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ABSTRACT

River ecosystem metabolism (REM) is a promising

cost-effective measure of ecosystem functioning, as

it integrates many different ecosystem processes

and is affected by both rapid (primary productivity)

and slow (organic matter decomposition) energy

channels of the riverine food web. We estimated

REM in 41 river reaches in Deva-Cares catchment

(northern Spain) during the summer period. We

used oxygen mass-balance techniques in which

primary production and ecosystem respiration were

calculated from oxygen concentration daily curves.

Then, we used recently developed spatial statistical

methods for river networks based on covariance

structures to model REM to all river reaches within

the river network. From the observed data and the

modeled values, we show how REM spatial pat-

terns are constrained by different river reach

characteristics along the river network. In general,

the autotrophy increases downstream, although

there are some reaches associated to groundwater

discharges and to different human activities (de-

forestation or sewage outflows) that disrupt this

pattern. GPP was better explained by a combina-

tion of ecosystem size, nitrate concentration and

amount of benthic chlorophyll a, whereas ER was

better explained by spatial patterns of GPP plus

minimum water temperatures. The presented

methodological approach improves REM predic-

tions for river networks compared to currently used

methods and provides a good framework to orien-

tate spatial measures for river functioning restora-

tion and for global change mitigation. To reduce

uncertainty and model errors, a higher density of

sampling points should be used and especially in

the smaller tributaries.

Key words: spatial modeling; river ecosystem

metabolism; primary production; ecosystem respi-

ration; ecosystem functioning; river network; vir-

tual watershed; SSN model.

INTRODUCTION

Ecosystem metabolism represents a cornerstone for

ecosystem ecology as it includes the total interre-

lated fluxes that fix (primary production) and

mineralize (respiration) organic carbon (C) of all

autotrophic and heterotrophic organisms in an

ecosystem (Hall 2016). Therefore, river ecosystem

metabolism (REM) that fluctuate along river net-

works is a promising cost-effective measure of

ecosystem functioning, as it integrates many dif-

ferent ecosystem processes and is affected by both
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rapid (primary productivity) and slow (organic

matter decomposition) energy channels of the

riverine food web.

REM is mainly represented by two metabolic

processes, gross primary production (GPP) and

ecosystem respiration (ER). GPP is the total C fixed

by photosynthetic and chemosynthetic aquatic

organisms, and ER is the organic C mineralization

by all autotrophic and heterotrophic aquatic

organisms. The balance of these two processes,

considering ER as a negative flux, is net daily me-

tabolism (NDM). NDM is positive when the

ecosystem is accumulating or exporting organic C

and negative when it is importing organic C (Lovett

and others 2006). Most studies estimating REM

have dealt with river reach scales focusing on an-

nual estimates (for example, Uehlinger 2006;

Dodds and others 2013) or changes along distur-

bance gradients (for example, Collier and others

2013; Aristi and others 2014; Rodrı́guez-Castillo

and others 2017). However, no studies have at-

tempted to upscale REM estimates from different

and separated river reaches to a whole continuous

river network, with the exception of Saunders and

others (2018), who only estimated GPP for a river

network using a multiple linear regression model.

Achieving this will allow improving our knowledge

about the spatial complexity of biogeochemical

patterns and processes in freshwater ecosystems

(McGuire and others 2014).

In addition, producing estimates of REM to entire

river networks will be very important from both a

theoretical and an applied point of view. Theoret-

ically, REM has long been hypothesized to be het-

erotrophic (ER > GPP) in headwaters, changing

toward autotrophy as we move downstream (mid-

order reaches) and reverting the pattern in large

rivers (Vannote and others 1980). Current empiri-

cal studies based on river reach estimates of REM

demonstrate this (McTammany and others 2003;

Hall and others 2016), although there are others

that have found different patterns (Meyer and

Edwards 1990; Young and Huryn 1996). In this

regard, characterizing REM spatial patterns at a

whole river network scale would be very valuable

to better understand the drivers determining spatial

patterns of river ecosystem functioning (see Thorp

and others 2006; McCluney and others 2014).

