflow from recent precipitation 

versus water stored in the subsurface. During average conditions (June 2016 and September 

2016), the average isotopic composition of baseflow was close to the annual 𝛿18𝑂𝑝 ̅̅ ̅̅ ̅̅ ̅̅  values 

for all tributaries, except for Cold Creek (Figure 4 B-C). However, baseflow in all tributaries 

was more depleted than the annual 𝛿18𝑂𝑝 ̅̅ ̅̅ ̅̅ ̅̅  in 2015 (Figure 4 A). The d-excess values for 

baseflow in 2016 were consistent with the annual d-excess  of precipitation in McRae and 

Lookout Creeks (Figure 4 E-F). In 2015, however, d-excess values for baseflow were higher 

than the annual d-excess  of precipitation in all tributaries (Figure 4 D). This result suggests 

that a large portion of baseflow in 2015 was derived from stored water rather than recent 

precipitation. 

Spatial patterns of δ
18

O and d-excess in baseflow capture differences in contributions of 

recent precipitation to baseflow (Figures 3 and 4). Values of δ
18

O decreased significantly 

with elevation at Cold, Mack, McRae, and Lookout (including samples below Cold) Creeks 

during average conditions (June 2016 and September 2016) (Figure 5 C, E, and Table S1). In 

contrast, the relationships between δ
18

O and elevation were weak for all tributaries during the 
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drought (2015), except for Lookout Creek (including samples below Cold Creek) (Figure 5 

A). The variation of δ
2
H with elevation is similar to that observed for δ

18
O (Table S1). The 

mean δ
18

O for Mack Creek, McRae Creek, and Lookout Creek above Cold Creek was close 

to the regional lapse rate of stream water in the Willamette River Basin (Brooks et al., 2012), 

but the mean δ
18

O for Cold Creek and Lookout Creek downstream of Cold Creek plot below 

the regional lapse rate (Figure 6).  

Mean d-excess values in 2015 at McRae Creek were lower, whereas those in Cold Creek 

were higher, than in other tributaries in both years (Figure 4 D-F). Values of d-excess 

increased significantly with elevation for most tributaries in both June and September 2016 

(Figure 3 H-I and Figure 5 D, F), but d-excess was unrelated to elevation in 2015 (Figure 5 

B). At McRae Creek, mean d-excess values were significantly lower in 2015 (11.5‰, Figure 

4 D) than in June or September 2016 (> 12.4‰, Figure 4 E, F).  

3.3 Spatial Stream Network Models to Estimate and Predict δ
18

O 

3.3.1 Estimation models 

The best-supported estimation (E) models explained 94 to 99% of the variation in δ
18

O 

(Table 3). Covariates explained 66% to 83% of the variation, and the autocovariance 

structure explained 9.1% to 19% (Tables 2 and 3). In all models (n=16) for all sampling 

periods the ‘tail-up’ autocorrelation structure was the most appropriate to describe the 

relationship between δ
18

O observations based on separation distance. The prevalence of the 

‘tail-up’ autocorrelation structure is consistent with the predominantly exponential form of 

the empirical variograms for sampling dates in 2016 (data not shown), which indicates that 

the δ
18

O at a given location depends on δ
18

O upstream values at multiple lag distances. 

Elevation was a covariate in the best supported estimation models for all sampling campaigns 

(Tables 2 and 3). During average conditions in June 2016, elevation was the only covariate: 

δ
18

O was negatively related to elevation in the best-supported models that permitted 
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intercepts to vary by tributary, as well as those that permitted intercepts and slopes to vary by 

tributary (E1 and E2, Tables 2 and 3). In contrast, during drier conditions (2015 and 

September 2016), the second best supported model (E12) included elevation and roughness 

as covariates (Table 2). In the best-supported model for September 2016, δ
18

O was negatively 

related to elevation for all tributaries, except for Lookout Creek upstream from Cold Creek, 

whereas in the best-supported model for 2015, δ
18

O was negatively related to elevation only 

in Cold Creek and in Lookout Creek below Cold Creek (Figure 5).  

