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A spatial stream-network approach 
assists in managing the remnant 
genetic diversity of riparian forests
patricia María Rodríguez-González  1, Cristina García2,3, António Albuquerque1,4, 
tiago Monteiro-Henriques5, Carla Faria1, Joana B. Guimarães6, Diogo Mendonça6, 
Fernanda simões6, Maria teresa Ferreira1, Ana Mendes7, José Matos6,8 & 
Maria Helena Almeida1

Quantifying the genetic diversity of riparian trees is essential to understand their chances to survive 
hydroclimatic alterations and to maintain their role as foundation species modulating fluvial ecosystem 
processes. However, the application of suitable models that account for the specific dendritic structure 
of hydrographic networks is still incipient in the literature. We investigate the roles of ecological and 
spatial factors in driving the genetic diversity of Salix salviifolia, an Iberian endemic riparian tree, across 
the species latitudinal range. We applied spatial stream-network models that aptly integrate dendritic 
features (topology, directionality) to quantify the impacts of multiple scale factors in determining 
genetic diversity. Based on the drift hypothesis, we expect that genetic diversity accumulates 
downstream in riparian ecosystems, but life history traits (e.g. dispersal patterns) and abiotic or 
anthropogenic factors (e.g. drought events or hydrological alteration) might alter expected patterns. 
Hydrological factors explained the downstream accumulation of genetic diversity at the intermediate 
scale that was likely mediated by hydrochory. The models also suggested upstream gene flow within 
basins that likely occurred through anemophilous and entomophilous pollen and seed dispersal. 
Higher thermicity and summer drought were related to higher population inbreeding and individual 
homozygosity, respectively, suggesting that increased aridity might disrupt the connectivity and 
mating patterns among and within riparian populations.

Riparian trees are foundation species that support biodiversity and modulate key ecosystem functions through 
their interactions with flooding and sediment regimes in river channels and their floodplains1,2. Rivers have been 
exposed to long-lasting human pressures worldwide, and they are threatened by climate change and a resurgence 
of damming plans in response to freshwater and energy demands3. On the one hand, river regulation alters peak 
flows and creates physical barriers to gene flow, which hinder the regeneration dynamics of riverine plant com-
munities4. On the other hand, climate-driven changes, such as precipitation shifts, might decouple seed develop-
ment and dispersal from the discharge regime to which they evolved5. Improving our capacity to understand and 
anticipate changes in these fragile ecosystems is of the utmost importance if we are to mitigate the expected per-
vasive environmental and societal consequences of hydroclimatic alterations3. However, the current approaches 
used to monitor functional responses of riparian forests to global change do not fully accommodate the dendritic 
structures of hydrographic networks, which hinders the accurate management of these threatened ecosystems. 
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Here, we combined spatial stream-network (SSN) models with landscape genetics tools to quantify the role of 
ecological factors in determining the amount and distribution of genetic diversity harboured in riparian forests. 
By doing so, we tested hypotheses on the main drivers of gene flow and connectivity at the population, basin and 
regional scales, and we showed that this monitoring tool is suitable to design science-based conservation plans.

Riparian forests are confined along dendritic hydrographic networks with typically directional water flow 
that disperses seeds and vegetative propagules downstream. Any attempt to investigate riparian genetic patterns 
requires accommodating the dendritic structure of hydrographic networks and its specific topology, connectivity 
and directionality within the hierarchical organization of riparian landscapes6. Spatial models previously applied 
to investigate genetic patterns across dendritic structures, such as rivers, have provided interesting but limited 
information because (1) Euclidean geographic distances disregard the complexities of hydrographic networks 
within nested watersheds7; (2) proxies of the basin hierarchy (i.e., stream order) poorly capture the topological 
properties of dendritic networks8; and (3) models do not tackle the joint effects of environmental and spatial 
components together, providing an incomplete picture of the multiple factors that drive genetic patterns9. SSN 
models7 provide a timely opportunity to investigate the joint effects of environmental drivers and spatial proper-
ties on a hydrographic network in riparian forests, and these models provide a complete and validated method-
ological toolbox10,11. These models integrate a set of explanatory variables into a single geostatistical model that 
can accommodate different spatial autocorrelation structures and use spatial weights to capture the influence of 
branching, flow direction, and discharge7. SSN models have been successfully applied to detect spatial patterns of 
water chemistry12 and the distribution of vagile organisms7,10,13, but they have not yet been applied to investigate 
the distribution of the genetic diversity of riparian forest species across different hydrographic networks.