Moreover, this will also allow estimating the het-

erotrophic–autotrophic balance of a whole river

network integrating REM rates and areas of all the

different river reaches. From an applied point of

view, these advances will help improving carbon

circulation models and understanding the effects of

global change on river functioning (Val and others

2016a, b) and it will assist on prioritizing river

reaches for ecosystem functioning restoration

(Palmer and Febria 2012).

In recent years, there has been a great develop-

ment and improvement of spatial statistical models

(Ver Hoef and others 2006; Ver Hoef and Peterson

2010; Isaak and others 2014; O’Donnell and others

2014). Spatial statistical models resemble tradi-

tional linear models, but allow spatial autocorrela-

tion in the random errors (Peterson and Ver Hoef

2010). Local deviations from the mean are modeled

using the covariance between neighboring sites,

which represents the strength of spatial autocor-

relation between two sites given their separation

distance (that is, Euclidean distance). These type of

models have been frequently applied to terrestrial

ecosystems, but in river ecosystems river reaches

are hierarchically structured in a network, with

nested catchments and river reaches connected by

flow (Campbell Grant and others 2007).

Thus, Euclidean distances might be insufficient

to characterize the spatial dependency of river

reaches, being necessary to include covariance

matrices based on hydrologic distances (that is,

distance along the river network between two

locations). This takes into account the flow-con-

nected and flow-unconnected relationships,

depending on whether or not two points in a river

network share flow (Peterson and Ver Hoef 2010;

Ver Hoef and Peterson 2010). The use of spatial

stream network (SSN) models based on both Eu-

clidean (2D scale) and hydrologic (stream network

scale) distances can represent the spatial configu-

ration, longitudinal connectivity, discharge, or flow

direction characteristics of a river network (Cressie

and others 2006; Ver Hoef and others 2006),

increasing accuracy and validity of statistical

inferences. SSN models have been successfully ap-

plied to model different river ecosystem compo-

nents such as water temperature (for example,

Isaak and others 2014; Ashley Steel and others

2016), water chemistry variables (for example, Ver

Hoef and Peterson 2010; Scown and others 2017)

and fish populations (for example, Isaak and others

2017). However, none has yet tried to model river

functioning rates, as ecosystem metabolism, using

this type of models.

In this study, we aim to (1) explore GPP and ER

spatial patterns and the main factors controlling

these ecosystem processes at a river network scale;

and to (2) model GPP and ER rates for all reaches of

the river network, obtaining the metabolic balance

for the whole river network. Our expectations are

that GPP and ER will increase downstream fol-

lowing the expected increase in their most likely
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control factors: light reaching the streambed and

chlorophyll a concentration in the benthic zone for

GPP; and GPP, river ecosystem biomass and water

temperature for ER (Young and others 2008; Ber-

not and others 2010; Beaulieu and others 2013).

We believe that the overall river network metabolic

balance will be heterotrophic, as the selected river

catchment has a very well developed forest that

provide leaf litter inputs and the area occupied by

low order streams is much higher than the main

principal courses.

METHODS

Study Area

The study area includes the Deva-Cares catchment

(1200 km2), located in northern Spain (Figure 1).

Deva River flows 64 km before draining into the

Cantabrian Sea, Atlantic Ocean. At the mouth, its

interannual averaged flow is 29 m3/s, ranging be-

tween 1.5 and 393 m3/s. Almost half of the catch-

ment area falls within the ‘‘Picos de Europa’’

National Park, which acts as a natural boundary

between the Deva River and its main tributary, the

Cares River (catchment area equal to 495 km2).

