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A B S T R A C T

The River Continuum Concept (RCC) provided one of the first unifying frameworks in fluvial ecosystem theory.
While the RCC predictions held in many empirical tests, other research highlighted how the model overlooked
sources of heterogeneity at different scales e.g. the effects of tributaries. Disentangling these effects requires an
assessment of variation in key ecosystem variables over the longitudinal and lateral dimension of river networks.
However, so far, no empirical tests have employed a spatially explicit statistical approach to this assessment.

Here, we show how recently-developed spatially-explicit models for river networks can be used to test pre-
dictions of the RCC whilst taking into account cross-scale sources of heterogeneity. We used macroinvertebrate
data from 195 monitoring sites from 1st to 4th order streams spread across the Adige River network (NE Italy).
We compared theoretical expectations with empirical semivariograms that incorporated network topology to
assess the continuity and patchiness in the proportion of invertebrates functional feeding groups (FFG) over
Euclidean and in-stream distances. Geostatistical stream-network models were then used to quantify the influ-
ence of the longitudinal gradient relative to local-scale water quality and land-use drivers, while accounting for
network spatial autocorrelation.

Patterns in the semivariograms based on flow-connected relationships were characterised by a nested
structure associated with heterogeneity at multiple scales. Therefore, the longitudinal variation in FFG was
better described by a patchy discontinuum rather than a gradient, implying that both in-stream processes and
landscape factors influenced stream ecosystem function. The overall shift in FFG along the longitudinal profile
was generally consistent with the RCC predictions, although the best models often included water quality and
local land-use predictors. Stream-network models further indicated that up to 90% of residual variation
(mean=50%) was accounted for by spatial autocorrelation, especially among flow-connected communities.
Accounting for such autocorrelation not only improved model performance relative to non-spatial approaches,
but indicated that most flow-connected communities were spatially correlated to some extent. This has clear
implications for the assessment of the RCC tenets. This is the first test of the river continuum model that ex-
plicitly accounted for stream network topology and autocorrelation. Results indicated that in the Adige River,
macroinvertebrates feeding groups exhibited heterogeneity along the longitudinal gradient, which appeared
punctuated by local habitat transitions. Such transitions could be associated with artificial impoundments that
alter the natural continuity of river processes, and we advocate the use of spatially explicit network models to
test the RCC in more natural contexts.

1. Introduction

The distribution and diversity of aquatic organisms in river net-
works is predominantly influenced by the downstream direction of
water flow and by the physical changes occurring along the long-
itudinal gradient (Townsend, 1996; Ward, 1989). This concept is at the

heart of early conceptual models aimed at idealizing the structure and
function of communities along river systems such as the river zonation
(Hawkes, 1975; Illies, 1961) and the River Continuum concepts
(Vannote et al., 1980). In particular, the River Continuum Concept
(RCC) provides a useful conceptualisation of river networks as open
ecosystems characterised by a continuum of physical changes and
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associated ecological responses, in which the type and availability of
organic matter, the structure of invertebrate communities and the
partitioning of resources shift gradually along the longitudinal gradient.
Although the RCC is a simplification that overlooks the patchy nature of
river systems associated with local geology, tributary effects and lateral
floodplain inputs (e.g. Thorp et al., 2006), it remains one of the most
influential concepts in river science (4.949 citations as of Match 2019;
ISI Web of Science database). One of the key strengths of the RCC is that
it proposes testable hypotheses regarding changes in stream metabolism
(P/R), the main trophic basis of production (carbon sources) and the
consequent adjustment of consumer communities (functional feeding
groups; Cummins, 2016)

Empirical tests of the RCC provided support for its predictions,
especially in temperate North American rivers (Curtis et al., 2018;
Hawkins and Sedell, 1981; Minshall et al., 1985, 1983; Rosi-Marshall
and Wallace, 2002; Webster, 2007), and more recently in different
biomes and climatic zones (Greathouse and Pringle, 2006; Jiang et al.,
2011; Tomanova et al., 2007). Studies that have criticised the RCC
generally emphasise the local heterogeneity of river systems (Perry and
Schaeffer, 1987; Statzner and Higler, 1985; Townsend, 1989). For in-
stance, Pool (2002) argued that local factors such as reach geomor-
phology or bedrock geology could override longitudinal gradients, so
that stream communities in a given segment may be just as similar to
communities far up or downstream as they are to those in neighbouring
stretches. The issue of quantifying the relative contributions of ‘global’
river gradients and local heterogeneity is currently acknowledged (e.g.
Thorp, 2014), and may in part stem from the methodological challenges
of describing patterns and testing alternative hypotheses in dendritic
networks. Standard statistical methods are unable to handle the com-
plexities resulting from linear river reaches arranged into complex
branching networks and the influence of directional water movement
(Peterson et al., 2013). Spatial autocorrelations are, in fact, particularly
complex in river systems as their intensity varies with the connectivity
and directionality within the network (Isaak et al., 2014). In this case,
models based on Euclidean distances, for instance, might be insufficient

to represent the unique spatial relationships found in river systems
(Peterson et al., 2013). These considerations are particularly relevant
for the RCC where one fundamental aspect of the continuum is that
ecological processes in downstream reaches are linked to those occur-
ring upstream (e.g. Minshall et al., 1985). Moreover, critics to the
continuum model emphasised how river systems display heterogeneity
at multiple spatial scales besides the longitudinal dimension (Perry and
Schaeffer, 1987; Poole, 2002). It is therefore surprising that none of the
previous empirical tests of the RCC model employed any spatially ex-
plicit approach that could either account for autocorrelation or utilise
the spatial variance as part of the study.