In this study, we combined landscape genetic tools and SSN models to quantify the impacts of key ecologi-
cal drivers on the distribution of the genetic diversity and structure of the riparian tree Salix salviifolia Brot. at 
various spatial scales. S. salviifolia is a foundation species that preferentially grows in intermediate to large order 
streams where natural flow, erosion and fluvial sedimentation processes create in-channel deposit bars14. In this 
species, gene flow occurs through pollen grains (transported by wind and insects), seeds (mobilized by wind and 
water) and vegetative propagules transported by water flow. Therefore, the disruption of the natural water flow 
and sediment regimes by river regulation threatens the dispersal ability and the genetic connectivity of these 
populations15,16. Furthermore, this taxon is endemic to the Western Iberian Peninsula, listed in the EU Habitats 
Directive, and it creates habitats that host IUCN Endangered Mediterranean fish species such as Anaecypris his-
panica. The distribution of S. salviifolia encompasses a pronounced climatic gradient that spans from the southern 
Mediterranean edge to the Temperate ecoregion17. Hence, S. salviifolia is an ideal model species for studying the 
environmental and spatial drivers of genetic patterns in riparian species.

Water flow is the main vector that mobilizes propagules for riparian species downstream18, which causes the 
accumulation of riparian plant propagules downstream unless there are other means of upstream dispersal (the 
so-called drift-paradox hypothesis (Fig. 1)19. As a result, genetic diversity is expected to increase downstream. This 
observation has received empirical support that shows a dominant downstream gene flow direction6,20, although 
some studies have documented bidirectional gene flow9,21. Dominant winds or foraging preferences by pollinators 
can move pollen grains and genes upstream22. Moreover, local and regional landscape features, such as elevation 
or climatic gradients, might affect the gene flow patterns within or among basins (Fig. 2), and these features 
could potentially erase the expected genetic patterns derived from dominant downstream dispersal8. Applying 
SSN models enables us to dissect the contribution of environmental and spatial factors in determining the levels 
of genetic diversity across basins, populations and individuals. Specifically, this multiscale approach allows us 
to (i) investigate the genetic diversity levels of riparian populations in basins along an environmental gradient; 
(ii) quantify the relative contributions of ecological and spatial factors; and (iii) assess the spatial extent at which 
dominant factors impact the genetic patterns across dendritic networks. Finally, we further discussed the poten-
tial applications of SSN models to monitor the responses of riparian ecosystems to global change drivers.

Results
spatial genetic patterns in Salix salviifolia. Locally, ca. 15% of sites show signs of a deficit or excess 
of heterozygotes (Table 1), indicating that the allele frequencies at these sites depart from the Hardy-Weinberg 
Equilibrium (HWE). All estimators of genetic differentiation detected a significant genetic structure within 
regions (Supplementary Table S1), and the southern region showed the highest genetic structure levels and high 
proportions of private alleles (PA) (Supplementary Table S2).

Geostatistical modelling: covariates and covariance structures. The optimal sets of covariates were 
similar across the population-level response variables, and the hydrologic index (DA) was selected across the 
four estimators Ae, Fis, uHe and Ho (Ae, number of effective alleles; Fis, inbreeding; uHe, expected unbiased het-
erozygosity; Ho, observed heterozygosity) (Table 2) and had a positive impact on genetic diversity (in terms of 
Ae). Therefore, larger and wetter drainage basins tended to correlate with increased levels of genetic diversity. In 
addition, Ho was significantly and positively correlated with altitude (ALT). Climatic covariates were retained 
for Fis and HL (homozygosity level). The thermicity index (BIOC.TH) had a positive effect on Fis and, at the 
individual-level, the summer ombrothermic index (BIOC.SO) significantly affected the HL, with higher HL levels 
at decreasing BIOC.SO values. This result entails that locations undergoing intense summer droughts tend to host 
individuals and populations with increased levels of homozygosity.