The ‘‘Picos de Europa’’ National Park conditions the

catchment geomorphology, with deep and narrow

valleys describing sharp curves (that is, boxed

meanders). Sandstones and shales predominate in

the upper-middle area of the Deva River. In the rest

of the catchment, limestone and karst formations

dominate. The average altitude is about 1100 m.

The climate is quite variable within the catch-

ment. The temperate oceanic climate predominates

(Rivas-Martı́nez and others 2004), mainly on the

coast. Average annual temperature is 14�C, and

precipitation is abundant throughout the year with

a mean of 1300 mm/year, showing maximum

rainfalls in December (150 mm/month) and mini-

mum in July (50 mm/month). There are also

important alpine and Mediterranean areas in inner

regions, where snow precipitation is frequent

above 1000 m.a.s.l. and annual precipitation is

much lower (that is, 600 mm/year). In the area,

several types of vegetation land cover are present,

but beeches and Cantabrian Holm Oaks forests

(36%), heaths (31%) and pastures (25%) domi-

nate the landscape.

The population in the catchment amounts to

almost 22,000 inhabitants, with a low mean pop-

ulation density (18 inhabitants/km2) and unequal

distribution. Economic activities are based on the

agricultural, forestry and services sectors.

Methodological Approach

The main challenges to be addressed when esti-

mating and modeling REM for entire river net-

works are: (1) the need to break down the river

network in relatively homogeneous (size and hy-

draulic characteristics) river reaches types, (2) the

importance of having a wide diversity of predictor

variables, and (3) the need to deal with spatial

autocorrelation in hydrologically connected river

reaches. To accomplish this, we combined a Virtual

Watershed approach with a careful spatial field

design and the use of SSN models (see below).

Virtual Watershed

A Virtual Watershed (sensu Benda and others

2016) was developed to define the river network

and a spatial framework to integrate the predictor

variables data necessary for the SSN models (see

below). The river network was delineated using

flow directions inferred from a 25 m digital eleva-

tion model (DEM) with the NetStream software

(Benda and others 2007). The river network re-

sulted on 3482 river reaches, with an average

length of 500 m (from 16 to 800 m).

Figure 1. Study area and field reach locations (white

points, n = 41). The thickest black line represents the

Deva River and the second thickest one the Cares River.

Dashed lines represent ‘‘Picos de Europa’’ National Park.

Reach codes are also provided for the Deva (D, n = 25)

and for the Cares (C, n = 16) Rivers.

River Network Metabolism



Field Design

Catchment area has been shown as one of the most

direct and important drivers of flow and river reach

hydraulic characteristics for entire river networks

(Rodriguez-Iturbe and others 1992; Rodriguez-

Iturbe and Rinaldo 1997; Dodov and Foufoula-

Georgiou 2004). Therefore, in order to select river

reaches to be surveyed throughout the river net-

work, we grouped all river reaches in six catchment

sizes (< 10 km2, 10–40 km2, 40–150 km2, 150–

400 km2, 400–1000 km2, > 1000 km2). Then we

selected a minimum of four and a maximum of

nine river reaches within each of the six catchment

size categories depending on logistic constrains

(budget, accessibility and time in the field), yielding

a total of 41 river reaches, 25 along the Deva River

and its tributaries, and 16 in the Cares catchment

(Figures 1, 2 and steps 1a and 1b in Figure 3). The

number of sampling sites was below the recom-

mendation of Isaak and others (2017), but close to

the lower limit, allowing to cover and to replicate

most of the river hydraulic variability and river

ecosystem sizes found in the selected river net-

work. In addition, many other recent studies using

SSN models have also used less than 50 sites (for

example, Hoef and others 2006; Money and others

2009; Ashley Steel and others 2016; Xu and others

2016; Marsha and others 2018; Neill and others

2018). Field surveys were carried out during the

summer of 2014 (August–September, low flow

season).

Environmental Data

Environmental data were gathered from different

sources. First, light reaching the stream benthos,

hydraulic characteristics, water quality, and biofilm

attributes were surveyed in the selected 41 river

reaches concurrently with GPP and ER measures.

