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1  | INTRODUC TION

There are now several examples in the ecological literature where, 
for spatial prediction like kriging, non-Euclidean distances were 
used in autocorrelation models developed under a Euclidean 
distance assumption. This leads to a problem where prediction 

variances may be negative, and generally leads to unreliable stan-
dard errors for prediction. My objective is to help ecologists un-
derstand the problem and avoid this mistake. I introduce a class of 
models that are easy to construct, based on linear mixed models, 
that perform well and guarantee that prediction standard errors 
will be positive.
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Abstract
1. There are now many examples where ecological researchers used non-Euclidean 

distance metrics in geostatistical models that were designed for Euclidean dis-
tance, such as those used for kriging. This can lead to problems where predictions 
have negative variance estimates. Technically, this occurs because the spatial co-
variance matrix, which depends on the geostatistical models, is not guaranteed to 
be positive definite when non-Euclidean distance metrics are used. These are not 
permissible models, and should be avoided.

2. I give a quick review of kriging and illustrate the problem with several simulated 
examples, including locations on a circle, locations on a linear dichotomous net-
work (such as might be used for streams), and locations on a linear trail or road 
network. I re-examine the linear network distance models from Ladle, Avgar, 
Wheatley, and Boyce (2017b, Methods in Ecology and Evolution, 8, 329) and show 
that they are not guaranteed to have a positive definite covariance matrix.

3. I introduce the reduced-rank method, also called a predictive-process model, for 
creating valid spatial covariance matrices with non-Euclidean distance metrics. It 
has an additional advantage of fast computation for large datasets.

4. I re-analysed the data of Ladle et al. (2017b, Methods in Ecology and Evolution, 8, 329), 
showing that fitted models that used linear network distance in geostatistical mod-
els, both with and without a nugget effect, had negative variances, poor predictive 
performance compared with reduced-rank methods, and had improper coverage for 
the prediction intervals. The reduced-rank approach using linear network distances 
provided a class of permissible models that had better predictive performance and 
proper coverage for the prediction intervals, and could be combined with Euclidean 
distance models to provide the best overall predictive performance.
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1.1 | A quick review of kriging

Kriging is a method for spatial interpolation, beginning as a disci-
pline of atmospheric sciences in Russia, of geostatistics in France 
and appearing in English in the early 1960s (Cressie, 1990; Gandin, 
1963; Matheron, 1963). Kriging is attractive because it produces 
both predictions and prediction standard errors, providing uncer-
tainty estimates for the predictions. Predictions and their standard 
errors are obtained after first estimating parameters of the kriging 
model. The ordinary kriging model, which we will feature here, is,

where Yi is a spatial random variable at location i, i = 1,2,…,n, with 
constant mean μ (the fixed effect), a zero-mean spatially auto-
correlated error Zi and independent random error ɛi. For the set 
{Zi;i = 1,…,n}, the spatial distance among locations is used to model 
autocorrelation among the random errors. Spatial autocorrelation 
is the tendency for spatial variables to co-vary, either in a similar 
fashion, or opposite from each other. The most commonly observed 
type of spatial autocorrelation manifests as higher positive correla-
tion among variables at sites closer together than among those at 
sites farther apart. These tendencies are captured in autocorrelation 
and covariance matrices.

Let R be an autocorrelation matrix among spatial locations. All of 
the diagonal elements of R are ones. The off-diagonal element in the 
ith row and jth column of R is the correlation, which lies between −1 
and 1, between variables at site i and site j. Then a covariance matrix 
C = σ2

p
R is just a scaled autocorrelation matrix that includes an overall 

variance, σ2
p
. In constructing kriging models, practitioners often include 

a “nugget” effect, which is an independent (uncorrelated) random ef-
fect, ɛi, in Equation 1 with variance σ2

0
. The nugget effect is often as-

cribed to measurement error, or microscale variation, at a scale finer 
than the closest measurements in the dataset. Constructing a full co-
variance matrix for a kriging model generally yields

where σ2
p
⩾ 0 is called the partial sill, σ2

0
⩾ 0 is the nugget effect, 

and I is the identity matrix (a diagonal matrix of all ones). The total 
variance is σ2

p
+σ2

0
. The off-diagonal elements of R are obtained from 

models that generally decrease as distance increases, with a few 
that also oscillate. Several autocorrelation models (Chiles & Delfiner, 
1999, pp. 80–93), based on Euclidean distance, di,j, between sites i 
and j, are

where distances are scaled by α ⩾ 0, called the range parameter. (a) 
is an indicator function, equal to one if the argument a is true, oth-
erwise it is zero.

Examples of the autocorrelation models in Equation 3, scaled 
with a partial sill, σ2

p
= 2, and a nugget effect, σ2

0
= 1, are shown in 

Figure 1a. The exponential model, ρe(di,j), is commonly used, and a 

(1)Yi=μ+Zi+εi,

(2)�=C+σ2
0
I=σ2

p
R+σ2

0
I,

(3)

ρe(di,j) = exp (−di,j∕α),

ρs(di,j) = [1−1.5(di,j∕α)+0.5(di,j∕α)
3](di,j<α),

ρg(di,j) = exp (− (di,j∕α)
2),

ρc(di,j) = 1∕(1+ (di,j∕α)
2),

ρh(di,j) = (α∕di,j) sin (di,j∕α)(di,j>0)+(di,j=0),

F I G U R E  1    Autocorrelation models. 
(a) Autocovariance functions for various 
models, with a partial sill of 2 and a nugget 
effect of 1. (b) The same models as in (a), 
except represented as semivariogram 
models. Note that the black dots indicate 
a discontinuity of the fitted model at the 
origin due to the nugget effect, where 
the model “jumps” to the black dots when 
distance is exactly 0. Effect of the range 
parameter α on the (c) exponential model, 
and (d) spherical model
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special case of the Matern model that approaches zero autocor-
relation asymptotically (Figure 1c). The spherical model, ρs(di,j), also 
is common, attaining exactly zero autocorrelation at α (Figure 1d). 
Both the exponential and spherical models decrease rapidly near 
the origin, for short distances, whereas the Gaussian model, ρg(di,j), 
decreases more slowly near the origin. The Gaussian model occurs 
as a limiting case for the smoothness parameter of the Matern 
model, and creates very smooth spatial surfaces. The Cauchy 
model, ρc(di,j), is similar to the Gaussian, but approaches zero auto-
correlation very slowly. Finally, the hole effect model, ρh(di,j), allows 
for negative autocorrelation in a dampened oscillating manner. 
These models highlight different features of autocorrelation mod-
els, and they will be used throughout this paper. Many more models 

are given in Chiles and Delfiner (1999, pp. 80–93). Autocorrelation 
is generally controlled by α, which must be estimated from real 
data. However, it is useful to vary α through simulated data, and 
even for real distance data, to understand its effect on covariance 
models, which I do in Figures 1c,d, and also in Figures 2 and 3.

Kriging is often expressed in terms of semivariograms rather 
than autocorrelation models. Semivariograms model the variance 
of the difference among variables. If Yi and Yj are random variables 
at spatial locations i and j, respectively, a semivariogram is defined 
as γ(di,j) ≡ E(Yi−Yj)

2/2, where E is expectation. All of the models in 
Equation 3 can be written as semivariograms,

(4)γm(di,j)=σ2
p
(1−ρm(di,j)),

F I G U R E  2    Cautionary examples. 
(a) 11 spatial locations on a circle are 
shown with solid black dots. (b) Minimum 
eigenvalue as a function of α for various 
autocorrelation models using distances 
on the circle. (c) A dichotomous branching 
network (stream) with 127 spatial 
locations (black dots) at the node of each 
branch. (d) Minimum eigenvalue as a 
function of α for various autocorrelation 
models using in-stream distance only. (e) 
25 spatial locations on a grid network, 
where a perfect lattice includes the 
dashed line, but an irregular lattice 
includes only the solid lines. (f) Minimum 
eigenvalue as a function of α for various 
autocorrelation models using shortest 
path distances along the irregular lattice
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where m = e, s, g, c, or h for exponential, spherical, Gaussian, Cauchy 
or hole effect respectively. Figure 1b shows semivariograms that 
are equivalent to the models in Figure 1a. A matrix of semivari-
ogram values among spatial locations can be written in terms of 
Equation 2,