The optimal covariance structure was a mixture of the possible structures, but with an overriding dendritic 
model (tail-up or tail-down) across most genetic estimators (Table 2, Fig. 3). The dominant covariance structures 
were the tail-up for Ae and HL, (47.9% and 75.4% explained variation, respectively); the tail-down for Fis and Ho 
(56.6% and 70.3% explained variation, respectively) and the Euclidean for uHe (64.5% of the variation explained).
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Geostatistical modelling: Multiscale drivers of genetic diversity. Overall, the retained covariates 
together explained between 6 and 30% of the genetic variation at the population level for all genetic metrics with a 
strong hydrologic and climatic component (Table 2, Fig. 3). The percentage of residual variation corresponding to 
the covariance functions (tail-up, tail-down) accounts for most of the remaining variation. The nugget (variability 
that cannot be explained by the distance between observations, i.e. the unexplained variation) represented a low 
(≤10%) percentage of the variation. For all population-level estimators (Ae, Fis, uHe, Ho), autocovariance models 
captured intermediate-scale spatial patterns with spatial ranges of 0.2–20 km. For Ae and Fis, the covariance mix-
ture also captured large-scale patterns of variation (ranges >100 km) (Table 2).

At the individual level, most of the residual variation corresponds to dendritic structures that fitted a tail-up 
model with a range close to 0 m in the best model for the HL (Table 2, Fig. 3). This result indicates that nearby 
individuals do not show increased HLs compared to individuals randomly drawn from distant locations in the 
population. In addition, the tail-down covariance structure captures 14.2% of the variation, and it detected a 
fine-scale structure (range = 11.9 m). The nugget represented 9.1% of the variability.

Discussion
The amount of genetic diversity and its spatial distribution within and among populations reflect complex inter-
actions between intrinsic and extrinsic factors such as phenology, dispersal, topography and flood regime2. Lately, 
numerous landscape models have been pursued to disentangle the effects of different ecological and spatial fac-
tors in determining the distribution of the genetic diversity across complex landscapes23; however, these models 
fail to capture dendritic structures that characterize riparian habitats. SSN models proved to be suitable for quan-
tifying the impact of environmental factors on shaping spatial genetic patterns, the spatial scale they operate, and 
their dominant direction (upstream, downstream or both).

The Iberian endemic Salix salviifolia displayed higher levels of genetic diversity (uHe) compared to other Salix 
species15,20, which is coherent with mating processes that favour outcrossing and suggests a relatively good genetic 
status in this species, at least under the current environmental conditions. Migration history might have modu-
lated the current genetic patterns of these populations, as favourable microclimatic conditions within protected 
river valleys in the Iberian Peninsula offered refugia for tree species during glaciations24. The prevalence of private 
alleles may be interpreted as genetic evidence for persistence of S. salviifolia in the southern part of the peninsula 
during the last glacial period, as shown for other riparian species24.

The movements of propagules or individuals that inhabit riparian habitats are confined to the river flow, either 
upstream, downstream or both. Our results showed that a large proportion of the residual genetic variation is 
spatially structured within the basin (i.e., once the effects of ecological factors have been removed). Furthermore, 

Figure 1. (A) Hypothesis tested at different spatial scales for the main drivers of genetic patterns in Salix 
salviifolia populations. At the across-region scale, we expected higher genetic diversity in optimal climatic 
conditions. At the within-basin scale, we expected asymmetrical dispersal (“drift hypothesis”) resulting in 
the downstream increase in genetic diversity. (B) Within-basin spatial relationships (flow-connected/flow-
unconnected) of the spatial stream-network model functions (tail-up/tail-down) adapted from Peterson & Ver 
Hoef7. The moving-average functions (MAF) for the tail-up (a, c) and tail-down (b, d) relationships are shown 
with varying widths representing the strength of the influence for each potential neighbouring site. Spatial 
autocorrelation occurs between sites when the MAF overlaps (grey), otherwise no spatial autocorrelation is 
considered (black). The black dots represent sites within the dendritic network.
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by applying SSN models, we evidenced that the dendritic spatial structure accounted for majority (70–89%) of 
the variation observed within basins for most estimators of genetic diversity. Therefore, overlooking the dendritic 
structure of riparian habitats could lead to a misunderstanding of the main ecological drivers that underlie the 
biodiversity patterns within basins.