Fortunately, recent advances in the field of geospatial statistics
adapted to dendritic networks provide the tools to quantify the main
scales of spatial variation within river networks and allow for more
rigorous tests of hypotheses such as the RCC (Peterson and Hoef, 2010;
Ver Hoef and Peterson, 2010). Two developments in particular are
valuable for assessing RCC. The first is the generalisation of the stan-
dard geostatistical tool, the semivariogram, to river networks (called
Torgegrams; Peterson et al., 2013). Variograms quantify spatial struc-
ture and can reveal the dominant scales of environmental processes
(Cressie, 1993). Specifically, semivariograms depict the autocorrelation
of a given variable calculating the semivariance between pairs of ob-
servations for a range of watercourse distance lags (h) as:
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where N(h) is the number of observation pairs separated by distance lag
h, z(si) is the value of the variable in location si, and z(si+h) is the value
at distance h from si.

The shapes of the semivariograms can be compared with theoretical
expectations reflecting hypothesised spatial structures and dependency
(Fig. 1).

In river networks, semivariograms can be calculated based on three
spatial distances among sampling locations: flow-connected (water-
course distance between locations connected by water flow), flow-

Fig. 1. Hypothetical distribution of a
variable mapped along a river network
(e.g. proportion of one feeding group
in the community) and the associated
semivariograms. In A), there is no
spatial structure in the variance at the
sampled scale. The intercept of the
semivariance function (called
‘nugget’) represents the variance due
to sampling error or variation at scales
finer than the shortest separation dis-
tance. In B), spatial dependency at
large-scale reflects a single dominant
gradient of variation from upstream to
downstream. The values where the
semivariance function reaches a pla-
teau (called ‘range’), indicates the
distance at which values are con-
sidered independent from each other.
In C), small-scale heterogeneity re-
flects patchiness and discontinuity
where, for instance, factors influen-
cing the variable operate at fine scales,
and the range is reached at shorter
distances. In D), nested heterogeneity
reflects a combination of small-scale
patchiness embedded in a larger-scale
gradient (with multiple inflection
points). In this case, patterns are in-
fluenced by factors operating at mul-
tiple scales. Figure is re-drawn after
McGuire et al. (2014).
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unconnected (watercourse distance between any locations in the net-
work) and Euclidean. Specifically, semivariograms of flow-connected
relationship describe the effects of hydrologic transport and upstream
dependence and can thus indicate whether the longitudinal gradient
represents the dominant scale of variability in the distribution of carbon
sources and consumers (a key tenet of the RCC). Conversely, patterns
from the semivariograms based on flow-unconnected and Euclidean
relationships can inform on the influence of adjacent tributaries and
wider landscape properties independent of network position, respec-
tively (McGuire et al. 2014). Thus, when used deductively, empirical
spatial patterns can help formulate hypotheses regarding the main
processes influencing the distribution of the variables of interest
(McIntire and Fajardo, 2009).

The second major development is stream-network models that ex-
tend conventional linear models to account for the branching structure
of the network and the directionality of water flow, as well as the 2-D
terrestrial matrix in which the network is embedded. Therefore, they
can simultaneously account for both along-channel and across catch-
ment (Euclidean) patterns of autocorrelation (Ver Hoef and
Peterson, 2010). Notably, equivalent models that assume different
types of spatial correlation (e.g. flow-connected, flow-unconnected and
Euclidean, the latter ignoring the network structure) can be compared
to assess alternative hypotheses regarding spatial dependency.

In this study, we first used semivariograms based on Euclidean and
stream-network distances (Torgegrams) to visualise patterns and scales
of variability in the distribution of macroinvertebrate functional
feeding groups (FFG) along the longitudinal river gradients (consistent
with RCC), and across the whole catchment in a large Alpine river
network. We focussed on invertebrate FFG because their variation over
the continuum represents a central prediction of the RCC, linking basal
carbon sources to consumer communities. Moreover, macroinvertebrate
data are routinely collected for bio-monitoring purposes and their
feeding habits are well known (Schmidt-Kloiber and Hering, 2015).
Subsequently, we used geostatistical stream-network models to quan-
tify the importance of the longitudinal gradient relative to local scale
habitat variables, while accounting for spatial autocorrelation within
the network. Whilst previous studies have considered the shift of in-
vertebrate FFG along the river gradient (Greathouse and Pringle, 2006;
Grubaugh et al., 1996; Jiang et al., 2011; Minshall et al., 1985), this is
the first time a geostatistical approach has been employed that speci-
fically accounts for spatial autocorrelation in dendritic networks.

The RCC was originally based on forested temperate high-relief
basins in North America. While the Adige River conforms to these as-
pects, its longitudinal continuity is altered by numerous hydropower
dams distributed over the basin (Chiogna et al., 2016a; Larsen et al.,
2019), which are expected to alter the natural continuity of river pro-
cesses (Hoenighaus et al., 2007; Humphries et al., 2014). Therefore, the
present study should not be considered as a formal test of the validity of
the RCC model. Rather, we propose a statistically robust approach to
test its predictions to a case study that well represents many Alpine
river catchments across Europe and North America.

2. Study area and dataset

The Adige River (Fig. 2) is the third largest river basin in Italy,
covering more than 12,000 km2. Most of the Adige River drains the
Alpine region with elevation reaching 3400m a.s.l. Climate is typically
Alpine with dry winters, snow and glacier melt in spring and rather
humid summers and autumns (Lutz et al., 2016). Since the beginning of
last century, more than 30 dams have been built across the whole
network (i.e. dams are distributed over 1st to 4th order streams), mostly
for hydropower generation. These dams have altered the natural flow
regimes of many reaches (Larsen et al., 2019; Zolezzi et al., 2009), and
likely disrupted the natural continuum of sediment and organic matter
transport.