Autocorrelation needs to be estimated from data. Empirical 
semivariograms have been used since the origins of kriging. First, all 
pairwise distances are binned into distance classes, k = [hk−1,hk), 
where 0 ⩽ h0 < h1 and hk−1 < hk for k = 1, 2,…, K, that partition the 
real line into mutually exclusive and exhaustive segments that cover 
all distances in the dataset. Then the empirical semivariogram is,

for all possible pairs of i and j, and k = 1, …, K, where y1, …, yn are 
the observed data, hk is a representative distance (often the aver-
age or midrange) for a distance bin k, and N(k) is the number 
of distinct pairs in k. Empirical semivariograms have desirable 
estimation properties (it is an unbiased estimator, Cressie, 1993, 
p. 71) because, substituting Equation 1 into the semivariogram 
definition, μ cancels, obviating the need to estimate it. To estimate 

autocorrelation, one of the models in Equation 3, in semivari-
ogram form, Equation 4, can be fit to γ̂(hk) as a function of hk, 
often using weighted least squares (WLS) or a modification that 
puts increased weight near the origin (CWLS) (Cressie, 1985). This 
concept is generalized by restricted maximum likelihood (REML; 
Patterson & Thompson, 1971, 1974), which can be used for auto-
correlation in regression models with several covariates and re-
gression coefficients (for REML applied to spatial models, see, for 
example, Cressie, 1993, p. 93). In addition, using REML eliminates 
the arbitrary binning of distances for semivariogram estimation. 
Although REML was originally derived assuming normality, REML 
can be viewed as unbiased estimating equations (Cressie & Lahiri, 
1996; Heyde, 1994), so normality is not required to estimate co-
variance parameters. Later, I will use WLS, CWLS, and REML for 
estimation, and full details are given in Supporting Information. 
No matter how the parameters are estimated, I focus on covari-
ance matrices Σ (Equation 2), rather than semivariogram matrices, 
because Σ is more readily understood in the broader context of 
statistical models.

After covariance parameters are estimated from the data, krig-
ing can produce spatial predictions (interpolations) at any locations 
where data were not collected. Kriging provides best linear unbiased 
predictions (BLUP) in the sense of minimizing the expected squared 
error between linear combinations of the data as predictors, and the 
predictand, subject to unbiasedness (on average). The ordinary krig-
ing predictor, in terms of the covariance matrix (Schabenberger & 
Gotway, 2005, p.33), is ̂Yn+� =�

�Y, where

for M predictions with locations indexed by n+ℓ, ℓ = 1, 2, …, M. Here, 
1 is a vector of ones, and c has, as its ith element, σ2

p
ρm(di,n+� ), where 

m is the same model (one of those in Equation 3) that was used in Σ. 
The prediction variance (the expected squared error that was mini-
mized) is given by

where the first equality occurs due to the unbiasedness condition 
(λ′1 = 1) imposed by the kriging method (e.g. Cressie, 1993, pp. 
120–121).

1.2 | The problem

One of the properties shared by all models in Equation 3 is that, 
when di, j is Euclidean distance, the covariance matrix in Equation 
2 is guaranteed to be positive definite for all possible spatial con-
figurations of points (in three dimensions or less) and all possible 
parameter values: σ2

p
⩾0, σ2

0
⩾0 and α⩾0 (one of σ2

p
 or σ2

0
 must be 

greater than zero). It is important for Σ to be positive definite be-
cause many estimators and predictors in statistics are linear func-
tions of the data, the kriging predictor being one of them. That is, 
let ω be a non-null vector of weights and Y be a vector of random 

�= (σ2
0
+σ2

p
)I−�.

(5)γ̂(hk)=
1

2N(k)

∑

di,j∈k

(yi−yj)
2,

(6)�
� =

(

c+1
1−1

�
�
−1c

1
�
�−11

)�

�
−1,

(7)var( ̂Yn+�−Yn+� )=E( ̂Yn+�−Yn+� )
2= (σ2

p
+σ2

0
)−c��−1c+

(1−1
�
�
−1c)2

1
�
�−11

,

F I G U R E  3    Minimum eigenvalues as a function of α for various 
autocorrelation models for the Ladle et al. (2017a,b) dataset. (a) 
Using linear distances (km) among cameras. (b) Using Euclidean 
distances (km) among cameras
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variables with covariance matrix Σ. Then an estimator or predictor 
̂T = �

�Y  will have variance

which is guaranteed to be positive only if Σ is positive definite 
Guillot, Schilling, Porcu and Bevilacqua (2014). Requiring Σ to be 
positive definite is the matrix analogue of requiring a variance pa-
rameter to be positive.

The prediction variance (Equation 7) involves the variance of a 
difference between a linear combination of data at observed loca-
tions, with weights given by Equation 6, and the prediction location, 
so ω′ = (λ′,−1). We can add the covariances between prediction loca-
tion and data locations (denoted c in Equation 6) to Σ, call it Σ*, and 
Equation 8 must hold for Σ* as well. That is, more generally, let Σo,o be 
the covariance matrix among the observed locations, Σo,p be the co-
variance matrix between the observed and prediction locations, and 
Σp,p be the covariance matrix among the prediction locations. Then

must be positive definite when making predictions at unobserved 
locations. A simple example is given in the Supplementary Material. 
For another example, Guillot et al. (2014) demonstrate that the 

triangle model (not given in Equation 3), which is only valid in one 
dimension, yields negative prediction variances when used with 
Euclidean distances based on locations in two dimensions.

It is also worth noting that if any square submatrix of Σ* (Equation 
9) (formed by removing full columns and rows with corresponding in-
dexes) is not positive definite, then neither is the larger matrix. The 
implications are that, if the observed data have a covariance matrix 
that is not positive definite, then Σ* will not be positive definite. 
However, even if the observed data (Equation 9) have a covariance 
matrix that is positive definite, there is no guarantee that the larger 
matrix, Σ*, will be positive definite without a proper model to ensure 
it.

The simplest way to check whether a matrix is positive definite is 
to check the eigenvalues of that matrix. A covariance matrix Σ should 
be composed of real values, and it should be symmetric. Then

is called the spectral decomposition of Σ, where each column of Q 
contains an eigenvector, and the corresponding eigenvalue is con-
tained in Λ, which is a diagonal matrix. Substituting Equation 10 into 
Equation 8 gives

where v = Qʹω. Because v2
i
⩾0, var( ̂T) is guaranteed to be positive as 

long as all λi are greater than zero and at least one v2
i
>0. So, if the 

smallest eigenvalue of Σ>0, then Σ is positive definite.
Now consider using the models in Equation 3 for cases where di,j 

is non-Euclidean. For example, let 11 spatial locations occur at equal 
distances on a circle (Figure 2a). Let distance be defined as the short-
est path distance, so that two adjacent points have distance 2π/11, 
and the maximum distance between any two points is 10π/11. The 
11 × 11 distance matrix was used with autocorrelation models in 
Equation 3, and the minimum eigenvalue is plotted as a function of 
α in Figure 2b. Notice that as the range parameter α increases, the 
hole-effect, Gaussian and Cauchy models have a minimum eigen-
value that is less than zero, so for these values of α, the matrix is not 
positive definite, and cannot be a covariance matrix. This example 
illustrates another problem because although the exponential model 
and spherical model are valid models for all range values, this is true 
only if 11 points are equidistantly apart. There is no guarantee that 
the exponential and spherical model will provide positive definite 
covariance matrices for other sample sizes and other spatial config-
urations. Later, I will discuss more general approaches for develop-
ing models for all spatial configurations and all values of the range 
parameter.

Another example is provided by the spatial locations at the nodes 
of a dichotomous network (Figure 2c). The distance between each 
location and the nearest node is exactly one, and there are 27−1 
 locations. Again, let distance be defined as the shortest path be-
tween any two locations, so the maximum distance between two 
terminal locations is 2 × 6 = 12. Using the 127 × 127 distance matrix 
with the autocorrelation models in Equation 3 for various α values 

(8)var( ̂T)=�
�
��,

(9)�
∗ =

(

�o,o �o,p

�
�
o,p

�p,p

)

(10)�=Q�Q
�

var( ̂T)=v��v=

n
∑

i=1

v
2
i
λi

F I G U R E  4    Study area (coordinates in meters) from online data 
(similar to Figure 1 in Ladle et al., 2017a,b). Linear network consists 
of roads (black lines) and trails (gray lines). Spatial locations are 
open circles. Initially, k-means on x- and y-coordinates created 120 
clusters with centre locations given by solid blue circles, and then 
these were moved to nearest actual locations (solid red circles), 
which were used as knot locations for reduced-rank methods. Note 
that there is some discrepancy between the map in Ladle et al. 
(2017a,b) and the online data, especially along the western and 
southern borders. All analyses in this paper used the online data
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showed that all models yielded minimum eigenvalues below zero 
except the exponential model (Figure 2d). The hole effect model il-
lustrates how erratic the positive definite condition can be, where 
small changes in α cause wild swings on whether the covariance ma-
trix is positive definite. An argument on why the exponential model 
is always positive definite for the dichotomous network situation is 
given by Ver Hoef and Peterson (2010).