3.3.2.  Prediction models 

The best-supported prediction (P) models explained 85 to 97% of variation in δ
18

O; 89 to 

94% of the variance in these models was explained primarily by the autocorrelation structures 

(Table 3). In all models (n=13) for sampling periods in 2016 the ‘tail-up’ autocorrelation 

structure was identified as the most appropriate (Table 3). However, in models for 2015, 

Euclidian distance was also part of the best supported autocorrelation structure. This is 

consistent with the spherical shapes of the empirical semi-variograms for 2015 (data not 

shown) and indicates that the δ
18

O at a given location in 2015 also depends on neighboring 

values at short lag distances. Because only a small proportion of the variation was explained 

by the covariates, multiple alternative combinations of covariates were present in the 

predictive models that were similarly well-supported (Table 2).  

Catchment wide isoscapes for δ
18

O created from the best-supported predictive models 

(Figure 7) highlight the distinct patterns of baseflow isotopic composition during the drought 

period (September 2015) compared to average flow conditions (June 2016). The values of 

δ
18

O were significantly higher (more enriched) in most of the stream network in 2015 

compared to 2016. In 2015, patches of relatively depleted baseflow are evident near deep-

seated earthflows (Figure 1 and 7).  Baseflow was also consistently depleted for both years in 
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Cold Creek and Lookout Creek downstream from Cold Creek. The standard error in the 

predictions increases away from the sampling points (Figure S1).  

Allowing the mean of δ
18

O (intercept) to change from tributary to tributary increased the 

amount of variation explained by the estimation models compared to the predictive models 

(Table 3). Nevertheless, similar covariates were included in the best-supported estimation and 

predictive models for each sampling period (Table 2) with similar predictions and estimations 

at the sampling locations (Figure S2). 

4 Discussion 

4.1 Conceptual Model of Baseflow Water Sources 

  These findings suggest a conceptual model of baseflow sources in response to climate 

variability (Figure 8). During years with average snowpack and average baseflow conditions, 

baseflow isotopic composition is strongly related to elevation, reflecting the influence of 

stored water derived from snowmelt (Figure 8 A). In contrast, during years with low 

snowpack and severe summer drought conditions, baseflow isotopic analysis suggests that 

more of the baseflow water originated from stored water derived from geomorphic features 

(e.g., deep-seated earthflows) rather than from recent precipitation (Figure 8 B). Water 

storage in high-elevation geologic features (i.e., porous lava flows) also influences baseflow 

isotopic composition (Figure 8 C). 

In years with average precipitation and snowpack, elevation influences precipitation, 

snowpack, and, thereby, baseflow isotopic composition (Figure 8 A). In 2016, snowpack 

water equivalent approached 1,000 mm, precipitation and stream water isotopic composition 

were similar, d-excess was positively related to elevation, and elevation was a covariate in 

best-supported geostatistical models of baseflow isotopic composition. Baseflow isotopic 

signature is correlated with elevation because isotopic composition becomes progressively 

depleted of heavy isotopes (
18

O and 
2
H) with increasing elevation (Araguas-Araguas et al., 
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2000; Fan et al., 2015; Peng et al., 2015; Vespasiano et al., 2015; Wassenaar et al., 2011). 

Values of d-excess are frequently positively correlated to elevation in mountainous regions 

(Bershaw et al., 2012; Gonfiantini et al., 2001; Liotta et al., 2013). For example, winter 

precipitation in Canadian mountain sites with Pacific Ocean water sources, similar to the 

study site, have particularly high d-excess values (Froehlich et al., 2002). 