The distribution of the genetic diversity across populations is strongly determined by dispersal and gene flow 
patterns18. In Salix, the potential sources of gene flow are the movement of pollen grains, seeds and vegetative 
propagules. Seeds are dispersed by wind (upstream, downstream) and water (mainly downstream with some 
possible upstream events caused by massive flooding)4. The dendritic structure of a basin imposes that the volume 
of water that flows through the river channel (i.e., river discharge) increases downstream. Our models showed 
a positive correlation between river discharge and the genetic diversity level that also tended to increase down-
stream. In addition, the tail-up model explained significant proportions of Ae and uHe spatial variation. Both 
results suggest an important role of hydrochory in mobilizing propagules, as expected based on the drift hypoth-
esis4. However, our models also noted a significant role of upstream processes that counteracted the dominant 
downstream movement. For example, the tail-down explained meaningful proportions of Ae, Fis and Ho, and the 
Euclidean model explained large proportion of uHe spatial variation. Upstream seed dispersal has been identified 
in other riparian species associated with zoochorous and human dispersal22. Salix spp. are wind and insect polli-
nated, and these vectors are reported to generate strong genetic patterns that follow dominant wind directions. In 
river valleys, topography and wind channelling constrain prevailing winds through the hydrographic network25, 

Figure 2. Study area within Europe (A), the three studied regions of Tua, Zêzere and Algarve (B) and sampled 
populations within hydrographic networks (C–E).
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which is a phenomenon that can permit upstream gene movement, as reported in other Salicaceae species21. 
Despite the ability of Salicaceae to resprout from vegetative propagules26, the reduced presence of clones in our 
study discards the notion that they significantly contribute to natural S. salviifolia regeneration.

The population genetic diversity estimators (Ae, Fis, uHe, Ho) displayed patterns of spatial autocorrela-
tion mostly at the intermediate scale (i.e., 1–100 km sensu Fausch27) through flow-connected (tail-up) and 
flow-unconnected (tail-down) spatial relationships (Fig. 1, Table 2). The ranges of these spatial autocorrelation 
structures suggest that genetic connectivity among S. salviifolia populations mainly occurs at the intermediate 
scale (<20 km), which is likely associated with the interaction of the Salix life history with the formation and 
distribution of hydrogeomorphological landforms (i.e., channel sediment deposits) where the species recruit and 
colonize2,28. Indeed, key biological and physical processes in riparian systems, such as metapopulation dynamics 
and disturbance regimes, are thought to operate at intermediate scales27.

Interestingly, Ae showed large-scale spatial autocorrelation (range = 154.6 km) that included flow-unconnected 
relationships among populations. This result suggests that within hydrographic networks, even remote popula-
tions would eventually become connected, possibly integrating a long-term effect of successive pollen and seed 
dispersal events or through rare long-distance pollen-mediated dispersal events4, as in other Salicaceae species21.

The HL revealed a limited influence of distance among individuals where only 14.2% of the residual variation 
in the HL exhibited fine-scale patterns of autocorrelation (range = 11.9 m). The fine-scale spatial aggregation may 
be primarily due to spatially structured variables, such as microenvironmental heterogeneity. Indeed, fine-scale 
soil-moisture gradients within riparian habitats are critical for the survival of Salix seedlings when the water level 
decreases after natural flooding events29. This finding is consistent with the significant correlation of summer 
drought with the HL, suggesting that increased aridity may constrain gene flow within basins as drought events 
become more extreme.