Finally, consider the 25 locations in Figure 2e. This is represen-
tative of a road or trail system on a perfectly regular grid. Again, 
consider the shortest path distance between any two points. First, 
consider the situation where sites are only connected by the solid 
lines. In that case, sites one and two are not connected directly, 
but rather the distance between them is 3 (through sites 6 and 7). 
Using the 25 × 25 distance matrix with the autocorrelation models 
in Equation 3 for various α values shows that none of the models are 
positive definite for all α (Figure 2f). A variation occurs if we let the 
sites with dotted lines be connected, as well as those with solid lines. 
In this case, the exponential model remains positive definite for all 
values of α, and an explanation is provided by Curriero (2006).

In Figure 2, I illustrate that, in a variety of situations, models that 
guarantee positive definite covariance matrices for any spatial config-
uration, and any range value α > 0, when using Euclidean distance, no 
longer guarantee positive definite matrices when using linear network 
distances. Similarly, one might wonder why we do not use empirical 
covariances in Σ. That is, let the i, j entry in Σ be (yi − μ̂)(yj − μ̂), where 
μ̂ is the average of all yi. Again, there is no guarantee that Σ will be pos-
itive definite. If it is not, then what is the analyst to do? Geostatistics 
has a long tradition of only considering models that guarantee positive 
definite matrices (Journel & Huijbregts, 1978, p. 161). For example, 
Webster and Oliver (2007, p. 80) call them “authorized” models, while 
Goovaerts (1997, p. 87) calls them “permissible” models. All of the 
models in Equation 3 are permissible for Euclidean distance in three 
dimensions or less, but they are clearly not generally permissible for 
linear network distances.

2  | LITER ATURE RE VIE W

There are now many examples where autocovariance models, such 
as those in Equation 3, have been used incorrectly with non-Eu-
clidean distances, and they have been roundly criticized (Curriero, 
2006). For example, for streams, impermissible models have been 
used by Cressie and Majure (1997) and Gardner, Sullivan, and Lembo 
(2003), who substituted in-stream distance for Euclidean distance, 
and in fact this same idea was inappropriately recommended in 
Okabe and Sugihara (2012). Alternatively, permissible models that 
guarantee positive definite covariance matrices were developed 
(based on spatial moving averages, a spatially continuous analogue 
of moving-average models in time series) by Ver Hoef, Peterson, and 
Theobald (2006), Cressie, Frey, Harch, and Smith (2006) and Ver 
Hoef and Peterson (2010).

For roads and trails, impermissible models have been used by 
Shiode and Shiode (2011), Selby and Kockelman (2013) and Ladle 

et al. (2017b), who substitute network-based distance for Euclidean 
distance. However, the exponential is a permissible model for a 
perfect grid using Manhattan distance (as described for Figure 2e); 
see Curriero (2006). I provide a more general approach based on re-
duced-rank radial-basis functions below.

In estuaries, the shortest-path distances were incorrectly used 
to replace Euclidean distance in Little, Edwards, and Porter (1997), 
Rathbun (1998), and Jensen, Christman, and Miller (2006), which 
yielded impermissible models. Instead, permissible models based on 
reduced-rank radial-basis functions were given by Wang and Ranalli 
(2007).

There has been a great deal of interest in kriging over the sur-
face of the earth, which is an approximate sphere. Kriging on geo-
graphical coordinates can create distortions, yet such applications 
have appeared (Ecker & Gelfand, 1997; Kaluzny, Vega, Cardoso, & 
Shelly, 1998), which have been criticized (Banerjee, 2005). Most re-
search has centred on geodesic, or great-circle distance. If geode-
sic distance is substituted for Euclidean distance for the models in 
Equation 3, only the exponential and spherical models are permissi-
ble (Gneiting, 2013). Note that distance is measured in radians, and 
restricted to the interval [0,π].

For an interesting ecological application, Bradburd, Ralph, and 
Coop (2013) propose an extension of a powered exponential, also 
called a stable geostatistical model, that combines Euclidean dis-
tance with ecological or genetic distance. Then Guillot et al. (2014) 
show how the stable model can be used with geodesic (great circle) 
distances, but only if the power parameter of the stable model is 
restricted, and they also discuss ways of “gluing” geographical dis-
tances and environmental distances to create permissible models.

The literature given above, with many examples, shows that re-
placing Euclidean distance with some other metric that makes more 
physical sense is intuitively appealing, but yields impermissible mod-
els that do not guarantee positive definite covariance matrices. To 
further illustrate the issues with a real example, I re-analyse the data 
in Ladle et al. (2017b).

3  | RE-ANALYSIS OF L ADLE ET AL .  (2017b)

Prior to a re-analysis of Ladle et al. (2017b), I summarize their analy-
sis. I then review several general approaches to spatial models for 
non-Euclidean distance metrics. Finally, I introduce the reduced-
rank method that I ultimately use on the data of Ladle et al. (2017b).

3.1 | Review of Ladle et al. (2017b)

Ladle et al. (2017b) provide an interesting study of human activity 
along a linear network of roads and trails in a portion of Alberta's 
Rocky Mountains. They analysed both motorized and non-motorized 
activities; see Figure 1 in Ladle et al. (2017b) for the trails and study 
area. The spatial locations obtained from their online data, along with 
the linear network of roads and trails, are shown here in Figure 4. 
They use a two-stage analysis, first fitting a mixed-effects logistic 



1606  |    Methods in Ecology and Evolu
on VER HOEF

regression model to the presence of any activity during hourly incre-
ments. The fixed effects in their models include rainfall, date, time 
of day, etc. Random effects for spatial location and time were also 
included, and estimated as best linear unbiased predictions (BLUPs). 
These BLUPs were subsequently used in a second stage of analysis 
as spatial data. Linear network distance among BLUPs was used in 
place of Euclidean distance, and ordinary kriging was used to predict 
BLUPs at unsampled locations along the linear network; see Figure 4 
in Ladle et al. (2017b). In all that follows, I will re-analyse only the 
non-motorized data from Ladle et al. (2017b), using the estimated 
BLUP values and the linear network and Euclidean distance matrices 
that they provided as online data.

The main objective of this paper, and my prior review, is to show 
that substitution of non-Euclidean distance metrics into autocor-
relation models derived for Euclidean distance can create covari-
ance matrices that are not positive definite. For the particular case 
of Ladle et al. (2017b), using their linear network distance matrix in 
the models given in Equation 3 showed that none of the models are 
permissible beyond a certain α value (Figure 3a). On the other hand, 
using the Euclidean distance matrix provided by Ladle et al. (2017b), 
all models yield positive definite covariance matrices at all values 
of α > 0 (Figure 3b), which simply verifies that they are permissible 
models. Note that the fitted exponential model had α̂ = 14.2 km in 
Ladle et al. (2017b) for non-motorized variables, which yielded a 
positive definite covariance matrix because α <  28.2 km had all posi-
tive eigenvalues (Figure 3a). The (incorrectly) fitted spherical models 
in Ladle et al. (2017b) (see Ladle, Avgar, Wheatley, & Boyce, 2017a) 
had estimated range parameters  > 40 km, which would not yield 
positive definite covariance matrices because α >  15.9 had negative 
eigenvalues (Figure 3a).

3.2 | Review of non-Euclidean distance models

Several approaches can be used for creating spatial models in novel 
situations, whether for non-Euclidean distances or other situations. 
The first is the spatial moving average, also called a process convo-
lution and autoconvolution. The spatial moving-average approach 
is very similar to a moving-average model in time series, except that 
the random variables that are “smoothed” are continuous in space 
(also known as a white noise process). This approach has been used 
for flexible variogram modelling (Barry & Ver Hoef, 1996), multivari-
able (cokriging) models (Ver Hoef & Barry, 1998; Ver Hoef, Cressie, & 
Barry, 2004), nonstationary models (Higdon, 1998; Higdon, Swall, & 
Kern, 1999), stream network models (Cressie et al., 2006; Ver Hoef & 
Peterson, 2010; Ver Hoef et al., 2006), models on the sphere (Gneiting, 
2013) and spatio-temporal models (Conn et al., 2015; Wikle, 2002). 
Using the moving-average approach requires solving integrals to ob-
tain the autocorrelation function, or approximating the integrals. For 
example, the integrals are tractable for stream networks when purely 
dichotomous branching occurs (Ver Hoef et al., 2006), however, they 
are not tractable for more general linear networks.