Macroinvertebrate data were collected as part of the institutional

monitoring programmes of the Environmental Protection Agencies of
the Provinces of Trento and Bolzano. Sampling occurred between 2009
and 2014 in 195 reaches from 1st to 4th order streams (between 130 and
1980m a.s.l.). Sites were sampled multiple times in different seasons. In
any given year, between 91 and 161 sites (median=113) were in-
cluded. The number of samples per site ranged between 2 and 12 (mean
= 4.8), but most sites (80%) were sampled 3–9 times, mostly in spring
and autumns. Macroinvertebrate densities were averaged to represent
the typical community composition of a reach and remove seasonal
effects. Sampling followed the multi-habitat approach where 10-re-
plicate Surber samples were distributed over a 20–50m reach in pro-
portion to the different microhabitat types present (Hering et al., 2004).
Macroinvertebrates were identified to genus and family level
(Appendix A).

3. Methods

3.1. Ecological trait and local environmental data

Information about invertebrate feeding traits was gathered from the
online database on the ecology of freshwater organisms (www.
freshwaterecology.info; Schmidt-Kloiber and Hering, 2015). To test
the RCC predictions, we considered the following feeding groups: gra-
zers, shredders, gatherers, filterers and predators. A fuzzy approach was
used to assign each taxon an affinity score for each feeding group, thus
avoiding restricting taxa to a specific feeding group and effectively
taking into account intra-specific variability (Chevenet et al., 1994).
Affinities at family and genus levels were obtained by averaging scores
over the species known to occur in the region. Affinity scores were then
standardised between 0 and 1 and then weighted by each taxon's re-
lative abundance (using the ‘functcomp’ command within the FD
package in R) to calculate the community-wide proportion of FFG for
each site (Schmera et al., 2014).

To quantify the position along the longitudinal river continuum for
each of the 195 study reaches, a synthetic variable was created using
principal component analysis (PCA) of Strahler stream order, distance
from ‘mouth’ (i.e. most downstream reach), altitude and upstream
catchment area. The first principal component (‘Longitudinal PC1’)
explained c. 60% of the variation and was negatively correlated with
distance from ‘mouth’ and altitude, and positively correlated with
Strahler order and catchment area (Table 1). This PC reflected the
longitudinal position and allowed us to score each sample location over
the network according to a continuous longitudinal gradient that ac-
counted for multiple aspects (Jiang et al., 2011; Tomanova et al., 2007;
Vaughan et al., 2013).

ArcMap 10.5 and the STARS toolset (Peterson and Hoef, 2014) were
used to calculate distance matrices (flow-connected, flow-unconnected
and Euclidean), upstream catchment areas and the spatial weights
needed in the network-models (see below). Shapefiles of the river
network and catchment topography were obtained by the Environ-
mental Protection Agencies of the Provinces of Trento and Bolzano.

Three reach-scale environmental variables were also included in the
analyses. The first two were the proportions of agricultural and forest
land cover within a 1-km buffer around each sampling location as
proxies for allochthonous input and shading, i.e., among the main
contributing factors to the longitudinal gradients in the RCC. The third
variable was the stream water physico-chemical status, expressed by
the WFD (Water Framework Directive, EU 2000/60) LIMeco index
(Livello di Inquinamento dai Macrodescrittori per lo stato ecologico),
which is the official water-quality indicator in Italy. This is a multi-
metric index that scores water quality based on threshold levels for
dissolved oxygen, ammonia and nitrate concentrations and total phos-
phorus (see Azzellino et al., 2015).
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3.2. Semivariograms

Empirical variograms and Torgegrams were compared with theo-
retical expectations (Fig. 1) and used to examine the dominant spatial
scale of variation in the proportion of feeding groups along and across
the river network. For instance, a continuous single scale of variation in
the proportion of a feeding group along the river continuum would
produce variograms like those in Fig. 1B. Conversely, a complete
dominance of local-scale drivers would produce variograms like
Fig. 1C, while a patchy continuum would generate variograms such as
Fig. 1D. Using Euclidean and in-stream distances, the continuity and
patchiness of the spatial patterns can be separately examined over the
2D and longitudinal dimensions of river networks.

Torgegrams were also used as preliminary exploratory analysis to
visually examine the patterns in semivariance between flow-connected
and flow-unconnected site pairs in order to guide the selection of au-
tocovariance function in the subsequent stream-network modelling
(Ver Hoef et al., 2014).

3.3. Stream network models

In a subsequent analysis, we used stream-network models (Ver Hoef
et al., 2014; Ver Hoef and Peterson, 2010) to quantify the importance of
the longitudinal continuum (expressed as the Longitudinal PC1) re-
lative to local-scale environmental factors (i.e. water quality and land-
use) as predictors of FFG proportions. All the spatial data necessary to
analyse stream-network models were generated in ArcMap 10.5 using
the STARS toolset. We accounted for the complex autocorrelation
structure of dendritic networks using Euclidean as well as in-stream
flow-connected and flow-unconnected autocovariance functions.

Stream-network models are variance components models that take
the general form:

= + + + +y Xβ z z z εTU TD E

where y is the response variable vector (here: logit transformed pro-
portion of feeding groups), X is the matrix of covariates (here: long-
itudinal PC1, LIMeco, land-use), zTU+zTD+zE are vectors of zero-mean
random variables with autocorrelation structure based on tail-up, tail-
down and Euclidean functions, and ɛ is the vector of random in-
dependent errors. The tail-up and tail-down autocovariance structures
are moving-average functions that quantify autocorrelation among
flow-connected and flow-unconnected locations, respectively (Isaak
et al., 2014; Peterson et al., 2013). The autocovariance functions can
take different forms, including linear-with-sill, spherical, Mariah and
exponential models (Garreta et al., 2009), but spatial models are gen-
erally robust against their mis-specification (Garreta et al., 2009; Isaak
et al., 2014). Specifically, the tail-up function permits correlation

Fig. 2. Map of the Adige river network in NE Italy (map inset) with the 195 study sites. Color reflects the sites’ score on the first component of a principal component
analysis synthesising the longitudinal gradient, from dark (low order, high altitudes) to light (higher order, lower altitudes).