Population Region n Ae uHe Ho Fis P1 P2

1 TUA 18 4.4 0.74 0.71 0.026 ns ⋅

2 TUA 54 5.5 0.79 0.79 −0.016 ns ns

3 TUA 18 5.6 0.73 0.74 −0.003 ns ns

4 TUA 52 5.4 0.76 0.71 0.058 ns ***

5 TUA 18 5.5 0.75 0.71 0.062 ns ***

6 TUA 20 4.4 0.76 0.75 −0.007 ns ns

7 TUA 19 4.0 0.72 0.74 −0.053 ns ns

8 TUA 15 3.3 0.67 0.81 −0.252 *** ns

9 ZEZ 22 4.6 0.75 0.78 −0.063 ns *

10 ZEZ 54 5.7 0.78 0.83 −0.085 * ns

11 ZEZ 18 4.6 0.77 0.78 −0.059 ns ns

12 ZEZ 55 4.5 0.76 0.82 −0.094 ** ns

13 ZEZ 15 4.6 0.73 0.75 −0.073 ns ns

14 ZEZ 18 5.1 0.78 0.79 −0.046 ns ns

15 ZEZ 15 4.7 0.78 0.74 0.012 ns ⋅

16 ZEZ 15 3.6 0.67 0.68 −0.065 ns ns

17 ALG 6 3.7 0.73 0.68 0.034 ns ns

18 ALG 6 3.8 0.74 0.65 0.019 ns **

19 ALG 30 4.1 0.71 0.74 −0.029 ns ns

20 ALG 10 5.2 0.79 0.57 0.260 ns ***

21 ALG 10 4.1 0.77 0.82 −0.121 ns ns

22 ALG 10 3.8 0.72 0.67 −0.002 ns **

23 ALG 20 4.3 0.74 0.74 0.021 ns ns

24 ALG 10 4.1 0.71 0.67 0.009 ns ns

25 ALG 26 4.1 0.66 0.65 0.061 ns ns

26 ALG 10 4.3 0.76 0.75 −0.002 ns ns

27 ALG 14 3.9 0.74 0.85 −0.216 ** ns

28 ALG 10 3.9 0.72 0.60 0.139 ns **

29 ALG 8 3.4 0.71 0.67 −0.021 ns ns

30 ALG 9 2.9 0.62 0.70 −0.135 ⋅ ns

Table 1. Summary of genetic diversity estimators per population. Genetic diversity estimated per population as 
the mean effective allelic richness (Ae), expected unbiased heterozygosity (uHe), observed heterozygosity (Ho), 
and inbreeding coefficient (Fis). Fis values significantly different from zero at p < 0.05 are highlighted in bold. 
The p-values indicate the significance level of a Hardy-Weinberg test to test for heterozygotes excess (P1) and 
heterozygote deficit (P2) across all loci (ns, non-significant; ⋅p-value < 0.1; *p-value < 0.05; **p-value < 0.01; 
***p-value < 0.001).
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Spatial stream networks have been previously applied to investigate biodiversity patterns in riparian insect 
communities13. Here, we have extended the application of SSN models to identify the ecological drivers that 
underlie population genetic diversity patterns within basins and quantify how the impacts of these drivers change 
across an environmental gradient. The integration of these models with increasingly available datasets that sur-
vey different community compositions based on environmental DNA can be used to map biodiversity hotspots 
and depict connectivity networks. This application would assist in decision making to prioritize the conserva-
tion of biodiversity hotspots and can be applied to draw mitigation and restoration measures to enhance gene 
flow among disconnected populations1. In addition, quantifying connectivity changes after adding or removing 
multiple barriers is a top concern of catchment planning30; thus, simulating alternative scenarios is a promising 
application of the stream-network approach for riverine species management. Simulation techniques can also 
be used to optimize sampling strategies for different purposes in stream networks or provide recommendations 
about sample sizes needed to achieve study objectives. These applications can significantly aid in the design of 
efficient monitoring strategies at relatively low costs10.

Dependent variable Fixed effects parameters Covariance parameters

Level Y Environmental Factor Estimate Std Error p-value Name varcomp range(m)