Second, a set of environmental variables were de-

rived from available GIS layers and linked to the

Virtual Watershed, so that all river reaches were

attributed with relevant information (see below).

Light and Hydraulic Characteristics

Relative light level (Light) was measured using a

HOBO Pendant� Temperature/Light 64 K Data

Logger placed on the river bank facing up. The

location was chosen to measure average light

conditions on the selected river reaches every

5 min for a minimum of 72 h. Percentage of ca-

nopy openness (in opposition to riparian cover)

was estimated by taking a zenith picture with a

fisheye lens and then applying specific software

(Gap Light Analyzer, Frazer and others 1999). Be-

cause we need predictor variables available for all

river reaches in the network, we could not use

these estimates. We then used riparian vegetation

height and forest cover raster data from LIDAR and

satellite images, respectively, derived from previous

studies in the area (Álvarez-Martı́nez and others

2018). We calculated the average vegetation height

and forest cover within a 200 m buffer along every

single river reach. Both variables correlated with

percentage of canopy openness and were used as

predictor variables in subsequent analyses.

Total flow (Q), current velocity (V), water depth

(D), channel width (W) and cross-sectional area (A)

were measured in situ from 5 cross-sectional pro-

files along the sampling reaches with a Sontek’s

FlowTracker Handheld ADV. Water velocity and

depth were estimated by measuring them on in-

creases of 10% of water width on all transects.

Water-surface slope (S) was calculated dividing the

length of the reach by the difference in water-

surface elevation along the reach.

Water Quality Data

The water physicochemical characteristic was esti-

mated according to Standard Methods for the

Examination of Water and Wastewater (APHA and

others 1999). Electric conductivity (EC) and pH

were measured using an YSI 556 Multi-Parameter

Handheld Meter. Water temperature (Tw) and

dissolved oxygen concentration (DO), and air

temperature (Ta) and barometric pressure (P) were

Figure 2. Boxplot for catchment area (km2) according to

the six categories established along the Deva-Cares river

network, northern Spain.
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monitored every 5 min for a minimum of 72 h

using a HOBO Dissolved Oxygen Data Logger and a

HOBO 100-Foot Depth Fresh Water Level Data

Logger, respectively.

One water sample per reach was collected to

determine total suspended solids (TSS), dissolved

organic carbon (DOC), orthophosphate (PO4), total

organic nitrogen (TON), ammonium (NH4), nitrite

(NO2), nitrate (NO3) and silicate (SiO2) concen-

trations. All water samples were preserved in

250 mL polyethylene containers on ice and trans-

ported to the laboratory directly after sampling. TSS

were calculated by filtering samples through pre-

weighted standard glass-fiber filters (1 lm) and

weighing the residue retained on the filter after

dried at 105�C. NO3, NO2, PO4 and SiO2 concen-

trations were determined by continuous flow

analysis and UV spectrophotometry detection

(SEAL AA3 HR AutoAnalyzer). NH4 was estimated

using continuous flow analysis and molecular flu-

orescence spectrophotometric detection (SEAL

AA3 HR AutoAnalyzer). DOC concentration was

determined using catalytic combustion and CO2

detection with a non-dispersive infrared detector

(Shimadzu TOC-V CSH Analyzer). Finally, TON

concentration was measured by catalytic combus-

tion and nitrogen monoxide detection by chemi-

luminescence (Shimadzu TOC-V CSH + TNM-L

Analyzer). Values below the detection limit of these

Figure 3. Methodology of work for the development of this study. The tools applied in each step (white numbers) are

shown in the lower left corner. In the diagram, two work scales are differentiated, sampling points versus all stream

network reaches. REM River Ecosystem Metabolism, GPP gross primary production, ER ecosystem respiration.
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methods were substituted with half of the detection

limit.