Table 1
Loadings of the variables on the first Principal Component (‘Longitudinal PC1’)
describing the position of the reaches over the longitudinal continuum.

Variable Loading on the 1st Principal Component

Distance from mouth −0.66
Altitude −0.81
Upstream catchment area 0.80
Strahler stream order 0.72
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exclusively between sites that are flow-connected (sites not connected
are assumed independent) and uses a weighting approach to up- and
down-weight samples that occur upstream of a given location. Here, we
used upstream catchment area as surrogate of discharge for the
weighting procedure. In this case, the moving-average autocorrelation
function is split at confluences so that locations on larger streams have a
stronger influence on downstream communities than locations in
smaller streams (Peterson et al., 2013). The tail-down function allows
correlation among both flow-connected and unconnected samples and
therefore a spatial weighting measure is not necessary (Isaak et al.,
2014). Finally, the Euclidean functions is based on Euclidean distances
as in the traditional spatial statistics methods. Therefore, stream-net-
work models are flexible tools that can incorporate multiple informa-
tion into a single model (Ver Hoef and Peterson, 2010). Moreover, by
allowing errors to be differently autocorrelated over the longitudinal
and lateral network dimension they can indirectly account for the ef-
fects of unmeasured variables that have a spatial pattern (e.g. soil,
underlying bedrock geology).

The values of FFG in the communities were logit-transformed as
recommended for proportional data (Warton and Hui, 2011) and
parameter estimation was based on maximum-likelihood. Covariate
selection was then based on Akaike Information Criterion (AIC;
Burnham and Anderson, 2002), but to describe overall model perfor-
mance we also report root-mean-square prediction errors (RMSPE),
which specifically focus on model predictive power. Overall model
development was a step-wise process. We first included all predictors
(i.e. longitudinal PC1, LIMeco, and local land-use) and the full mixture
of autocovariance functions, which included an exponential tail-up,
tail-down and Euclidean models (Ver Hoef et al., 2014). Then we used a
manual step-wise approach to remove non-significant predictors from
the model. We then refined the spatial component comparing (or re-
moving) different functions for the tail-up, tail-down and Euclidean
autocovariance structure to select the final model with the lowest AIC.
The spatial components were investigated after the selection of cov-
ariates since the model accounts for spatial autocorrelation in the errors
after the effects of the covariates have been removed. Therefore, pat-
terns of spatial dependency are data and model specific and can change
if the covariates change (e.g. Frieden et al., 2014). The efficacy of the
selected spatial model relative to a non-spatial model (ignoring any
spatial autocorrelation) was also evaluated (Isaak et al., 2014). Spatial
stream-network models were run in R (R Core Team, 2017) using the
SSN package (Ver Hoef et al., 2014). For each site, raw data about FFG
proportions, taxon richness, Longitudinal PC1, and geographic co-
ordinates are given as Supplementary Material.

4. Results

4.1. Empirical semivariograms

The semivariograms for Euclidean and flow-unconnected relation-
ships (Fig. 3) were consistent with the presence of a single dominant
spatial structure, with variance progressively increasing with distance
for all FFGs. These patterns resemble Fig. 1B and suggest the presence
of a catchment-wide gradient. Conversely, when accounting for flow-
connections (limiting the modelled spatial autocorrelation to occur only
among sites connected by water flow), nested spatial structures
emerged that are associated with heterogeneity at multiple scales (i.e.
multiple inflection points at different distances, resembling Fig. 1D).
The flow-connected semivariogram is the most relevant to the RCC, and
shows that the spatial distribution of FFG does not vary as a continuum
along the longitudinal gradient, but is highly heterogeneous.

The semivariogram for taxonomic richness was mostly indicative of
a single scale of variation, especially across the lateral dimension of the
stream network (Euclidean and flow-unconnected relationships).
Patterns from the flow-connected relationships exhibited some hetero-
geneity, which was less marked than that characterising FFG, and with

an inflection point evident at larger distances.

4.2. Stream-network models

Stream network models were in broad agreement with the RCC
predictions (Table 2; Fig. 4), with an increase in grazers and gatherers
along the longitudinal gradient, and a decrease in the shredders. Fil-
terers were not related to the longitudinal gradient while, contrary to
the original RCC predictions, predators declined. Taxon richness was
unrelated to the longitudinal profile. However, the relative importance
of local-scale drivers and the influence of spatial autocorrelation dif-
fered substantially among FFG (Table 2).

4.3. Grazers

Grazers were primarily represented by Ephemeroptera (Baetis,
Ecdyonurus) and Chironomidae.

Longitudinal PC1 explained 8% of the variance in the proportion of
grazers in the non-spatial model (i.e. ignoring any spatial autocorrela-
tion), which declined to 5% when autocorrelation was accounted for.
There was no evidence for an effect of land-use or water quality para-
meters.

Overall, the model with the lowest AIC and RMSPE was the spatial
model with a tail-up and Euclidean autocovariance functions. Most of
the residual variation (77%) was captured by the tail-up autocovariance
function at a relatively large scale (estimated range of c.60 km). This
indicates that grazer communities in flow-connected sites exhibited
spatial autocorrelation that accounted for most of their variation along
the network.

4.4. Shredders

The proportion of shredders (mostly represented by Limnephilidae,
Leuctra and Gammaridae) declined along the longitudinal gradient,
which alone explained 17% of their variation in the non-spatial model
and about 16% in the spatial-model.

However, according to the AIC, the best models describing shred-
ders variation did not include the longitudinal gradient, but only the
LIMeco index and the proportion of agricultural land-use for 1-km
buffer around the site. The non-spatial and the spatial models were
equally supported according to the AIC (delta AIC = 0.2), although the
spatial model had smaller prediction errors. In the spatial model, most
of the residual variation was accounted for by a small-scale Euclidean
autocovariance function (estimated range=1.5 km).