In contrast, in years with low snowpack, geomorphic features such as deep earthflows 

influence the isotopic signature of baseflow (Figure 8 B). In 2015, snowpack water 

equivalent did not exceed 200 mm, precipitation and stream water isotopic composition were 

different, d-excess was not related to elevation, and slope and surface roughness were 

covariates in best-supported geostatistical models of baseflow isotopic composition. The lack 

of correlation in 2015 between elevation and δ
18

O and δ
2
H observed in all tributaries except 

Lookout Creek below Cold Creek indicates that the strength of these relationships is a 

function of precipitation amount and corroborates that precipitation amount and composition 

in 2015 were not important factors for summer baseflow isotopic values. Deviations from the 

expected expression of the rainout effect (i.e., decreasing δ
18

O and δ
2
H with elevation) in 

stream water have been reported in other catchments and attributed to the effects of 

atmospheric recycling and complex vapor sources (Bershaw et al., 2012; Lechler & Niemi, 

2011), the effects of lower precipitation amount in catchments located within topographic 

rain shadows (Brooks et al., 2012), or inter-basin water contributions (Nickolas et al., 2017). 

The lack of correlation of d-excess with elevation in 2015 may be associated with 

competition between controls on d-excess, including evaporation of some fraction of rainfall 

as it fell, local moisture recycling (Camille et al., 2013), local evaporation, or the lack of the 

major snowmelt flux into streams (Merlivat & Jouzel, 1979) all of which were likely 

enhanced by the high mean temperature and relatively low precipitation of 2015 compared to 

the average year (2016). 
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The interpretations about differences in water sources between average and drought 

conditions were very clear in our case given that δ
18

O and δ
2
H were higher in 2015 

precipitation compared to 2016 precipitation. Precipitation was more enriched in 2015 

because of smaller fractionation rates due to the higher temperatures in this year, consistent 

with model simulations (Liu et al., 2014; Nusbaumer & Noone, 2018; Nusbaumer et al., 

2017). This strong contrast in precipitation isotopes between years enhanced our ability to 

demonstrate that summer baseflow during the drought did not originate from the recent 

precipitation.  

Geomorphic features such as earthflows may provide a source of baseflow in years with 

little snowpack and very low summer streamflow (Figure 8 B). The importance of 

geomorphic features such as deep-seated earthflows as baseflow sources is supported by the 

depleted isotopic composition of baseflow relative to precipitation in the drought year (2015), 

the lack of correlation between d-excess, δ
18

O, or δ
2
H and elevation in most tributaries in 

2015, and the inclusion of slope and roughness as covariates in best-supported SSN models 

for the drought year. Deep-seated earthflows mapped in the study area (Swanson & James, 

1975) coincide with areas of relatively low spatial variation in isotopic values in 2015 

(Figures 1 and 3 A). These findings imply that baseflow in 2015 was sourced from connected 

water stored within these deep-seated earthflows (Swanson & James, 1975). However, 

samples from this water (or tracer tests) would be needed to fully confirm this interpretation. 

Earthflows are characterized by relatively low slope and high surface roughness. Surface 

roughness can indicate soil thickness (Patton et al., 2018), which in turn is linked to shallow 

groundwater (Schulz et al., 2008), baseflow variability during drought conditions (Price et al., 

2011), and groundwater supply (Tetzlaff & Soulsby, 2008). Other studies also demonstrate 

that hillslope characteristics (e.g., slope and roughness) influence baseflow (Jencso & 
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McGlynn, 2011; McGuire et al., 2005; Singh et al., 2016; Zimmer & Gannon, 2018), 

particularly during dry conditions (Heidbuchel et al., 2013). 

Geologic features, such as porous lava flows, also influence baseflow isotopic 

composition (Figure 8 C). The ridge-capping materials are located on southern and eastern 

upper slopes (Figure 1) and are a mixture of aa lava flows, rounded gravels, and ash deposits 

(Swanson & Jones, 2002; Walker & MacLeod, 1991). The significantly depleted baseflow 

isotopic signatures and relatively high unit-area baseflow contributions at Cold Creek in both 

2015 and 2016 imply that baseflow in Cold Creek is derived from stored water in these lava 

flows. The higher d-excess and more depleted (i.e., lower) δ
18

O of Cold Creek compared to 

the precipitation in both 2015 and 2016 and compared to regional streamflow samples 

(Figure 6) also imply that baseflow may be sourced from snowmelt that formed at a higher 

elevation and lower temperature (Bershaw et al., 2012; Gonfiantini et al., 2001; Liotta et al., 

2013). The study area is separated by faulting from the regional groundwater of the High 

Cascades (Ingebritsen et al., 1994), indicating that the groundwater source to Cold Creek is 

likely local. Other studies have also illustrated that springs emerging from lava flow deposits 

are an important source of baseflow (Fujimoto et al., 2016; Jefferson et al., 2006).  