Biofilm Characterization

To estimate chlorophyll a (ChlA) and epilithic

biomass (EpB, biofilm organic matter), six cobbles

were randomly collected from 3 runs and 3 pools in

each sampling reach and frozen at - 20�C until

analysis. Then, to extract pigments, these were kept

in 90% acetone at 5�C for 24 h in the dark. Ab-

sorbance was measured with a Hach-Lange DR-

5000 UV-Visible spectrophotometer and pigment

concentration (ChlA) calculated following Stein-

man and others (2007). A revised version of the

Sinsabaugh and others (1991) procedure was used

to determine the EpB. First, the biofilm was re-

moved from the cobbles by brushing and filtered

through a pre-ashed 45-lm glass-fiber filter. Then,

this was dried at 95�C, weighed, incinerated at

550�C for 2 h and reweighed to estimate the ash

free dry mass. In both cases, stone surface area was

estimated by measuring the three longest axes of

the stone and applying the equation developed by

Graham and others (1988). ChlA and EpB were

divided by two as we assumed that only half of the

stone total surface area was exposed to light.

Data Derived from Geographical Information Systems

Environmental variables describing several attri-

butes (climate, topography, land cover, geology

and anthropogenic alterations) were extracted

from existing GIS databases provided by several

national and regional organizations. These data

have already been analyzed and interpolated to our

river network using the NetMap software (Benda

and others 2016) in previous studies (see: Peñas

and others 2014; Álvarez-Cabria and others 2016;

González-Ferreras and others 2016; Table 1).

River Reach Metabolism Estimation

GPP, ER, NDM and production to respiration ratio

(P/R ratio) were calculated following standard

methods (Hauer and Lamberti 2007). According to

this, NDM is the net change in O2 concentration

per day resulting from biological activity and can be

computed as the difference between GPP and ER.

The P/R ratio (GPP/ER) expresses the balance of

these metabolic processes in relative terms. If NDM

is a positive number and P/R ratio is greater than 1,

there is a net addition of energy to the system

(autotrophic state). If the reverse occurs, there is a

net loss of energy from the system (heterotrophic

state).

In this study, metabolic rates were calculated

using the single-station open-channel method. This

method is based on the premise that the change in

DO (DDO) can be attributed to photosynthesis (P),

respiration (R) and gas exchange with the atmo-

sphere (E; see equation 1).

DDO ¼ P�R� E ð1Þ

This change was calculated as the difference be-

tween consecutive readings in a point (that is,

i—(i - t), being t equal to the time step). To esti-

mate the corrected rate of oxygen change (gO2

m-2 day-1), that is, NDM, the differences between

dissolved oxygen concentrations were corrected for

the DO saturation concentration (Cs), gas exchange

with the atmosphere (gas exchange coefficient; K2)

and mean reach depth (see equation 2).

NDMi ¼
DOi � DOi�t

t
� K2 Cs � DOi�tð Þ

� �
D ð2Þ

Cs was obtained from DOTABLES, U.S. Geologi-

cal Survey software, which calculates Cs from water

temperature, barometric pressure and salinity (US-

Geological-Survey 2011). The gas exchange coef-

ficient at 20�C and at the measured temperature

was determined according to Melching and Flores

(1999), following their four equations based on the

flow regime (pool and riffle streams and channel-

control streams) and flow rate (high and low flow,

that is, flow greater or less than 0.556 m3/s,

respectively).

Average night-time respiration (ANR, gO2

m-2 h-1) was calculated as the mean NDM during

the night hours. For the photoperiod, this value

was corrected for temperature (Thyssen and others

1983), calculating ER (gO2 m-2 day-1) as the sum

of respiration for each time step. Therefore, we

assumed that instantaneous respiration was con-

stant during the entire day (Bott and others 2006).

GPP (gO2 m-2 day-1) was calculated as the sum of

diurnal NDM and diurnal respiration (ANR

extrapolated to light period). P/R ratio was calcu-

lated as the ratio between GPP and ER.