These results indicated that, overall, the variation in the proportion
of shredders over the network was mostly influenced by local scale
factors rather than by the longitudinal gradient.

4.5. Gatherers

The proportion of gatherers (represented by Ephemeroptera and
Plecoptera such as Serratella and Amphinemura among others) increased
along the longitudinal river gradient, which alone explained 19 and
18% of their variance in the non-spatial and spatial model, respectively.

According to the AIC, the most supported model was the non-spatial
model that included the longitudinal gradient as well as the LIMeco and
the agricultural land-use. The best spatial model required only a small-
scale tail-up function (estimated range= 8 km), which accounted for
about 17% of the residual variation. Overall, the proportion of gath-
erers appeared determined by both local scale factors and the long-
itudinal position along the network with relatively fine-scale auto-
correlation among flow-connected communities.

4.6. Filterers

Filterers (mostly Hydropsychidae and Simuliidae) did not show any
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significant relationship with the longitudinal gradient in either non-
spatial or spatial models. The most supported model was a spatial
model with only the LIMeco index as covariate and a tail-down (re-
presenting flow-unconnected relationships) and Euclidean auto-
covariance functions, which accounted for a similar proportion of re-
sidual variation. The best non-spatial model included the LIMeco index
and the proportion of woodland in 1-km buffer. Both models however
showed high residual errors (∼1) indicating that the proportion of filter
feeders was influenced by other factors besides the one considered here.
Contrary to what observed in other feeding groups, autocorrelation
among flow-connected filterer communities was not included in the
best spatial models. Rather, autocorrelation occurred mostly across the
lateral dimension of the network as modelled by the tail-down and
Euclidean functions (relationship between locations not upstream-
downstream of each other).

4.7. Predators

Predators primarily included Plecoptera (Isoperla, Perlodes) and
Trichoptera Rhyacophilidae.

In contrast to the RCC prediction, the proportion of predators de-
clined along the longitudinal gradient, which alone explained 29 and
27% of variation in the non-spatial and spatial model respectively. The
non-spatial model was the most supported and included the long-
itudinal gradient and the LIMeco index as covariates, jointly accounting
for 41% of predators’ variation. The spatial model had, however, the
lowest prediction errors and included the same covariates with a large-
scale tail-up (range= 100 km) and Euclidean autocovariance functions

that accounted for 40% of residual variation.

4.8. Taxon richness

Taxonomic richness was not related to the longitudinal river gra-
dient. The best non-spatial and spatial models selected partially dif-
ferent covariates. The most supported model included a tail-up and
Euclidean autocovariance functions that jointly explained c.40% of the
residual variation, while the selected covariates only explained 8%. The
estimated range for the flow-connected autocovariance model was
much longer than the total length of the river network (1000 km), in-
dicating that measurements of invertebrate richness in all flow-con-
nected communities were correlated to some extent.

5. Discussion

The River Continuum Concept is one of the most influential theo-
retical frameworks in river ecology, idealising river network as open
ecosystems in which the physical template and the associated ecological
processes change predictably along the longitudinal continuum. The
RCC immediately stirred a lively debate that stimulated empirical tests
as well as conceptual revisions (e.g. Minshall et al., 1985; Statzner and
Higler, 1985). Critics to the RCC argued that the model overlooked the
importance of lateral floodplain inputs, tributary effects, and fine-scale
heterogeneity, as well as human impacts (Perry and Schaeffer, 1987;
Poole, 2002). As such, ecological processes and functions along the
river network were better described by punctuated discontinuity rather
than by a continuum.

Fig. 3. Empirical semivariograms of the proportion of feeding traits and taxon richness based on Euclidean, flow-connected and flow-unconnected distances. Note the
change in the y-axis. The number of observation pairs from which semivariances are calculated differs among distance lags, with fewer pairs contributing to measures
at larger distances. The semivariance values are expressed as x1000, except for taxon richness.
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Testing the key tenets of the RCC and its caveats rely upon detecting
spatial patterns and discriminating between patterns generated by dif-
ferent processes. So far, however, empirical tests of the RCC - either
supporting or confuting its predictions – have not used spatially explicit
statistical approaches. Ignoring spatial autocorrelation (i.e. non-in-
dependence) among field measurements can produce bias in parameter
estimates and increase the chance of Type I errors (Legendre, 1993). In
addition, patterns of spatial autocorrelation, which are often perceived
as data nuisance, can instead be used to appraise the dominant scale of
variation in a given variable (Dray et al., 2012). This has clear im-
plications for the assessment of the RCC model, or any spatial patterns
in river networks.

Here we combined the analyses of semivariograms with geostatis-
tical stream-network models, to (i) assess the continuity and hetero-
geneity in the proportion of invertebrate feeding groups over the

longitudinal and lateral dimensions of the network and (ii) quantify the
relative importance of the longitudinal gradient vs. local drivers, while
specifically accounting for the spatial autocorrelation inherent to den-
dritic networks.

5.1. Semivariograms

The semivariograms indicated that in the Adige river network var-
iation in feeding groups along the longitudinal continuum (flow-con-
nected relationships) was characterised by nested spatial structures
with multiple inflection points. This supports the hypothesis that
downstream variation in carbon sources and associated consumers were
better represented by a patchy discontinuum rather than by a gradient
(Rice et al., 2001). This implies that both in-stream factors and local-
scale drivers influenced invertebrates’ structure and function along the

Table 2
Variance components for the most supported non-spatial (in grey) and spatial models for FFG and taxon richness. The sign after the covariates indicates the direction
of the effect. The spatial autocovariance functions from stream-network models and their estimated range are also shown. RMSPE= root mean squared prediction
error; AIC=Akaike Information Criterion. Agric. land-use= proportion of agricultural land-use for 1km buffer; Wood. land-use=proportion of forest land-use for
1km buffer.