The use of bivariate splines over complex spatial domains is 
an area of active research, beginning with Ramsay (2002), which 

includes Wang and Ranalli (2007) and soap-film smoothing (Wood, 
Bravington, & Hedley, 2008), with recent improvements (Miller & 
Wood, 2014; Sangalli, Ramsay, & Ramsay, 2013). Approximating lo-
cations within irregular boundaries by a wire mesh introduces neigh-
bour-based methods, also known as lattice-based methods, such as 
integrated nested Laplace approximation (INLA; Rue, Martino, & 
Chopin, 2009). At the limit of a very dense mesh, these methods 
are an approximation to a spatial partial difference Equation (SPDE; 
Lindgren, Rue, & Lindström, 2011), that can allow for barriers and 
complex spatial domains (Bakka, Vanhatalo, Illian, Simpson, & Rue, 
2016). Another approach using wire meshes is given by McIntyre 
and Barry (2017).

There are many connections among the methods given above, 
and I do not attempt a complete review. The approach that I will fea-
ture is a reduced-rank idea, also called a dimension reduction (Wikle 
& Cressie, 1999) and spatial radial basis (Hefley et al., 2016; Lin & 
Chen, 2004) method. It is closely related to splines, and handles 
non-Euclidean topology and has computational advantages. This is 
a very general method, and the one that I will use to re-analyse the 
data of Ladle et al. (2017b). It has been mostly featured as a method 
for big datasets (e.g. Banerjee, Gelfand, Finley, & Sang, 2008; Cressie 
& Johannesson, 2008; Ruppert, Wand, & Carroll, 2003; Wikle & 
Cressie, 1999). I will use this method for models using linear network 
distances, which I describe next.

3.3 | Reduced-rank methods for non-Euclidean  
distances

The reduced-rank models are a special case of linear mixed models, 
so I provide a quick review. In fact, Equation 1 is a special case of a 
mixed model. A mixed model is often written as

where X is a design matrix with covariates, β is a vector of re-
gression parameters, W is a random-effects design matrix, ν is a  
vector of zero-mean random effects with variance σ2

p
 and  

var(ε) = σ2
0
I. In statistical textbooks, W in Equation 11 often contains 

dummy variables (zeros or ones) that indicate some factor level of 
the random effect. However, W can also contain covariates, in which 
case ν  contains random effects for the slope of a line, illustrating that  
there are no restrictions on the types of values (continuous or cat-
egorical) contained in W. For the linear mixed model, Equation 11, 
recall that

where G is the correlation matrix for ν. Classically, for mixed mod-
els, random effects are assumed independent, so G = I, and then 
var(Y) = σ2

p
WW

�
+σ2

0
I.

For the reduced-rank models, let D denote a matrix of Euclidean 
distances among locations and L denote a matrix of linear network 
distances. Let Rm,A,α be a spatial autocorrelation matrix, where 
m = e, s, g, c, or h, for exponential, spherical, Gaussian, Cauchy or 
hole effect, respectively, for one of the models in Equation 3, A is a 

(11)Y=X�+W�+�,

(12)var(Y)=σ2
p
WGW

�
+σ2

0
I,
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distance matrix, either D or L, and α is the range parameter for one of 
the models in Equation 3. For example, Re,L,α =  exp (−L/α). Then let 
R
r

m,A,α
 be the matrix where some of the columns of Rm,A,α are kept as 

“knots,” and all other columns have been removed; hence the term 
“reduced-rank.” For example, for the Ladle et al. (2017b) data, there 
are 239 locations, so Rm,A,α is 239 × 239. I will reduce it to just 120 
columns, so Rr

m,A,α
 is 239 × 120, and the reason for 120 knots is dis-

cussed later.
The reduced-rank method requires the selection of knots. In 

general, knots can be placed anywhere, and not only at the ob-
served locations. I used K-means clustering (MacQueen, 1967) on 
the spatial coordinates to create 120 groups. Because K-means 
clustering minimizes within-group variance while maximizing 
among-group variance, the centroid of each group tends to be 
regularly spaced; that is, it is a space-filling design (e.g. Ver Hoef 
& Jansen, 2015). Then, the knots were moved to the nearest ob-
served location. The original knot locations are shown in blue, and 
then moved to the red circles in Figure 4. It will be useful to have 
the matrix of Euclidean distances among knots only, which is a 
subset of the rows and columns of D, and I denote the knot-to-
knot distances as Dk.

Now consider the following random-effects model as a special 
case of Equation 11,

In Equation 13, I have replaced W with Rr

m,A,α
, and there are 

no covariates in X, so X is a vector of ones, and I will assume that 
var(�) = [R

m,D
k
,η
]−1. A broad introduction to spatial basis functions, 

and rank reduction, for ecologists is given by Hefley et al. (2016).
The innovations for reduced-rank spatial models in Equation 

13 occur because: (1) we use correlation models of distance in the 
random-effects design matrix, essentially W = R

r

m,A,α
, and (2) we 

also allow the random effects ν to be spatially autocorrelated using 
the inverse covariance matrix from one of the models in Equation 3. 
The model in Equation 13 must have a positive definite covariance 
matrix, so I assume Euclidean distance will be used for the distance 
among knots. In that case, Equation 13 leads to the following cova-
riance matrix,

Note that Rr

m,A,α
 and R

m,D
k
,η
 could have different model forms (e.g. 

m could be exponential from Equation 3 for Rr

m,A,α
, while m is spher-

ical from Equation 3 for R
m,D

k
,η
). Also note that A could be D, L, or 

some other matrix based on any number of distance metrics. The 
construction in Equation 14 is very flexible, and several comments 
are pertinent:

1.  Strictly speaking, the covariance matrix in Equation 14 is guaran-
teed to be positive definite only if σ2

0
> 0. This is no different than 

mixed models, Equation 11, where recall that the variance was 
σ2
p
WGW

�
+σ2

0
I.

2.  Note that the inverse of a positive definite matrix will also be 
positive definite, so [R

m,D
k
,η
]−1 is positive definite as long as 

Euclidean distance Dk is used, which ensures that 
σ2
p
R
r

m,A,α
[R

m,D
k
,η
]−1[R

r

m,A,α
]� is non-negative definite.

3.  It might seem unusual to model the covariance among the knots as 
the inverse [R

m,D
k
,η
]−1. The reasons for the inverse are complex 

(Banerjee et al., 2008), but there is an intuitive explanation. Suppose 
that the reduced-rank matrix is based on Euclidean distance, that is, 
let A = D, so we have Rr

m,D,α
. Now, let the knots increase in number 

until the knots become exactly the same as the observed locations. 
Then, Rr

m,D,α
 becomes Rm,D,α, the full covariance matrix, and [R

m,D
k
,η
]−1 

becomes [Rm,D,α]−1 (note that because they have the same model 
type and distance matrix, η is equivalent to α), the inverse of the full 
covariance matrix. The inverse cancels one of the full covariance 
matrices, so in Equation 14, σ2

p
Rm,D,α[Rm,D,α]

−1[Rm,D,α]
� = σ2

p
Rm,D,α, 

which is the n × n symmetric covariance matrix without any reduc-
tion in rank. By using the inverse, the formulation in Equation 14 
allows us to recover a typical covariance matrix as the knots be-
come equal to the observed locations. My approach will be that G 
in Equation 12 is [R

m,D
k
,η
]−1, but note that any other positive definite 

matrix could be used for G, including G = I.
4.  It is not necessary to use reduced rank. The full covariance matri-

ces in Equation 14 could be used, including the inverse of the 
Euclidean distance covariance matrix sandwiched between the 
linear distance covariance matrices, but see the next item.

5.  In addition to allowing non-Euclidean distances in the random-
effects design matrix, Rr

m,A,α
, there is a computational advantage 

to using rank reduction in Equation 14. Notice that Σ is a 
239 × 239 matrix, and likelihood-based methods (such as maxi-
mum likelihood, or restricted maximum likelihood) require the 
inverse of Σ. Computing matrix inverses is computationally ex-
pensive, and grows exponentially with the dimension of the ma-
trix (as a cube of the number of locations). However, the 
reduced-rank formulation allows an inverse of Σ that is reduced 
to the size of the rank reduction by using the Sherman–Morrison–
Woodbury result (Sherman & Morrison, 1949; Woodbury, 1950); 
see an excellent review by Henderson and Searle (1981). In our 
case, if we choose 120 knots, then the inverse would be for a 
120 × 120 matrix rather than a 239 × 239 matrix. The number of 
knots is a decision based on speed vs. precision. Generally, the 
model will perform better with more knots, and a good guideline 
is to use as many knots as is computationally feasible. I used 120 
knots, approximately half of all 239 locations, to illustrate that a 
reduction in rank still works well.