The SSN estimation models revealed the importance of covariates, such as elevation, 

slope angle, surface roughness, and geology, which in turn permitted interpretations of 

processes that contribute to the spatial and temporal patterns of baseflow isotopic conditions. 

In contrast, the SSN prediction models relied primarily on the autocorrelation structure and 

covariates were less important. This resulted in decreased model accuracy away from the 

sampled tributaries particularly in 2015, for which the best prediction model did not include 

any of the covariates.  
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4.2 Implications for Future Drought Conditions 

Climate change in the Pacific Northwest is reducing snowpacks (Mote et al., 2016). This 

study showed that when a snowpack was present, sources of stored water to baseflow were 

concentrated at high elevation, but when snowpack was absent, sources of stored water to 

baseflow shifted to areas with porous lava flows, or areas with lower slope angles and higher 

surface roughness that were mapped as deep-seated earthflows. Thus, when there is little or 

no snowpack, spring fed systems become more important to summer baseflow. Groundwater-

fed streams are relatively resilient to drought (Zimmer & Gannon, 2018), and regional 

groundwater systems in the High Cascades (east of the study area) might mediate streamflow 

in the face of greater climate variability (Mayer & Naman, 2011; Safeeq et al., 2014; Tague 

& Grant, 2009). Deep earthflows and associated deep flow path groundwater sources will 

become increasingly important to mediate drought impacts on stream networks as snowpacks 

decline under future climate conditions. Understanding the different sources and residence 

times of water contributing to baseflow will therefore be critical for effective water resource 

management under future climate conditions in mountain catchments worldwide.  

5 Conclusions 

Although surface topography, geology, and geomorphic features all influence 

contributions to summer baseflow, the importance of these factors differs with climate. 

Spatial patterns of precipitation strongly influence the contributions to baseflow during an 

average water year, but geomorphic features, especially deep earthflows, emerged as 

important controls on contributions to baseflow in a drought year with little or no snowpack. 

Geologic features, especially porous substrate, explained the contributions to baseflow as 

well as spatial patterns of unit-area discharge in both average and drought conditions. 

Spatially explicit models of the δ
18

O isoscape illustrated how baseflow patterns may shift 

under conditions of very low snowpack, which may be more frequent in the future. Under 
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projected warming conditions with declining snowpack, baseflow discharge in mid-sized 

stream catchments will become increasingly reliant on the disproportionate contribution from 

sub-catchments with groundwater sources. In mountain landscapes with variable geologic 

and geomorphic features the sources of baseflow that sustain stream ecosystems vary greatly 

depending not only on recent precipitation contributions but also on the presences of 

quaternary deposits and porous volcanic bedrock.  
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Table 1 

Covariates Considered in the Spatial Stream Network Models  

 
Covariate

 a
 Scale of influence Source Description and range 

Effects of surface topography on precipitation amount and on the rainout effect
b
 

Elevation 

(H) 
Landscape LiDAR

c 
 

Calculated based in the 1-m LiDAR (H) 

Range: 412-1230m 

Effects of rock permeability on hydrologic flow paths 

Geology 

(lava, tmt) 

Local  
Area underlain by ridge-capping lava (lava) 

Ranges: 0 – 100% 

Local  
Area underlain Ash-flow tuff (tmt) 