FFG Covariates Spatial autocovariance function (range) Proportion of variance RMSPE AIC

Grazers Longitudinal PC1 (+) None 0.08 0.31 99.05

Longitudinal PC1 (+) 0.05 0.28 89.74
Mariah tail-up (62 km) 0.77
Exponential Euclidean (91 km) 0.17

Shredders Limeco (+) 0.45 0.54 272.3
Agric. land-use (-)

None

Limeco (+) 0.42 0.51 272.5
Agric. land-use (-)

Linear-with-sill tail-up (101 km) 0.17
Exponential Euclidean (1.5 km) 0.39

Gatherers Longitudinal PC1 (+) LIMeco (-) 0.24 0.29 67.5
Agric. land-use (+)

None

Longitudinal PC1 (+) LIMeco (-) 0.22 0.29 70.0
Agric. land-use (+)

Spherical tail-up (8.4 km) 0.17

Filterers LIMeco (-) 0.037 0.11 514
Wood. land-use

None

LIMeco (-) 0.003 0.99 501
Exponential tail-down (16 km) 0.29
Exponential Euclidean (77 km) 0.22

Predators Longitudinal PC1 (-) LIMeco (+) 0.41 0.49 238.6
None

Longitudinal PC1 (-) LIMeco (+) 0.38 0.47 240
Spherical tail-up (101 km) 0.14
Exponential Euclidean (66 km) 0.26

Taxon richness LIMeco (+) 0.10 4.53 986
Wood. land-use (+)

None

LIMeco (+) 0.08 4.07 970
Agric. land-use (-)

Exponential tail-up (1000 km) 0.29
Exponential Euclidean (157 km) 0.18
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longitudinal gradient. Part of the observed discontinuity in FFG varia-
tion along the Adige River is likely associated with the presence of
artificial impoundments. Hydropower dams are expected to alter the
relative availability of different carbon sources in complex ways, by
changing not only flow patterns, but also temperature regime and water
chemistry (Zolezzi et al., 2011, 2009). For instance, consumers in
reaches below dams often derive their carbon sources from local pro-
duction and riparian input rather than upstream transport, thus
creating a gap in the downstream transition (Hoenighaus et al., 2007;
Poole, 2002). Assessing this, however, would require more detailed
local-scale sampling up- and downstream of impoundments.

Conversely, patterns of variation over the whole catchment, ig-
noring the effects of flow direction, (flow-unconnected and Euclidean
relationships), were consistent with the presence of large-scale spatial
structure, with little or no fine-scale heterogeneity (cf. Fig. 1B). These
semivariograms describe relationships among communities associated
with wider landscape properties (e.g. gradient in underlying catchment
geology; Chiogna et al., 2016b) and showed that similarity in the pro-
portion of feeding groups generally decreased with spatial separation.

The shape of the semivariograms for taxonomic richness indicated a
rather homogeneous distribution, especially over Euclidean and flow-
unconnected distances and with large estimated ranges. Indeed, while
composition is expected to differ with increasing spatial separation
(Soininen et al., 2007), the richness of communities can be similar over
large distances and across a range of conditions (Bonada et al., 2012;
Larsen et al., 2018). Moreover, the variance from flow-connected re-
lationships was always lower than that based on lateral relationships,
indicating that connected communities were generally more similar to
each other in terms of taxon richness.

It is important to note, however, that the shape of the variograms is
influenced by the overall sampling design and especially by the
minimum and maximum distance between samples as well as the dis-
persal capacity of the organisms involved (Ettema and Wardle, 2002).
Therefore, variograms across different studies and/or organisms should
be compared with caution.

5.2. Stream-network models

When significant, the effect of longitudinal gradient explained be-
tween 5% and 29% of variation. However, the best models did not al-
ways include the longitudinal gradient as covariate, as in the case of
shredders and taxon richness. It is well known that many factors across
a range of scales influence macroinvertebrate richness and function
(e.g. Karaus et al., 2013; Richards et al., 1997), with effect that can be
independent from the longitudinal dimension. This was evident here in
the inclusion of local land-use and water quality in most of the sup-
ported models. Moreover, stream-network models indicated that FFG
exhibited predictable spatial patterns that could not be accounted for by
local variables with substantial autocorrelation especially among flow-
connected communities. Taken together the autocovariance functions
explained between 17% and 94% of residual variation with a mean of
50%. That is, half of the variation in the proportion of feeding groups
was, on average, accounted for by spatial autocorrelation either along
the stream route or across the network. Accounting for this auto-
correlation always improved model performance as measured by the
prediction errors (RMSE), as often observed in other studies using
stream-network models (Isaak et al., 2014).

Autocorrelation among flow-connected locations is the most re-
levant to the RCC because it represents the relationship along the
downstream continuum. Tail-up functions alone explained between
14% and 77% of variation, with an estimated range that varied greatly,
from 6 km, to 100 km and up to 1000 km in the case of taxon richness.
This means that most flow-connected communities exhibited some de-
gree of spatial correlation. Therefore, the most relevant continuum in
the Adige river system appears to be the spatial correlation that exists
among flow-connected locations.

The importance of spatial autocorrelation over the lateral dimension
was well captured by the Euclidean autocovariance function. This ex-
plained up to 39% of variation in feeding groups with effects estimated
at both fine (1.6 km range) and large-scale (150 km range). This again
indicates that landscape features and local drivers other than the po-
sition along the continuum contributed to the observed variation in
feeding groups.

Understanding the processes underpinning the observed

Fig. 4. Plot of the proportion of feeding
traits and taxonomic richness along the
river longitudinal dimension as ex-
pressed by the first PC (Adige river
network; 195 reaches). A linear re-
gression line is shown when the re-
lationship was significant. Note: the
regression lines are corrected for spa-
tial autocorrelation employing the full
mixture of autocovariance functions.
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autocorrelation is, however, not straightforward. In fact, autocorrela-
tion can stem from autogenous factors, such as biotic competition,
dispersal and intraspecific aggregation as well as exogenous factors
related to spatially structured environment variables. This means that,
while our models were able to quantify the spatial dependency in the
residual errors, the underlying cause is likely a complex interaction of
endogenous and exogenous processes (Frieden et al., 2014).