SSN Models

To model GPP and ER to the whole Deva-Cares

river network we followed a modeling approach

divided on a series of steps (see Figure 3). First, to

select potential drivers of REM, we used the field

data (step 2 in Figure 3) to look for those variables

that best correlated to the estimated stream meta-

bolism rates (step 3 in Figure 3) using Spearman

rank correlation coefficients (step 4 in Figure 3).

Then, we estimated these variables to all the non-

T. Rodrı́guez-Castillo and others



surveyed river reaches (step 5 in Figure 3). To

achieve this, we fitted SSN models to each of the

main drivers, using as predictor variables the GIS

derived data (see Table 1). These predictor variables

were also selected using Spearman rank correlation

coefficients. Finally, in order to generate predicted

values of GPP and ER to all the river reaches in the

river network, the results of the SNN models for the

main drivers were used to fit the SSN models for

the GPP and ER estimates obtained in the field (step

6 in Figure 3). None of the final SSN models used

similar or correlated predictor variables among

them.

The generation of the SSN models to predict GPP,

ER and their main drivers followed a number of

consecutive and analogous steps. First, the spatial

data needed to fit a stream network model was

generated using the Virtual Watershed. This was

then edited and formatted in ArcGIS version 10.1

using the spatial tools for the analysis of river sys-

tems toolset (STARS; Peterson and Ver Hoef 2014).

This preprocessing step created an object (SSN ob-

ject) which included the geometry and attribute

information for the stream network and the ob-

served data in the surveyed reaches.

Secondly, using the R package SSN (version

1.1.10) and following the steps described by Ver

Hoef and others (2014), a SSN object was imported

into statistical software R (version 3.3.3) to calcu-

late hydrologic distances and to carry out an initial

inspection of the obtained torgegrams (semivari-

ances as a function of hydrologic distance for flow-

connected and flow-unconnected relationships). It

should be noted that the initial inspection of the

Table 1. Environmental Variables Derived from GIS Layers and Attributed to All Reaches of the Deva-Cares
River Network

Type Code Definition Units

Topographic AREA Drainage catchment area km2

ELEV Average segment elevation m

GRAD Average segment gradient m/m

FLOOD Flood plain width at 3 9 bankfull depths elevations above the channel m

Climatic TEMP Average annual temperature in the segment �C
T_ave/max/

min_08/09

Average, maximum and minimum monthly temperature (August and

September) in the segment

�C

PREC Average annual precipitation in the segment mm

P_ave/max/

min_08/09

Average, maximum and minimum monthly precipitation (August and

September) in the segment

mm

RAD Average solar radiation in the segment WH/

m2

Geological COND Average conductivity in the segment 1–5*

PERM Average permeability in the segment 1–5*

LIMS Limestone surface %

CLAY Clay surface %

CONG Conglomerates surface %

SDIM Deposited sediments surface %

SHLE Shale surface %

SLIC Rock silica surface %

SLTE Slates surface %

Land cover URB Urban areas surface %

AGR Agricultural land surface %

PAS Pasture surface %

SHR Shrubs surface %

BRD Broadleaf forest surface %

CNF Coniferous surface %

PLN Forest plantations surface %

DND Denuded areas surface %

VEG_H LIDAR derived riparian vegetation height m

Anthropic

pressures

D_EFFL Distance to the closest upstream urban or industrial effluent m

N_EFFL Total number of upstream urban and industrial effluents –

*Quasi-quantitative or ordinal quantitative variables.

River Network Metabolism



GPP and ER torgegrams showed strong and positive

spatial autocorrelation at short distances for both

flow-connected (increasing variability up to

40 km) and flow-unconnected reaches (increasing

variability through all the distance range; Appendix

S1: Figures S1a, b).