In what follows, I will always choose a single model form, m, across 
all three components of Rr

m,A,α
[R

m,D
k
,η
]−1[R

r

m,A,α
]�, and I will always use 

the linear network distance matrix L for A, but allow the autocorrela-
tion parameter α to be different from η. For example, the reduced-rank 
exponential model that uses linear network distance has a covariance 
matrix

For this covariance matrix, there are four parameters to estimate; 
σ2
p
, α, η and σ2

0
. In what follows, I fit all reduced-rank models using REML.

(13)Y=1μ+ [R
r

m,A,α
]�+�,

(14)�=σ2
p
R
r

m,A,α
[R

m,D
k
,η
]−1[R

r

m,A,α
]� +σ2

0
I

(15)�=σ2
p
R
r

e,L,α
[R

e,D
k
,η
]−1[R

r

e,L,α
]� +σ2

0
I.
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3.4 | Re-analysis of the Ladle et al. (2017b) data

The re-analysis of Ladle et al. (2017b) is given in Table 1.  
The data were downloaded from the Dryad Repository  
https://doi.org/10.5061/dryad.62t17. To evaluate models, I use four 
criteria, the first being AIC (Akaike, 1973; Burnham & Anderson, 
2002), which assumes that the data were distributed as a multivari-
ate normal likelihood with a spatial covariance matrix (for an exam-
ple using spatial models, see Hoeting, Davis, Merton, & Thompson, 
2006). AIC was only used when fitting with REML.

The rest of the criteria are based on leave-one-out cross-val-
idation. Let y−i be the vector of observed data with the ith ob-
servation removed. Then, using y−i and the estimated covariance 

matrix, with the ith row and column removed, the ith observation 
is predicted, denoted as ̂Yi, with Equation 6, and its prediction 
standard error, denoted as se( ̂Yi), is estimated with (the square root 
of) Equation 7. The correlation was computed on the set of pairs 
{(yi,

̂Yi);i = 1,… ,n} for all i and reported as Corr in Table 1. Root-
mean-squared prediction error (RMSPE, Table 1) was computed 
as the square root of the mean of (yi− ̂Yi)

2 for all i. The coverage 
of the 90% prediction interval (CI90, Table 1) was the proportion 
of times that the interval [ ̂Yi−1.645se( ̂Yi),

̂Yi+1.645se( ̂Yi)] contained 
the true value yi for all i.

First, I consider the fitted exponential model reported in Ladle 
et al. (2017b) (the first row in Table 1). The fitted model, which did 
not have a nugget effect, along with the empirical semivariogram, 

TA B L E  1   Model fits and cross-validations statistics using the non-motorized data found in Ladle et al. (2017b). Models are given in 
Equation 3, and Y in the RR column indicates the reduced-rank version. The distance matrix used (Lin for linear, Euc for Euclidean) has 
column heading Dis. Meth column is fitting method, either weighted least squares (WLS), CWLS or restricted maximum likelihood (REML), as 
described in Supplementary Material. Parameter estimates are given with column headings indicating parameter, using notation from 
Equations 2, 3, and 14. A blank indicates it was not part of the model. The column heading PD has a Y if the fitted covariance matrix was 
positive definite, otherwise it is blank. The Nnv column shows the number of negative prediction standard errors from cross-validation. On 
the right are Akaike information criteria (AIC) and summary statistics from cross-validation, showing Corr, the correlation between true and 
predicted values, root-mean-squared prediction errors (RMSPE) and proportion of times that the 90% prediction interval covered the true 
value (CI90). The last two rows, below the solid line, are a single variance component model including a reduced-rank component, and a 
Euclidean distance component

Model RR Dis Meth σ2
p

α η σ2
0

PD Nnv AIC Corr RMSPE CI90

Exp Lin 5.1 14.2 Y 0 0.639 1.594 0.699

Exp Lin CWLS 4.9 28.6 1.1 Y 0 0.672 1.483 0.866

Sph Lin WLS 4.8 36.4 31

Sph Lin CWLS 3.6 43.7 1.2 Y 0 0.659 1.507 0.858

Gau Lin WLS 4.7 15.7 97

Gau Lin CWLS 3.2 22.3 1.8 0 0.603 1.692 0.782

Cau Lin WLS 5.1 12.1 121

Cau Lin CWLS 4.1 21.8 1.7 Y 0 0.613 1.593 0.828

Hol Lin WLS 4.2 7.9 125

Hol Lin CWLS 2.5 8.9 1.8 1

Exp Euc CWLS 4.6 15.9 1.0 Y 0 0.664 1.496 0.883

Sph Euc CWLS 3.6 30.0 1.3 Y 0 0.665 1.492 0.883

Gau Euc CWLS 3.1 15.1 1.8 Y 0 0.640 1.537 0.866

Cau Euc CWLS 3.9 14.1 1.7 Y 0 0.654 1.512 0.879

Hol Euc CWLS 2.5 6.2 1.9 Y 0 0.617 1.573 0.866

Exp Euc REML 3.0 11.4 1.4 Y 0 906.71 0.665 1.492 0.900

Sph Euc REML 3.3 27.9 1.5 Y 0 905.23 0.668 1.488 0.887

Gau Euc REML 2.2 9.0 1.8 Y 0 907.02 0.663 1.496 0.891

Cau Euc REML 2.7 9.5 1.8 Y 0 906.52 0.661 1.499 0.900

Hol Euc REML 2.0 5.7 2.3 Y 0 918.30 0.621 1.567 0.912

Exp Y Lin REML 1.6 12.5 3.4 1.3 Y 0 901.61 0.674 1.475 0.891

Sph Y Lin REML 1.4 26.0 9.4 1.3 Y 0 902.21 0.678 1.468 0.887

Gau Y Lin REML 1.2 10.7 3.6 1.3 Y 0 905.76 0.671 1.481 0.883

Cau Y Lin REML 1.5 9.8 3.5 1.3 Y 0 901.58 0.674 1.476 0.891

Sph Y Lin REML 0.8 16.7 10.1 1.4 Y 0 903.35 0.686 1.453 0.895

Sph Euc 2.0 27.6

https://doi.org/10.5061/dryad.62t17
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is shown as the dashed line for the exponential model in Figure 5a. 
Of particular interest is the fact that the CI90 for the model in Ladle 
et al. (2017b) covers the true value only 69.9% of the time (Table 1). 
This is due to the lack of a nugget effect. The covariance matrix 
is forcing high autocorrelation among sites that are close together, 
and hence the prediction variance assumes prediction is better than 
it really is, which results in prediction standard errors that are es-
timated to be too small. When semivariograms are fitted without 
a nugget effect, they should be checked carefully for fitting and 
prediction instabilities. Models without nugget can lead to compu-
tational instability when inverting the covariance matrix (Ababou, 
Bagtzoglou, & Wood, 1994; Diamond & Armstrong, 1984; O’Dowd, 
1991; Posa, 1989). If the modeller insists on excluding the nugget ef-
fect (as often occurs when using kriging to approximate determinis-
tic computer models, for example, Martin & Simpson, 2005), a small 
nugget effect can be added to the diagonal (e.g. 1 × 10−6 was used 
in Booker et al. 1999) to improve computational stability. Problems 
can occur due to model type (Gaussian autocorrelation is the worst) 
and the arrangement of the spatial locations, when “near duplicate” 

locations can cause apparently singular matrices for computational 
purposes (Bivand, Pebesma, & Gomez-Rubio, 2008, p. 220).

I fit all other models in Equation 3, both with and without a nugget 
effect, where linear network distance was used in place of Euclidean 
distance. These form rows 2–10 in Table 1. REML was not used to fit 
these models because REML depends on the inverse of the covariance 
matrix, which was unstable for these models because their covariance 
matrices were not positive definite. For models without a nugget, 
CWLS, which adds weight to empirical semivariogram values with 
smaller distances, provided poor fits due to the lack of congruence be-
tween the model being forced to zero at the origin, and the empirical 
semivariogram values. Thus, all models without a nugget effect were 
fitted by WLS, and all models with a nugget effect were fitted with 
CWLS (Table 1, Figure 5a). The results show that, other than the expo-
nential model, all fitted models without a nugget effect had negative 
eigenvalues and, when using cross-validation, produced substantial 
numbers of negative values for prediction standard errors when using 
Equation 7 (31 for spherical, 97 for Gaussian, 121 for Cauchy and 125 
for hole-effect). Adding a nugget effect helped, but only exponential, 
spherical and Cauchy models had positive definite covariance matri-
ces. However, CI90 for all three models were well below the nominal 
90% level. Of particular interest is the hole-effect model with a nugget 
effect. It would appear to have the best fit visually (Figure 5a), yet even 
when a nugget effect is included, it produced a cross-validation pre-
diction with a negative prediction standard error (Table 1).