5.3. Specific FFG patterns

If the original RCC predictions applied to our case study, we ex-
pected shredders to decrease from headwater to larger streams as the
input of terrestrial coarse organic matter declined. Conversely, grazers
were expected to increase downstream reflecting changes in aquatic
primary production. Although grazers were originally predicted to
show a hump-shaped relation with stream size (Vannote et al., 1980),
with maximum representation in mid order streams, our sampling was
truncated at stream order 4, so that a continuous increase was expected
(e.g. Greathouse and Pringle, 2006). Gatherers that rely on fine organic
matter should increase along the river continuum reflecting a pro-
gressive reduction in detritus particle size. However, in the original
RCC, gatherers were grouped with filterers and no clear predictions
were given. In their revision of the RCC, Minshall et al. (1985) pre-
dicted a relatively constant representation of gatherers and filterers
from first to fourth order streams. The proportion of predators was
originally expected to remain constant along the continuum
(Vannote et al., 1980). However, in our study system we expected
predatory invertebrates to decline along the gradient because they were
generally dominated by Plecoptera species, which are restricted to cold
headwater habitats. Finally, the RCC predicted taxonomic richness to
peak in mid-order streams. However, as in the case of grazers, richness
should increase along the longitudinal gradient in the Adige River,
since communities were sampled between 1st and 4th order reaches.

Although the shapes of the semivariograms provided in our analyses
indicate a rather patchy distribution of FFG along the downstream
gradient, and the stream-network models highlighted the importance of
local-scale drivers, the overall trend in the proportion of grazers,
shredders, filterers and, to some extent, gatherers followed the original
RCC predictions. Grazers were generally well represented in the benthic
communities with an estimated increase of c.20% along the down-
stream gradient, likely reflecting a parallel increase in aquatic primary
production. Surprisingly, however, neither local land-use nor water
quality parameters were included as covariates in the best model ex-
plaining grazers variation. Rather, most of the residual variation was
associated with autocorrelation along the stream route, with a marginal
contribution from the longitudinal gradient.

Shredders constituted a minor group in the communities re-
presenting less than 5% in the downstream reaches. Although shredders
declined by almost 50% along the longitudinal gradient, their variation
was better explained by local factors associated with agricultural land-
use and water quality. In addition, a large proportion of their residual
variation was explained by small-scale autocorrelation over Euclidean
distances, further highlighting the influence of local landscape factors.
Shredders rely on allochthonous coarse organic matter, i.e., the pro-
duction and downstream transport of plant litter originating from ri-
parian or catchment vegetation. This explains the decreasing re-
presentation of shredders in agricultural-dominated reaches.

The proportion of gatherers increased almost 50% along the long-
itudinal gradient and was also influenced by water quality and local
land-use. Their distribution in the Adige river network likely reflected
the downstream increase in fine organic matter, which could also be of
anthropogenic origin considering the positive influence of local agri-
cultural land-use. We cannot conclude whether the distribution of
gatherers conformed to the RCC model, as no clear predictions were
originally given. However, other studies reported a general increase in
their proportion with stream size (Greathouse and Pringle, 2006; Jiang

et al., 2011). Interestingly, gatherers were the only group for which the
non-spatial and spatial models performed equally well in terms of
prediction errors. Autocorrelation was in fact only detected at fine-
scales and contributed relatively little compared to what estimated for
other feeding groups.

As expected, the proportion of predators declined along the long-
itudinal gradient. This likely reflect the fact that, in the Adige system,
most predatory invertebrates belonged to the Plecoptera order, which
are restricted to cold and well oxygenated headwater habitats. This is
further supported by the positive association of predators with water
quality as expressed by the LIMeco index.

Finally, it is important to note that our quantification of FFG pro-
portion was based on the relative densities of the taxa (as e.g.
Hawkins and Sedell, 1981), whereas the original RCC predictions were
based on biomass. Estimates of functional composition based on these
two measures can differ, especially when taxa with large body-size are
included (e.g. crayfish; Lugthart and Wallace, 1992), although this was
not the case in the present work. However, information on macro-
invertebrate biomass was not available at present.

6. Conclusion

To our knowledge, this is the first study to use semivariograms to
assess the variation in functional feeding groups over multiple spatial
dimensions of a river network, and to quantify the importance of the
longitudinal gradient while explicitly accounting for spatial auto-
correlation. Although we used the RCC to guide our hypotheses, the
principal aim of the study was not to formally evaluate the validity of
this model, but to provide a novel and robust statistical approach to test
its main tenets. This approach was applied to a case-study where con-
tinuity was expected to be partially interrupted by hydropower dams
distributed over the network. The Adige river system, however, is re-
presentative of the majority of Alpine river basins in Europe and else-
where where the natural hydro-morphological connectivity has long
been affected (Maiolini and Bruno, 2007; Marnezy, 2008). Our results
revealed a rather heterogeneous distribution of feeding groups along
the longitudinal dimension (flow-connected), in support of a patchy
discontinuous view. Similarly, stream-network models highlighted how
the downstream gradient and local-scale drivers jointly influenced the
functional composition of benthic invertebrates. This is expected in
river networks where both local-scale factors and large-scale network
topography combine to regulate biodiversity patterns (Altermatt et al.,
2013; Carrara et al., 2014). Overall, the trends in FFG were mostly in
agreement with the RCC model, implying that the key theme of the
model hold: changes in stream size determine changes in basal re-
sources and consumers. However, most of the variation in FFG was
actually attributed to spatial autocorrelation, with effects that were
stronger than those attributed to the covariates and evident at both fine
and broad scales. Ignoring such spatial dependence could have im-
plications far beyond the evaluation of river ecosystem models. Benthic
macroinvertebrates are routinely sampled and used in bio-assessment
programmes and are included in the EU Water Framework Directive as
one of the biological element used to evaluate the ecological status of
running waters. When spatially explicit issues are investigated, such as
those related to land-use, water pollution and habitat change, ignoring
autocorrelation could produce bias in parameter estimates and ulti-
mately weaken statistical inference. Nonetheless, field studies specifi-
cally accounting for spatial autocorrelation in benthic invertebrates are
still rare, but the few available data indicate that spatial dependence
can be very strong, especially along the stream route (Bonada et al.,
2012; Frieden et al., 2014; Lloyd et al., 2006).