Ranges: 0 – 100% 

Effects of topography on water storage  

Mean slope 

(S) 
Local LiDAR

c 
 

Calculated based in the 1-m LiDAR 

Range: 4 - 46 degrees 

Mean 

roughness 

Index (R)
d
 

Local LiDAR
c 
 

This is a proxy for soil/sedimentary thickness. It is calculated 

as the standard deviation of the residual topography which is 

the difference between elevation and the mean elevation 

calculated over a 5-m window 

Range: 0.025- 0.26 degrees 
a
 Correlated variables were not considered simultaneously in the models: Area underlain by 

ridge-capping lava vs. ash-flow tuff (R=-0.64); slope vs, roughness (R=0.66), and area 

underlain by ridge-capping lava and elevation (R=0.80). 
b 

Rainout effect occurs due to fractionation during Rayleigh distillation with progressive 

isotopic depletion of precipitation as elevation and/or distance from the original vapor source 

increases (Araguas-Araguas et al., 2000; Dutton et al., 2005; Wassenaar et al., 2009; 

Williams & Rodoni, 1997; Yonge et al., 1989).
 

c 
Spies (2016) 

d 
Cavalli et al. (2008)   
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Table 2 

Comparison of  Spatial Stream Network (SSN) Model support to predict (P) and estimate (E) 

δ
18

O for each sampling campaign based on the Akaike Information Criteria (AIC), the 

change in the AIC relative to the best-supported model (Δi), and AIC weights (AICw) for the 

best –supported (i.e., with Δi <2).l. All relationships between covariates and δ
18

O were 

negative within the prediction models. Top two models in each campaign are in bold. 

Np
H S R Lava tmt  AIC

c
 Δi AICw AIC

c
 Δi AICw AIC

c
 Δi AICw 

E 1 3 
    

10 -379.9 0.0 53% -727.4 3.5 14% -808.8 0.0 60% 

E 2 2 

    

5    -730.9 0.0 83%    

E 12 3 

 

3 

  
15 -378.4 1.6 25%    -806.7 2.2 20% 

P 1 

     

1 -199.0 0.0 26%       

P 2 1 

    

2 -197.0 2.0 10% -617.3 0.0 27%    

P 3    1   -197.1 1.92 10%       

P 4 

    

1 2 -197.1 2.0 10%       

P 5 

 

1 

   

2 -197.6 1.4 13%    -633.0 1.3 18% 

P 6 

  

1 

  

2 -197.0 2.0 9%       

P 7 1 

   

1 3    -615.4 1.9 10%    

P 8 1 1 

   

3    -615.9 1.4 13% -634.3 0.0 33% 

P 9 1 

 

1 

  

3    -616.6 0.7 19%    

P 12 1 1 

  

1 4       -632.7 1.5 16% 
a 
Covariates included elevation (H), percent of contributing area underlain by lava flows 

(lava) or ash flow tuff (tmt), slope (S), and roughness (R); 1: models with the same intercept 

and slope of the relations between covariates and δ
18

O, 2: models with varying intercept by 

tributary, and 3: models with both intercept and slope varying by tributary.   
b 

Number of model parameters. In addition, SSN models include 3-7 parameters associated 

with the autocovariance construction (Ver Hoef & Peterson, 2010). 

A complete list of all the models considered is included in Table S2  
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Table 3 

Parameter Estimates and Summary Statistics for the best supported Spatial Stream Network 

(SSN) Model to predict (P) δ
18

O and for the best supported SSN model to estimate (E) δ
18

O 

for each Sampling Campaign. 

Model
a
 Covariate

b
 b (SE)

 c
 CI 95%

d
 Cvr

2e
 RMSE

f
 

% of variance
g
 

Cov. TU Euc. 