All models in Equation 3 were fitted with both CWLS and REML 
using Euclidean distance (Table 1, Figure 5b). As expected, all had 
positive definite covariance matrices. In all cases, models fitted 
with REML outperformed those same model types when fitted with 
CWLS; that is, the exponential model fitted with REML had lower 
RMPSE than the exponential model fitted with CWLS, and models 
fitted with REML had CI90 closer to 90% than those same models 
fitted with CWLS.

Four models in Table 1 used the reduced-rank approach, based 
on exponential, spherical, Gaussian and Cauchy autocorrelation 
models in Equation 3 as used in Equation 14 (the hole-effect model 
always performed poorly, so was eliminated). The estimated covari-
ance parameters for each of the models are shown in Table 1. Note 
that all reduced-rank models outperformed all other models in terms 
of RMSPE, and they also had lower AIC than their Euclidean dis-
tance counterparts. CI90 for the reduced-rank models was always 
above 88%, so very close to the nominal 90%. Not only were the 
reduced-rank models the best performers, they were all completely 
permissible and computationally faster than the Euclidean distance 
models. There was little actual difference among the reduced-rank 
models in performance.

The results in Table 1 show a clear advantage for the reduced-rank 
linear network distance models, but the actual gain in performance is 
rather small. That is, prediction intervals are valid for both Euclidean 
distance and reduced-rank models, but the reduced-rank models 
have prediction standard errors that are about 2% shorter than 
those for Euclidean distance. Next, I discuss Euclidean distance and 
network distance models in more detail.

F I G U R E  5    Empirical semivariograms with various fits. The 
solid black circles are empirical semivariogram values in distance 
classes, with size proportional to number of pairs of points in each 
distance class. (a) Linear network distances, where the dashed lines 
are fitted models without a nugget effect using weighted least 
squares (WLS), and the solid lines are fitted models with a nugget 
effect using CWLS. (b) Euclidean distances, where the solid lines 
use CWLS, and the dashed lines use restricted maximum likelihood 
(REML) (which are not actually fit to the empirical semivariograms)
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3.5 | Euclidean distance vs. linear network distance

Representing a road, stream etc., as a linear network in ecology, 
such as the trail network analysed above, is a mathematical topol-
ogy that is embedded in 2-D (or 3-D) Euclidean space. As such, 
variables measured on linear networks may be influenced by not 
only processes and patterns that operate strictly within the linear 
network but also processes and patterns that operate in Euclidean 
space. For example, human activity on trails might be affected by 
slope, aspect, vegetation, a beautiful view etc., that operate more 
in 2-D space than linear network space. On the other hand, travel 
times from parking areas will affect human activity, and operate 
purely within linear network space. My view, and that of others, 
(Dale & Fortin, 2010; Peterson et al., 2013) is that linear networks 
embedded in 2-D space have a duality. Moreover, a pattern occur-
ring on one (say the linear network), can, and often will, be cap-
tured in the other (say Euclidean) purely through the correlation 
between their distances. For example, Figure 6 shows a scatter 
plot of Euclidean distances and linear network distances for all 
pairwise sites in the data from Ladle et al. (2017b). In this case, it 
will be very difficult to see a large advantage in linear network dis-
tance models over Euclidean distance models, or vice versa, which 
is confirmed by Table 1.

Nevertheless, we can model both linear network distance and 
Euclidean distance simultaneously as a variance component model. 
Consider a combination of Equations 1 and 13, where the re-
duced-rank construction is added, rather than replacing Euclidean 
distance, so

where the random effect Z has a Euclidean distance covariance ma-
trix. For example, I fit a model that has a covariance matrix

where Rs,D,ϕ is an autocorrelation matrix based on a spherical 
model with full Euclidean distance matrix D among all sites, range 
parameter ϕ and σ2

Euc
 is the Euclidean distance variance component. 

The fitted model parameters are shown as the last two rows in 
Table 1, with the first row the linear network distance component, 
and the last row the Euclidean distance component. Combining 
both linear network distance and Euclidean distance provided the 
best predictions overall, with the lowest RMSPE and good CI90. 
According to AIC = 903.35, the variance component model does 
not warrant estimating the two extra parameters because AIC was 
lower for exponential, spherical and Cauchy reduced-rank-only 
models, however, cross-validation summaries indicated otherwise. 
A variance component approach, combining covariance models 
based on linear networks, with those based on Euclidean distance, 
was also recommended for stream network models (Ver Hoef & 
Peterson, 2010), and is an intuitively appealing idea that puts both 
components in the model and lets the data decide on their relative 
contributions.

4  | DISCUSSION AND CONCLUSIONS

I have shown that a reduced-rank method can be used to create 
permissible models that guarantee positive definite covariance 
matrices for spatial models using linear network distance. The 
reduced-rank method is very flexible for various spatial topolo-
gies and distance metrics, and also has computational advantages. 
For the data from Ladle et al. (2017b), there was a distinct ben-
efit, by lowering RMSPE and AIC, for linear network distance over 
Euclidean distance models, but the best model combined both dis-
tance metrics (Table 1). For the reduced-rank models, considera-
tion must be given to the number and placement of knots (Gelfand, 
Banerjee, & Finley, 2012; Ruppert et al., 2003, which continues to 
be an area of active research.

While it is possible to fit impermissible models (Table 1) and then 
check the fitted model to ensure that the covariance matrix is posi-
tive definite, this practice is discouraged in traditional geostatistics. 
For example, note that some models (Table 1) happened to have pos-
itive definite covariance matrices for the specific set of locations and 
estimated α values, resulting in cross-validation predictions that had 
positive variance estimates. However, as discussed for Equation 9, 
when predicting at locations where data were not collected, a larger 
covariance matrix must be considered. This can be computationally 
expensive or impossible to check (it is computationally expensive to 
compute eigenvalues) if there are thousands of prediction locations, 
as there were in Ladle et al. (2017b). Much simpler, and safer, is to 
choose permissible models/methods that guarantee positive defi-
nite covariance matrices for all spatial configurations and model pa-
rameter values.Y=1μ+Z+ [R

r
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F I G U R E  6    Scatter plot of Euclidean distance vs. linear network 
distance for real data example. The points are semitransparent to 
reveal a strong correlation between distance metrics
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The reduced-rank methods are not the only approach for devel-
oping models for non-Euclidean distance metrics, as I reviewed ear-
lier. The larger point of Ladle et al. (2017b) is important. Scientists 
are realizing that Euclidean distance may not represent ecologically 
relevant distance. New methods using non-Euclidean distance pro-
vide exciting research opportunities, but it requires collaboration 
between statisticians and ecologists to ensure statistical models 
have appropriate properties.

ACKNOWLEDG EMENTS

I wish to thank Dr. Andrew Ladle for providing road and trail shape 
files. The project received financial support from the National Marine 
Fisheries Service, NOAA. The findings and conclusions in the paper of 
the author do not necessarily represent the views of the reviewers nor 
the National Marine Fisheries Service, NOAA. Any use of trade, product 
or firm names does not imply an endorsement by the U.S. Government.

DATA AND CODE ACCE SSIBILIT Y

Original data from Ladle et al. (2017b) were made available at the 
Dryad Digital Repository https://doi.org/10.5061/dryad.62t17. An R 
(R Core Team, 2017) package called KrigLinCaution was created 
that contains all data, code and analyses. This manuscript was created 
using knitr (Xie, 2014, 2015, 2016), and the manuscript combining 
LaTeX and R code is also included in the package. The package can 
be downloaded at https://github.com/jayverhoef/KrigLinCaution.git 
(DOI 10.5281/zenodo.1146098) with instructions for installing the 
package.

ORCID 

Jay M. Ver Hoef  http://orcid.org/0000-0003-4302-6895  

R E FE R E N C E S

Ababou, R., Bagtzoglou, A. C., & Wood, E. F. (1994). On the condition 
number of covariance matrices in kriging, estimation, and simula-
tion of random fields. Mathematical Geology, 26, 99–133. https://doi.
org/10.1007/bf02065878

Akaike, H. (1973). Information theory and an extension of the maximum 
likelihood principle. In B. Petrov, & F. Csaki (Eds.), Second international 
symposium on information theory (pp. 267–281). Budapest, Hungary: 
Akademiai Kiado.

Bakka, H., Vanhatalo, J., Illian, J., Simpson, D., & Rue, H. (2016). Accounting 
for physical barriers in species distribution modeling with non-sta-
tionary spatial random effects. arXiv preprint arXiv:1608.03787.