Thirdly, we restricted our predictor variables to

three no-correlated variables (Spearman’s correla-

tion coefficient £ |0.7|) as we had 41 observations

per response variable. These variables were selected

by generating a set of spatial models with all pos-

sible combinations of the priori selected potential

drivers maintaining a fixed covariance structure

and using maximum likelihood (ML) for parameter

estimation. Thus, AIC values can be compared,

selecting the predictor variables combination with

the lowest AIC. Then, a new set of models with

predictor variables selected and all possible combi-

nations of the moving average models (tail-up, tail-

down and/or Euclidean distance models) and their

autocovariance functions was modeled. Covariance

parameters were estimated using restricted maxi-

mum likelihood (REML). Finally, we choose the

spatial model with the lowest AIC value and we

checked for outliers, readjusting this when neces-

sary. The final model was used to make predictions

with the universal kriging method (Peterson and

Ver Hoef 2014).

Finally, a non-spatial (NS) model with the same

predictor variables as the final spatial model was

also performed for comparison between spatial and

non-spatial structure modeled results. Model per-

formance was assessed calculating the root-mean-

square percentage error (RMSPE) and the coeffi-

cient of determination (R2) using a leave-one-out

cross-validation procedure (that is, removing re-

sponse values one at a time, and using the esti-

mated model to predict the removed values).

Whole River Network Metabolism
Estimation

We multiplied the modeled GPP and ER rates

(gO2 m-2 day-1 per reach) by the water surface

(water width by reach length, m2) for each river

reach (gO2 day-1 per reach). Daily river network

metabolism estimate was the sum of all these reach

values (gO2 day-1 per river network). This global

value was divided by the total river network water

surface (m2) to obtain the relative rate, that is, the

rate per area (gO2 m-2 day-1 per river network).

Data obtained in gO2 were converted to carbon

(or energy) units following Bott (2007). For GPP,

we assumed a photosynthetic quotient (PQ, mol O2

released during photosynthesis/mol CO2 incorpo-

rated) of 1.2 (see equation 3), and for ER we em-

ployed a respiratory quotient (RQ, mol CO2

released/mol O2 consumed) of 0.85 (see equa-

tion 4). Then,

gC ¼ gO2 �
1

PQ
� 12

32
ð3Þ

gC ¼ gO2 � RQ� 12

32
ð4Þ

RESULTS

Predictor Variables

In general, Q, D, W and A increased from the

smaller tributaries to the larger river reaches, while

S showed the opposite pattern and V was higher in

the middle-sized river reaches (Table 2). The river

reaches in the Cares catchment were characterized

by higher V and S than in the Deva catchment, but

lower A (Appendix S1: Tables S1 and S2). Light

increased from the smaller tributaries to the larger

river reaches (although it slightly decreased for

category 6), with a greater range of variation for

intermediate size categories (Table 2). In addition,

higher light values were measured in the Cares

catchment than in the Deva catchment, especially

for size categories 2 and 4 (Appendix S1: Table S2).

Nutrient concentration was also higher in the

middle size river reaches (Table 2), showing the

reaches in the Cares catchment lower Tw, DOC and

SiO2 than those from the Deva catchment, but

higher PO4 (Appendix S1: Table S2). ChlA and EpB

showed higher values for the two largest size cat-

egories (Table 2), without substantially differences

between catchments (Table 2).

River Reach Metabolism Estimation

GPP and ER ranged from 0.01 to 6.75 gO2 m-2 day-1

(0.003 to 2.11 gC m-2 day-1) and from 0.19 to 6.77

gO2 m-2 day-1 (0.061 to 2.16 gC m-2 day-1),

respectively (Appendix S1: Table S1). Both GPP and

ER increased exponentially with catchment area

(Figure 4A, B; Appendix S1: Table S1), showing a

greater dispersion in the Deva catchment than in the

Cares catchment (Appendix S1: Table S2). C7 (cate-

gory 1) and C10 (category 3) showed anomalously

high values for GPP (Figure 4A; Appendix S1:

Table S1).