The fact that we observed heterogeneous variations of FFG over the
longitudinal dimension, which were accompanied by general trends
that followed the original RCC predictions, supports a more holistic and
contemporary view of river ecosystems where both patch- and con-
tinuum-based processes simultaneously regulate in-stream metabolism
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and biodiversity (Collins et al., 2018; Humphries et al., 2014). While
the Adige River might not be the most appropriate system for testing
the RCC model due to extensive human modification, this is a problem
inherent to many RCC tests (e.g. Collins et al., 2018; Greathouse and
Pringle, 2006), including the use of relatively impaired systems in
North America for the development of the model itself (Statzner and
Higler, 1985). We advocate the use of spatially explicit approaches such
as the one used here for future evaluations of river ecosystem models in
more pristine catchments.
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Appendix A. Taxa list and feeding traits profile used in the study.

Grazer Shredder Gatherer Filterer Predator Other

Turbellaria
Crenobia 0 0 0 0 1 0
Gastropoda
Bithynidae 0.3 0 0.2 0 0 0.5
Hydrobiidae 1 0 0 0 0 0
Lymnaeidae 0.43 0.24 0.16 0 0 0.18
Physidae 0.48 0.2 0.15 0 0 0.18
Planorbidae 0.6 0.2 0 0 0 0.2
Pisidiidae 0 0 0 0 0 1
Bivalvia
Ancylidae 1 0 0 0 0 0
Oligochaeta
Enchytraeidae 0 0 1 0 0 0
Haplotaxidae 0 0 1 0 0 0
Lumbriculidae 0 0 1 0 0 0
Naididae 0.46 0 0.46 0 0.08 0
Crustacea
Asellidae 0.2 0.55 0.25 0 0 0
Gammaridae 0.05 0.65 0.2 0 0 0.1
INSECTA
Ephemeroptera
Baetidae
Baetis 0.52 0 0.48 0 0 0
Cloeon 0.5 0 0.5 0 0 0
Caenidae
Caenis 0 0 1 0 0 0
Ephemerellidae
Serratella 0.5 0 0.5 0 0 0
Heptageniidae
Ecdyonurus 0.61 0 0.39 0 0 0
Epeorus 0.93 0 0.07 0 0 0
Rhithrogena 1 0 0 0 0 0
Leptophlebiidae
Habroleptoides 0 0 1 0 0 0
Odonata
Coenagrionidae 0 0 0 0 1 0
Cordulegaster 0 0 0 0 1 0
Plecoptera
Capnidae
Capnia 0.17 0.53 0.3 0 0 0
Chloroperlidae
Chloroperla 0.1 0.1 0.2 0 0.6 0
Siphonoperla 0.1 0.1 0.2 0 0.6 0
Leuctridae
Leuctra 0.3 0.3 0.4 0 0 0
Nemouridae
Amphinemura 0.37 0.23 0.4 0 0 0
Nemoura 0.01 0.66 0.33 0 0 0
Protonemura 0.29 0.49 0.22 0 0 0
Perlidae
Perla 0.1 0 0 0 0.9 0
Dinocras 0.1 0 0 0 0.9 0
Perlodidae
Dictyogenus 0.05 0.05 0.15 0 0.75 0
Isoperla 0.09 0.09 0.09 0 0.73 0
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Perlodes 0.15 0.05 0.05 0 0.75 0
Taeniopterygidae
Brachyptera 0.68 0.03 0.3 0 0 0
Rhabdiopteryx 0.2 0.6 0.2 0 0 0
Taeniopteryx 0.3 0.2 0.5 0 0 0
Coleoptera
Dytiscidae 0 0 0 0 0.95 0.05
Elmidae 0.71 0.01 0.14 0 0 0.14
Haliplidae 0.22 0.02 0.02 0 0.23 0.52
Hydraenidae 0.51 0.02 0.02 0.01 0.42 0.02
Hydrophilidae 0.12 0.07 0.15 0 0.66 0
Diptera
Athericidae 0 0 0 0 1 0
Blephariceridae 1 0 0 0 0 0
Chironomidae 0.57 0.03 0.34 0 0.04 0.02
Dixidae 0 0 0.43 0.57 0 0
Pediciidae 0 0 0 0 1 0
Simuliidae 0 0 0 1 0 0
Tipulidae 0 0.8 0.2 0 0 0
Trichoptera
Brachycentridae 0.3 0.17 0 0.33 0.2 0
Ecnomidae 0.74 0 0.19 0.01 0.06 0
Glossosomatidae 0.8 0 0.2 0 0 0
Goeridae 0.9 0 0.1 0 0 0
Hydropsychidae 0.19 0 0.01 0.51 0.29 0
Hydroptilidae 0.35 0 0.15 0 0.04 0.46
Limnephilidae 0.27 0.44 0.05 0.03 0.21 0
Odontoceridae 0.3 0.3 0 0 0.4 0
Philopotamidae 0 0 0 1 0 0
Polycentropodidae 0 0 0 0.1 0.9 0
Rhyacophilidae 0 0.03 0 0 0.97 0
Sericostomatidae 0 0.9 0 0 0.1 0
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