2015 

E1 

Trib*CO -10.54  (1.62) [-13.716,-7.37] 

0.94 0.068 76.6 12.9 

 

Trib*LO 0.373  (1.63) [-2.822,3.568] 

Trib*LU -1.129  (1.929) [-4.91,2.651] 

Trib*MM 0.311  (1.69) [-3.001,3.624] 

Trib*MR -0.025  (1.627) [-3.214,3.163] 

H:Trib*CO -0.0011  (0.0016) [-0.004,0.002] 

H:Trib*LO -0.0003  (0.0016) [-0.003,0.003] 

H:Trib*LU 0.0023  (0.0019) [-0.001,0.006] 

H:Trib*MM 0.0004  (0.0017) [-0.003,0.004] 

H:Trib*MR 0.0009  (0.0016) [-0.002,0.004] 

June 

2016 

E2 

Trib*CC -11.08  (0.07) [-11.227,-10.942] 

0.96 0.046 65.6 19 

 

Trib*LO 0.318  (0.049) [0.222,0.413] 

Trib*LU 0.777  (0.056) [0.668,0.887] 

Trib*MM 0.461  (0.049) [0.364,0.558] 

Trib*MR 0.666  (0.049) [0.569,0.763] 

H -0.0005  (0.0001) [-0.0007,-0.0004] 

Sep. 

2016  

E1 

Trib*CO -11.4  (0.14) [-11.672,-11.121] 

0.99 0.031 83.3 9.1 

 

Trib*LO 0.818  (0.154) [0.515,1.12] 

Trib*LU 0.051  (0.272) [-0.482,0.583] 

Trib*MM 0.777  (0.163) [0.458,1.095] 

Trib*MR 1.024  (0.155) [0.72,1.328] 

H:Trib*CO -0.0002  (0.0001) [-0.0005,0] 

H:Trib*LO -0.0007  (0.0002) [-0.001,-0.0004] 

H:Trib*LU 0.0007  (0.0003) [0.0001,0.0012] 

H:Trib*MM -0.0004  (0.0002) [-0.0007,-0.0001] 

H:Trib*MR -0.0004  (0.0002) [-0.0007,-0.0001] 

2015, P1 Int. -10.86 (0.09) [-11.038,-10.69] 0.85 0.11 0.0 53.75 35.87 

June 

2016, P2 

Int. -10.62 (0.15) [-10.91,-10.335] 
0.91 0.073 2.3 94.5 

 

H -0.0004  (0.0002) [-0.001,0] 

Sep. 

2016, 

P8 

Int. -10.62 (0.13) [-10.87,-10.37] 

0.97 0.043 5.5 91.4 

 

H -0.0003  (0.0001) [-0.0006,0] 

S -0.0021  (0.0008) [-0.004,-0.001] 
a 
The numbers correspond to those in Table 3 

b 
Covariates: Int: intercept; S: slope; H: elevation; R: roughness; and tmt: Area underlain 

Ash-flow tuff.  Trib*: indicates that the model considered variations in terms of the mean 

value (intercept) by tributary (CO: Cold Creek, LO: Lookout below Cold Creek; LU: 

Lookout above Cold Creek; MM: Mack Creek; and MR: McRae). H:Trib* indicates that the 

model considered slope variations by tributary. 
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c 
Coefficient value and standard error in parenthesis 

d 
95% Confidence intervals  

e 
Square correlation between the leave-one-out cross-validation prediction and observed δ

18
O. 

f 
Root mean square prediction error. 

g 
Variance explain

 
by covariates and best-supported autocovariance structure (TU, tail-up; 

TD, tail-down) (Ver Hoef et al., 2014).  
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Figure 1:  A: Elevation and B: geology (Swanson, 2005; Walker & MacLeod, 1991) in the 

Lookout Creek catchment in the Andrews Forest. Medium and high earth-flow hazard areas 

(Swanson, 2013) are indicated. 
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Figure 2: A and B: Snow water equivalent (SWE) and cumulative precipitation for 2015, 

2016, and 30-year Normal at a nearby SNOTEL station (McKenzie). C: Daily discharge at 

Lookout Creek (USGS No. 14161500) in 2015 and 2016 and median discharge (Qm) between 