Population Ae DA 0.4768 0.1733 0.0105 Spherical.TU 0.4790 8287.01

ALT 0.0010 0.0008 0.2138 LinearSill.TD 0.2377 154617.24

R2 = 0.2337 Nugget 0.0496

Population Fis BIOC.TH 0.0002 0.0001 0.0341 Mariah.TU 0.1304 14505.31

DA −0.0086 0.0056 0.1336 LinearSil.TD 0.5663 116814.96

Exponential.EUC 0.0016 1855642.4

R2 = 0.1956 Nugget 0.106

Population uHe DA 0.0152 0.0111 0.1810 Exponential.TU 0.2016 209.89

Exponential.TD 0.0001 88792.04

Gaussian.EUC 0.6454 17820.05

R2 = 0.0629 Nugget 0.0901

Population Ho ALT 0.0002 0.0001 0.0061 LinearSill.TD 0.7025 7257.30

DA 0.0280 0.0175 0.1211 Exponential.EUC 0.0000 3594.72

R2 = 0.2970 Nugget 0.0004

Individual HL BIOC.SO −0.0023 0.0008 0.0039 Exponential.TU 0.7537 0.00

LinearSill.TD 0.1416 11.87

R2 = 0.0137 Nugget 0.0908

Table 2. Final set of covariates (DA-hydrologic index; ALT-altitude, BIOC.SO-summer ombrothermic index; 
BIOC.TH-thermicity index) and covariance structures for the best models retained for each response variable 
at the population (Ae, number of effective alleles; Fis, inbreeding; uHe, expected unbiased heterozygosity; 
Ho, observed heterozygosity) and at the individual level (HL, homozygosity level). The R2 values indicate the 
percentage of variation explained by environmental factors, while varcomp indicates the percentage of variation 
explained by each covariance structure within the final model mixture, and the nugget (i.e. the unexplained 
variation) that accounts for the variability that occurs at a scale finer than the closest measurements, as well as 
measurement error. The range represents the distance after which the spatial autocorrelation becomes zero.

Figure 3. Percentage of genetic variation explained by covariates (environmental factors) and by the different 
covariance structures within the final model mixture for the analysed genetic estimators at the population (Ae, 
number of effective alleles; Fis fixation index; uHe (unbiased expected heterozygosity; Ho, observed heterozygosity) 
and the individual (HL, homozygosity level) level. The nugget represents the unexplained variation.
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Overall, refining our capacity to describe, predict and simulate the amount and distribution of genetic 
diversity harboured by riparian populations of foundation species can improve adaptive management through 
cost-effective monitoring designs for conservation31. Preserving their potential for future adaptation will enhance 
the resilience of riparian population networks with cascading effects on associated biological communities, eco-
system functions and services, contributing to ecologically successful river management.

Materials and Methods
Field sampling. In the summers of 2010–2012, we conducted field surveys in riparian forests in 24 river val-
leys located in the Western Iberian Peninsula, across eight independent catchment systems: Tua-Douro, Zêzere-
Tagus, Aljezur, Seixe, Odiáxere, Arade, Quarteira, and Guadiana (Fig. 2). These basins are spatially distributed 
within three regions: the Tua and Zêzere regions, which exactly match the Tua and Zêzere river basins, respec-
tively, and the Algarve region, which includes six basins. The study area spans from the southernmost distribution 
of S. salviifolia and largely covers its latitudinal range and approximately one-third of its longitudinal range. We 
sampled 30 sites (each site representing a population) totalling 605 trees that were georeferenced with a subme-
tre precision handheld GPS (Ashtech MobileMapper100). We sampled 15 or more individuals along the river 
reaches, and we collected as many individuals as possible (up to six) in low-density reaches to survey a similar 
sample area per site. We collected six healthy leaves per tree, and we stored them in paper bags containing silica 
gel until further work in the lab.

Genotyping of biological samples. Genomic DNA was isolated from the dry leaf tissue per individual 
following standard methods (Supplementary Information S3). The samples were genotyped based on twelve pol-
ymorphic microsatellite markers; seven primers identified for S. salviifolia32 and five optimized from S. burjat-
ica (cv. Germany)33 (Supplementary Information S3). We used samples from population 2 (N = 54) to test the 
performance of this set of polymorphic markers. Specifically, we examined the genetic corelation among loci 
(Supplementary Table S4A), tested for genotypic linkage disequilibrium (Supplementary Table S4B), and tested 
the ability of markers to discriminate among individuals (Supplementary Table S4C). Moreover, we estimated 
the expected number of individuals with the same genotype for an increasing number of loci (Supplementary 
Table S4D), estimated the probability of identical genotypes arising from sexual reproduction and random mating 
(Supplementary Table S4E), and estimated the incidence of null alleles and scoring error with a subset of N = 20 
blind duplicated samples. Across loci, we detected low incidences of null alleles (2*10−4) and scoring errors 
(2*10−3) by applying Microchecker 2.2.334. We also applied pedant 1.035 to duplicated samples to estimate the 
per-allele maximum likelihood allelic dropout (ε1 = 0.2, CI = [0.00–0.5]) and false alleles (ε2, CI = 0.1 [0.00–0.3]). 
Our study species exhibits clonal reproduction; therefore, we used the R package Rclone36 to identify identical 
genotypes, estimate the probability that they have been generated by independent sexual reproduction events, 
and evaluate the discriminative power of our 12 polymorphic markers to identify unique multilocus genotypes 
(Supplementary Tables S4F, S4G). We identified 5 clones out of 605 individuals.