Banerjee, S. (2005). On geodetic distance computations in 
spatial modeling. Biometrics, 61, 617–625. https://doi.
org/10.1111/j.1541-0420.2005.00320.x

Banerjee, S., Gelfand, A. E., Finley, A. O., & Sang, H. (2008). Gaussian pre-
dictive process models for large spatial data sets. Journal of the Royal 
Statistical Society: Series B (Statistical Methodology), 70, 825–848. 
https://doi.org/10.1111/j.1467-9868.2008.00663.x

Barry, R. P., & Ver Hoef, J. M. (1996). Blackbox kriging: Spatial predic-
tion without specifying variogram models. Journal of Agricultural, 

Biological, and Environmental Statistics, 1, 297–322. https://doi.
org/10.2307/1400521

Bivand, R. S., Pebesma, E. J., & Gomez-Rubio, V. (2008). Applied spatial 
data analysis with R. New York, NY: Springer. Retrieved from http://
www.asdar-book.org/.

Booker, A. J., Dennis Jr, J., Frank, P. D., Serafini, D. B., Torczon, V., & 
Trosset, M. W. (1999). A rigorous framework for optimization of ex-
pensive functions by surrogates. Structural Optimization, 17, 1–13. 
https://doi.org/10.1007/s001580050031

Bradburd, G. S., Ralph, P. L., & Coop, G. M. (2013). Disentangling the 
effects of geographic and ecological isolation on genetic differenti-
ation. Evolution, 67, 3258–3273. https://doi.org/10.1111/evo.12193

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel 
inference: A practical information-theoretic approach. New York, NY: 
Springer-Verlag Inc.

Chiles, J.-P., & Delfiner, P. (1999). Geostatistics: Modeling spatial uncer-
tainty. New York, NY: John Wiley & Sons.

Conn, P. B., Johnson, D. S., Ver Hoef, J. M., Hooten, M. B., London, J. 
M., & Boveng, P. L. (2015). Using spatiotemporal statistical models 
to estimate animal abundance and infer ecological dynamics from 
survey counts. Ecological Monographs, 85, 235–252. https://doi.
org/10.1890/14-0959.1

Cressie, N. (1985). Fitting models by weighted least squares. Journal of 
the International Association for Mathematical Geology 17, 563–586.

Cressie, N. (1990). The origins of kriging. Mathematical Geology 22, 239–
252. https://doi.org/10.1007/bf00889887

Cressie, N. A. C. (1993). Statistics for spatial data, revised edition. New 
York, NY: John Wiley & Sons.

Cressie, N., & Johannesson, G. (2008). Fixed rank kriging for very large 
spatial data sets. Journal of the Royal Statistical Society, Series B, 70, 
209–226. https://doi.org/10.1111/j.1467-9868.2007.00633.x

Cressie, N., & Lahiri, S. N. (1996). Asymptotics for REML estimation of spa-
tial covariance parameters. Journal of Statistical Planning and Inference, 
50, 327–341. https://doi.org/10.1016/0378-3758(95)00061-5

Cressie, N., & Majure, J. J. (1997). Spatio-temporal statistical modeling 
of livestock waste in streams. Journal of Agricultural Biological and 
Environmental Statistics, 2, 24–47. https://doi.org/10.2307/1400639

Cressie, N., Frey, J., Harch, B., & Smith, M. (2006). Spatial prediction on 
a river network. Journal of Agricultural, Biological, and Environmental 
Statistics, 11, 127–150. https://doi.org/10.1198/108571106x110649

Curriero, F. C. (2006). On the use of non-euclidean distance measures 
in geostatistics. Mathematical Geology, 38, 907–926. https://doi.
org/10.1007/s11004-006-9055-7

Dale, M., & Fortin, M.-J. (2010). From graphs to spatial graphs. Annual 
Review of Ecology, Evolution, and Systematics, 41, 21. https://doi.
org/10.1146/annurev-ecolsys-102209-144718

Diamond, P., & Armstrong, M. (1984). Robustness of variograms and 
conditioning of kriging matrices. Mathematical Geology, 16, 809–822. 
https://doi.org/10.1007/bf01036706

Ecker, M. D., & Gelfand, A. E. (1997). Bayesian variogram modeling 
for an isotropic spatial process. Journal of Agricultural, Biological, 
and Environmental Statistics pages, 2, 347–369. https://doi.
org/10.2307/1400508

Gandin, L. S. (1963). Objective analysis of meteorological fields, (vol. 
242). Gidrometeorologichoskoe Izdatel'stvo (GIMIZ), Leningrad, 
(translated by Israel Program for Scientific Translations Jerusalem, 
1965).

Gardner, B., Sullivan, P. J., & Lembo Jr., A. J. (2003). Predicting stream 
temperatures: Geostatistical model comparison using alternative 
distance metrics. Canadian Journal of Fisheries and Aquatic Sciences, 
60, 344–351. https://doi.org/10.1139/f03-025

Gelfand, A. E., Banerjee, S., & Finley, A. O. (2012). Spatial design for knot 
selection in knot-based dimension reduction models. In J. Mateu, & 
W. G. Müller (Eds.), Spatio-temporal design: Advances in efficient data 
acquisition (pp. 142–169). Chichester, UK: John Wiley & Sons, Ltd.

https://doi.org/10.5061/dryad.62t17
https://github.com/jayverhoef/KrigLinCaution.git
http://orcid.org/0000-0003-4302-6895
http://orcid.org/0000-0003-4302-6895


1612  |    Methods in Ecology and Evolu
on VER HOEF

Gneiting, T. (2013). Strictly and non-strictly positive definite 
functions on spheres. Bernoulli 19, 1327–1349. https://doi.
org/10.3150/12-bejsp06

Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New 
York, NY: Oxford University Press.

Guillot, G., Schilling, R. L., Porcu, E., & Bevilacqua, M. (2014). Validity 
of covariance models for the analysis of geographical varia-
tion. Methods in Ecology and Evolution, 5, 329–335. https://doi.
org/10.1111/2041-210x.12167

Hefley, T. J., Broms, K. M., Brost, B. M., Buderman, F. E., Kay, S. L., Scharf, 
H. R., … Hooten, M. B. (2016). The basis function approach for model-
ing autocorrelation in ecological data. Ecology, 98, 632–646. https://
doi.org/10.1002/ecy.1674

Henderson, H., & Searle, S. R. (1981). On deriving the inverse of a sum of 
matrices. SIAM Review, 50, 53–60. https://doi.org/10.1137/1023004

Heyde, C. C. (1994). A quasi-likelihood approach to the REML estimating 
equations. Statistics & Probability Letters, 21, 381–384. https://doi.
org/10.1016/0167-7152(94)00035-2

Higdon, D. (1998). A process-convolution approach to modelling tempera-
tures in the North Atlantic Ocean (Disc: P191–192). Environmental 
and Ecological Statistics, 5, 173–190.

Higdon, D., Swall, J., & Kern, J. (1999). Non-stationary spatial modeling. 
In J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. Smith (Eds.), Bayesian 
statistics 6–Proceedings of the sixth valencia international meeting (pp. 
761–768). Oxford, UK: Clarendon Press [Oxford University Press].

Hoeting, J. A., Davis, R. A., Merton, A. A., & Thompson, S. E. (2006). 
Model selection for geostatistical models. Ecological Applications, 16, 
87–98. https://doi.org/10.1890/04-0576

Jensen, O. P., Christman, M. C., & Miller, T. J. (2006). Landscape-based 
geostatistics: A case study of the distribution of blue crab in ches-
apeake bay. Environmetrics, 17, 605–621. https://doi.org/10.1002/
env.767

Journel, A. G., & Huijbregts, C. W. (1978). Mining geostatistics. London, 
UK: Academic Press.

Kaluzny, S. P., Vega, S. C., Cardoso, T. P., & Shelly, A. A. (1998). Chapter 
4, Analyzing geostatistical data. In S+SpatialStats: Users manual for 
Windows and UNIX (pp. 67–109). New York, NY: Springer.

Ladle, A., Avgar, T., Wheatley, M., & Boyce, M. S. (2017a). 
Corrigendum. Methods in Ecology and Evolution. https://doi.
org/10.1111/2041-210X.12905

Ladle, A., Avgar, T., Wheatley, M., & Boyce, M. S. (2017b). Predictive 
modelling of ecological patterns along linear-feature net-
works. Methods in Ecology and Evolution, 8, 329–338. https://doi.
org/10.1111/2041-210x.12660

Lin, G.-F., & Chen, L.-H. (2004). A spatial interpolation method based on 
radial basis function networks incorporating a semivariogram model. 
Journal of Hydrology, 288, 288–298. https://doi.org/10.1016/j.
jhydrol.2003.10.008

Lindgren, F., Rue, H., & Lindström, J. (2011). An explicit link between 
Gaussian fields and Gaussian Markov random fields: The stochastic 
partial differential equation approach. Journal of the Royal Statistical 
Society: Series B (Statistical Methodology) 73, 423–498. https://doi.
org/10.1111/j.1467-9868.2011.00777.x

Little, L. S., Edwards, D., & Porter, D. E. (1997). Kriging in estuaries: 
As the crow flies, or as the fish swims?. Journal of Experimental 
Marine Biology and Ecology, 213, 1–11. https://doi.org/10.1016/
s0022-0981(97)00006-3

MacQueen, J. B. (1967). Some methods for classification and analysis 
of multivariate observations. In L. M. L. Cam, & J. Neyman (Eds.), 
Proceedings of the fifth Berkeley symposium on mathematical statistics 
and probability  (vol. 1, pp. 281–297).  Berkeley, CA: University of 
California Press.