1949 and 2017.  Sampling times are also indicated. D: volume-weighted mean δ
18

O and δ
2
H 

for 2015 (Nov-2014-Nov 2015) and 2016 (Nov 2015-Nov 2016) indicated significantly 

enriched (higher
18

O and 
2
H) precipitation values in the dryer and warmer Nov-2014-Nov 

2015 period; error bars represent weighted standard errors.  
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Figure 3: A-C: δ
18

O, D-E: δ
18

O and δ
2
H, and G-I: Deuterium excess in grab samples 

collected during three synoptic sampling campaigns in September 2015 (A, D, and G) June 

2016 (B, E, and H), and September 2016 (C, F, and I).   The percentage in A-C indicates the 

water contributions from Cold, Mack, and McRae Creeks to Lookout Creek at their 

confluences calculated with the two end member-mixing model (equations 2 and 3). 
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Figure 4: Distributions (boxplots) of δ
18

O (A-C) and deuterium excess (D-F) by tributary in 

September 2015, June 2016, and September 2016 illustrate differences among tributaries and 

significantly more depleted (lower) δ
18

O in all grab samples collected in September 2015 

compare to the mean volume weighted δ
18

O and d-excess for the precipitation at PRIMET 

and H15MET (solid blue and green lines). The 95% confidence interval bounds for the mean 

precipitation (dashed blue and green lines) are indicated. In 2016 (June and September) the 

δ
18

O of all grab samples except those in Cold Creek all well bounded by the observed δ
18

O in 

the precipitation. 
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Figure 5: Relationship between elevation and δ
18

O and deuterium excess (d-excess) by 

tributary and sampling campaign.  A-B: September 2015, C-D: June, 2016, and E-F: 

September 2016. Error bars represent internal precision based on comparison between 

duplicates.  The samples circled in D correspond to evaporated samples. Note the weak 

correlations with δ
18

O for McRae and Mack Creeks in 2015 and for all tributaries with d-

excess that year. In contrast, there are strong relationships with δ
18

O and d-excess in 2016.  

Significant regression lines for δ
18

O lapse rates by tributary are included (see Table S1 for all 

lapse rate statistics). The samples in Lookout Creek upstream from the confluence with Cold 

Creek were excluded for the regression line calculation of Lookout Creek.  Panel D includes 

6 samples collected in the headwaters of McRae Creek and in 3 small tributaries to Lookout 

Creek that given their low d-excess appear to be influenced by evaporation. 
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Figure 6:  Comparison between the mean δ
18

O per tributary and the regional stream isotopic 

lapse rate for the Willamette River Basin (Brooks et al., 2012). Cold Creek and Lookout 

Creek below the confluence with Cold Creek plot to the left of the lapse rate indicating a 

water source higher in elevation than the sampling locations. The horizontal lines depict the 

range of elevations sampled in each tributary across all samplings and vertical lines indicate 

the mean δ
18

O +/- one standard deviation.  
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Figure 7: A-B:  Spatial Stream Network (SSN) models for September 2015 and June 2016. 

Black lines indicate 1:1 relationship. C-D:  Isoscape maps of δ
18

O predicted by the SSN 

model fit to samples collected in 2015 and June 2016. Streamlines are colored by the 

predicted values.  The model used in C was P1 and the model used in D was P2 (Table 3). 
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Figure 8: Conceptual diagram of water sources during average and drought conditions. Line 

thickness of the arrows represents the relative contribution of the source and the tint (from 

red to green) represents the value of δ
18

O.  A represents a situation in which the effects of 

elevation on the precipitation amount and type are strong and thus streams dependent on local 

water sources. B represents the effects of subsurface storage, i.e., deep-seated earthflows (as 

indicated by low slope) on baseflow, and C represents a stream in which the effects of 

subsurface storage, i.e., lava flows (as indicated by geologic substrate) are strong and thus the 

sources of water appear to be independent of recent local precipitation producing the same 

patterns during average and drought conditions. The precipitation in drought conditions (B) is 

indicated as relatively more enriched than during average conditions because small 

fractionation rates are expected during a warm drought.  