environmental data. Based on previous studies14, we expected that spatial factors (Euclidean and den-
dritic spatial structures), bioclimatic variables (winter cold stress, summer drought stress), altitude and hydrol-
ogy would determine the spatial distribution of the genetic variation of S. salviifolia at different spatial scales. 
We calculated environmental variables based on the GPS coordinates of the populations and individuals. We 
used two bioclimatological indices: the thermicity index (BIOC.TH) depicts the thermal envelope where plant 
species thrive, while the summer ombrothermic index (BIOC.SO) estimates the intensity of summer drought37. 
Geographic and hydrological variables were inferred from a digital elevation model (DEM) downloaded from 
the Shuttle Radar Topography Mission (SRTM) 90 m Digital Elevation Database v4.138. We projected the Iberian 
Peninsula territory to the Lambert azimuthal equal-area projection, which guarantees equal pixel areas (indis-
pensable for the hydrologic calculations), and simultaneously interpolated it to 35 m resolution. The altitude 
(ALT) at each site was extracted from the produced DEM. Then, to estimate the potential discharge, we derived 
a hydrographic network and computed a hydrologic index (DA) consisting of the drainage area of each site that 
was weighted by the total annual precipitation (P) in its contributing area. This hydrologic index distinguishes 
catchments presenting similar dimensions but occurring in regions with different P, providing a surrogate for 
total discharge.

spatial data. We generated the spatial data necessary for geostatistical modelling in ArcGIS 9.239 using the 
Functional Linkage of Water Basins and Streams (FLoWS) and the Spatial Tools for the Analysis of River Systems 
(STARS) geoprocessing toolboxes. We applied the FLoWS toolset40 to construct a landscape network, which is a 
spatial data structure that stores the topological relationships between nodes (stream confluences) and directed 
edges (stream segments). For the analyses at the individual level, we incorporated the position of each sampled 
tree into the landscape network. For the analyses at the population level, we used the position of the central tree 
to map each site. Based on the landscape network, we used the STARS toolset to generate41 (1) hydrologic dis-
tances, (2) weights for converging stream tributaries thought to have stronger influences downstream, and (3) the 
SSN objects that contain feature geometry, attribute data, and topological relationships of the dataset, which are 
intended for geostatistical modelling within the SSN R package42.

Estimates of genetic diversity and differentiation. To gain a comprehensive depiction of the genetic 
structure observed per study region, we calculated two types of estimators43: (i) fixation measures (Fst, Phist, Gst, 
G’st); and (ii) allelic differentiation measures (DJost). Given the controversy about the ability of Fst to quantify genetic 
structure44,45 when applying highly polymorphic genetic markers we opted for reporting four fixation measures 
(Supplementary Information S4) as implemented in GeneAlex 6.546. We tested for Hardy-Weinberg equilibrium 
(HWE) and linkage disequilibrium (LD) at each site by using GENEPOP47 and, for multiple tests, we applied the 
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B-Y method48, which is a modified Bonferroni method recommended for conservation genetics studies49. We 
estimated the following population genetic diversity metrics by applying the R package gstudio50: observed and 
expected unbiased heterozygosity (Ho and uHe, respectively), mean number of alleles (AR), effective number of 
alleles (Ae), and mean number of private alleles (PA). We used INEST 2.051 to estimate the Fis per population while 
considering the frequency of null alleles. We calculated the homozygosity level (HL) for each individual as imple-
mented in the adegenet R package v.3.2.2.52. HL works as a proxy of individual inbreeding and it provides insights 
on mating patterns at the population level that are expected to change across an environmental gradient, with 
increased HL levels expected in small populations and those poorly connected by water flow, partly due to genetic 
drift. Different components of the genetic diversity respond to the impact of ecological factors at a different pace; 
thus, allelic diversity typically changes fast after an ecological perturbation, whereas uHe and Ho show slow-paced 
changes53. Then, we evaluated the impacts of spatial and ecological factors on genetic diversity and structure by 
choosing a variety of estimators at the population level (Ae, Ho, uHe, Fis) and the individual level (HL).