Martin, J. D., & Simpson, T. W. (2005). Use of kriging models to approx-
imate deterministic computer models. AIAA Journal, 43, 853–863. 
https://doi.org/10.2514/1.8650

Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58, 
1246–1266. https://doi.org/10.2113/gsecongeo.58.8.1246

McIntyre, J., & Barry, R. P. (2017). A lattice-based smoother for regions 
with irregular boundaries and holes. Journal of Computational and 
Graphical Statistics, https://doi.org/10.1080/10618600.2017.13759
35

Miller, D. L., & Wood, S. N. (2014). Finite area smoothing with generalized 
distance splines. Environmental and Ecological Statistics, 21, 715–731. 
https://doi.org/10.1007/s10651-014-0277-4

O’Dowd, R. (1991). Conditioning of coefficient matrices of ordinary krig-
ing. Mathematical Geology, 23, 721–739. https://doi.org/10.1007/
bf02082533

Okabe, A., & Sugihara, K. (2012). Spatial analysis along networks: Statistical 
and computational methods. Chichester, UK: John Wiley & Sons.

Patterson, H. D. & Thompson, R. (1971). Recovery of inter-block informa-
tion when block sizes are unequal. Biometrika, 58, 545–554. https://
doi.org/10.1093/biomet/58.3.545

Patterson, H., & Thompson, R. (1974). Maximum likelihood estimation of 
components of variance. In L. C. A. Corsten, & T. Postelnicu (Eds.), 
Proceedings of the 8th international biometric conference (pp. 197–
207). Washington DC: Biometric Society.

Peterson, E. E., Ver Hoef, J. M., Isaak, D. J., Falke, J. A., Fortin, M.-
J., Jordan, C., … Wenger, S. J. (2013). Stream networks in space: 
Concepts, models, and synthesis. Ecology Letters 16, 707–719.

Posa, D. (1989). Conditioning of the stationary kriging matrices for some 
well-known covariance models. Mathematical Geology, 21, 755–765. 
https://doi.org/10.1007/bf00893320

R Core Team. (2017). R: A language and environment for statistical com-
puting. Vienna, Austria: R Foundation for Statistical Computing. 
Retrieved from http://www.R-project.org.

Ramsay, T. (2002). Spline smoothing over difficult regions. Journal of the 
Royal Statistical Society: Series B (Statistical Methodology), 64, 307–
319. https://doi.org/10.1111/1467-9868.00339

Rathbun, S. L. (1998). Spatial modelling in irregularly shaped re-
gions: Kriging estuaries. Environmetrics, 9, 109–129. https://doi.
org/10.1111/1467-9868.00339

Rue, H., Martino, S., & Chopin, N. (2009). Approximate bayesian in-
ference for latent gaussian models by using integrated nested 
laplace approximations. Journal of the Royal Statistical Society: 
Series B (Statistical Methodology), 71, 319–392. https://doi.org/10. 
1111/j.1467-9868.2008.00700.x.

Ruppert, D., Wand, M. P., & Carroll, R. J. (2003). Semiparametric regres-
sion. Cambridge, UK: Campbridge University Press.

Sangalli, L. M.,  Ramsay, J. O., & Ramsay, T. O.  (2013). Spatial spline regres-
sion models. Journal of the Royal Statistical Society: Series B (Statistical 
Methodology), 75, 681–703. https://doi.org/10.1111/rssb.12009

Schabenberger, O., & Gotway, C. A. (2005). Statistical methods for spatial 
data analysis. Boca Raton, FL: Chapman Hall/CRC.

Selby, B., & Kockelman, K. M. (2013). Spatial prediction of traffic levels 
in unmeasured locations: Applications of universal kriging and geo-
graphically weighted regression. Journal of Transport Geography, 29, 
24–32. https://doi.org/10.1016/j.jtrangeo.2012.12.009

Sherman, J., & Morrison, W. J. (1949). Adjustment of an inverse matrix 
corresponding to changes in the elements of a given column or a 
given row of the original matrix. Annals of Mathematical Statistics, 21, 
124–127. https://doi.org/10.1214/aoms/1177729893

Shiode, N., & Shiode, S. (2011). Street-level spatial interpolation using 
network-based IDW and ordinary kriging. Transactions in GIS, 15, 
457–477. https://doi.org/10.1111/j.1467-9671.2011.01278.x

Ver Hoef, J. M., & Barry, R. P. (1998). Constructing and fitting models 
for cokriging and multivariable spatial prediction. Journal of Statistical 
Planning and Inference, 69, 275–294. https://doi.org/10.1016/
s0378-3758(97)00162-6

Ver Hoef, J. M., & Jansen, J. K. (2015). Estimating abundance from 
counts in large data sets of irregularly-spaced plots using spatial 



     |  1613Methods in Ecology and Evolu
onVER HOEF

basis functions. Journal of Agricultural, Biological, and Environmental 
Statistics, 20, 1–27. https://doi.org/10.1007/s13253-014-0192-z

Ver Hoef, J. M., & Peterson, E. (2010). A moving average approach for 
spatial statistical models of stream networks (with discussion). 
Journal of the American Statistical Association, 105, 6–18. https://doi.
org/10.1198/jasa.2009.ap08248

Ver Hoef, J. M., Cressie, N., & Barry, R. P. (2004). Flexible spatial models 
for kriging and cokriging using moving averages and the fast Fourier 
transform (FFT). Journal of Computational and Graphical Statistics, 13, 
265–282. https://doi.org/10.1198/1061860043498

Ver Hoef, J. M., Peterson, E. E., & Theobald, D. (2006). Spatial statistical 
models that use flow and stream distance. Environmental and Ecological 
Statistics, 13, 449–464. https://doi.org/10.1007/s10651-006-0022-8

Wang, H., & Ranalli, M. G. (2007). Low-rank smoothing splines 
on complicated domains. Biometrics 63, 209–217. https://doi.
org/10.1111/j.1541-0420.2006.00674.x

Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scien-
tists. Chichester, UK: John Wiley & Sons.

Wikle, C. K. (2002). A kernel-based spectral model for non-gaussian spa-
tio-temporal processes. Statistical Modelling, 2, 299–314. https://doi.
org/10.1191/1471082x02st036oa

Wikle, C. K., & Cressie, N. (1999). A dimension-reduced approach to 
space-time Kalman filtering. Biometrika, 86, 815–829. https://doi.
org/10.1093/biomet/86.4.815

Wood, S. N., Bravington, M. V., & Hedley, S. L. (2008). Soap film smoothing. 
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 
70, 931–955. https://doi.org/10.1111/j.1467-9868.2008.00665.x.

Woodbury, M. A. (1950). Inverting modified matrices. Memorandum 
Report 42, Princeton NJ: Statistical Research Group

Xie, Y. (2014). Knitr: A comprehensive tool for reproducible research in 
R. In V. Stodden, F. Leisch, & R. D. Peng (Eds.), Implementing repro-
ducible computational research (pp. 3–32). Boca Raton, FL: Chapman 
and Hall/CRC. Retrieved from http://www.crcpress.com/product/
isbn/9781466561595. ISBN 978-1466561595.

Xie, Y. (2015). Dynamic Documents with R and knitr (2nd ed.). Boca Raton, 
FL: Chapman and Hall/CRC. Retrieved from http://yihui.name/knitr/. 
ISBN 978-1498716963.

Xie, Y. (2016). Knitr: A general-purpose package for dynamic re-
port generation in R. Retrieved from http://yihui.name/knitr/.
Rpackageversion1.15.1.

SUPPORTING INFORMATION

Additional supporting information may be found online in the 
Supporting Information section at the end of the article.

How to cite this article: Ver Hoef JM. Kriging models for linear 
networks and non- Euclidean distances: Cautions and solutions. 
Methods Ecol Evol. 2018;9:1600–1613.  
https://doi.org/10.1111/2041-210X.12979

https://doi.org/10.1111/2041-210X.12979