Geostatistical modelling. We first performed an exploratory analysis to check for multicollinearity among 
environmental variables by inspecting the variance inflation factor (VIF). We retained all variables because they 
showed VIF values <2, suggesting no or little multicollinearity among study variables. We then modelled five 
genetic diversity estimators (Ae, Ho, uHe, Fis, HL) with spatially explicit stream-network models by applying the 
R package SSN42.

Each SSN model accommodates a mixture of covariances that capture multiple spatial relationships in the 
dendritic network, including clustered measurements10. This method allows the data to determine the vari-
ance components that have the strongest influence rather than making an implicit assumption about the spa-
tial structure7. Stream-network models accommodate two classes of autocovariance models that use hydrologic 
rather than Euclidean distance and are referred to as tail-down and tail-up models7. These models are based 
on a moving-average construction; so, spatial autocorrelation between sites occurs when their moving-average 
functions overlap (Fig. 1). A flow-connected spatial relationship results from water flowing from the upstream to 
the downstream location. A flow-unconnected relationship exists when two locations share a common junction 
downstream but are not connected by flow. In the tail-down models, the moving-average function (MAF) points 
in the downstream direction and therefore, spatial correlation is permitted between both flow-connected and 
flow-unconnected locations. In contrast, the MAF for the tail-up model points upstream, and therefore, spatial 
correlation is restricted to flow-connected locations (Fig. 1). A given SSN model is fitted using a mixed-covariance 
structure that combines two or more autocovariance models that may include the tail-up and tail-down autoco-
variance models and a traditional model based on Euclidean distance7.

We used a two-step model selection procedure as in Frieden et al.13 to select the model containing the most 
suitable covariance structure along with a set of environmental variables (covariates) that better explained the 
observed genetic patterns. First, we fixed the covariance structure and focused on covariate selection through an 
exhaustive screening of the candidate models that resulted from every linear combination of covariates. In this 
stage, we applied maximum likelihood to estimate model parameters, and we used Akaike’s information criterion 
for covariate selection, which prevents over-fitting of the model54. Then, we fixed the selected covariates and 
compared every linear combination of tail-up, tail-down and Euclidean covariance structures, testing four differ-
ent autocovariance functions for each model type: the spherical, exponential, Mariah and linear-with-sill func-
tions for tail-down and tail-up models; and the spherical, exponential, Gaussian and Cauchy functions for the 
Euclidean model as recommended by Peterson & Ver Hoef7. Overall, we tested 125 models (see Supplementary 
information S5 for details). For each response variable, we used restricted maximum likelihood55 with the 
root-mean-square-prediction error for the observations and the leave-one-out cross-validation predictions to 
select the final model54. Once we identified the final model for each response variable, we examined the influence 
of each variance component (tail-up, tail-down, Euclidean and nugget effect)13.

Data Availability
Microsatellite genetic data are registered at GenBank (http://www.ncbi.nlm.nih.gov/genbank/), and the Gen-
Bank accession numbers are provided in Supplementary Information S3. Bioclimatic and hydrologic variables are 
available from http://home.isa.utl.pt/tmh/. The digital elevation model (SRTMv4.1) was downloaded from http://
www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1. STARS and FlOWS toolboxes for ArcGis, 
used to generate spatial data, were downloaded from “Tools for Spatial Statistical Modeling on Stream Networks” 
in the website https://www.fs.fed.us/rm/boise/AWAE/projects/.
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