NDM and P/R ratio showed a trend toward het-

erotrophic status in all the surveyed reaches, except

in D5, D7, C1, C2, C3, C10, C11 and C12 (Ap-

pendix S1: Table S1). NDM and P/R ratio reached

lowest values and the greatest dispersion in the

T. Rodrı́guez-Castillo and others
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smallest tributaries (Figure 4C, D; Table 2),

whereas the largest river reaches were closer to

autotrophy. C10 showed an anomalously high

NDM, and C5 anomalously low (Figure 4C; Ap-

pendix S1: Table S1).

SSN Models

GPP was influenced (q > 0.45; Table 3) by A,

MinTw, NO3, EpB, ChlA and Light, while ER was

related (q > 0.44; Table 3) to A, MinTw, EpB,

ChlA and GPP. Among all these variables, six were

selected to enter the modeling approach to predict

metabolism for the entire river network: four to

predict GPP (A, light, NO3, and ChlA; Table 3) and

two to model ER (MinTw and GPP; Table 3). EpB

and A were not selected to model ER because they

were highly correlated to GPP (Table 3). Thus, the

SSN models developed for GPP followed the pre-

dictor variables selection described in the method-

ology; however, only one SSN model was

developed for ER as there were only two predictor

variables selected.

The SSN models for the selected predictor vari-

ables had always a higher coefficient of determi-

nation and a lower AIC (except for A and light) and

RMSPE than the NS models (Table 4). The coeffi-

cient of determination of the SSN models varied

between 0.43 for NO3 to 0.71 for MinTw (Table 4;

see the rest of cross-validation statistics and model

parameters and errors in Appendix S1: Figures S2

and S3, Tables S5 and S6). The covariate model

captured a majority of the variability in NS models,

except for NO3 (Figure 5A), whereas the spatial

covariance functions explained the highest per-

centage of the variance in SSN models, except for A

(Figure 5B). In fact, the residual variation obtained

with NS models (Figure 5A) was reduced almost to

zero with SSN models (Figure 5B), except for A.

The best model for GPP (lower AIC) was also the

SSN model including ChlA, NO3 and A, with ChlA

being marginally significant (p = 0.06; Table 4).

This SSN model reached a 0.69 coefficient of

determination and a 0.34 RMSPE (Table 4; see the

rest of cross-validation statistics and model

parameters and errors in Appendix S1: Figures S2

and S3, Tables S5 and S6). The SSN model for ER

presented also a lower AIC value than the NS

model, being GPP significant and MinTw non-sig-

nificant. The coefficient of determination for this

SSN model was 0.64, and the RMSPE was 0.95

(Table 4; see the rest of cross-validation statistics

and model parameters and errors in Appendix S1:

Figure S2 and S3, Tables S5 and S6). The covariate

model for GPP and ER captured almost 70% of the
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observed variability, while the spatial covariance

functions explained more than half of the GPP

variability but only 30% of the ER variability

(Figure 5).

Observed and predicted values obtained with

SSN models for predictor variables and metabolism

rates showed different patterns along the Deva-

Cares river network (Figures 6, 7, respectively). In

general, Light, A, MinTw, NO3, ChlA and EpB

(Figure 6A–F, respectively) followed a similar pat-

tern with lower values in headwater streams and

higher as we move downstream, being this pattern

especially clear for A. It is remarkable that light and

NO3 showed important increases in some specific

reaches of the river network, which could be re-

lated to lower riparian cover in the case of light (%

of riparian cover in left or right bank < 33% in D9,

D21, D22, D25, C10 and C11; Figures 1, 6A), and

sewage effluents in the case of NO3 (upstream

sewage effluent distance < 1.6 km in D10, C8 and

Figure 4. Boxplots for river metabolism rates (GPP = gross primary production, ER = ecosystem respiration, NDM = net

daily metabolism, P/R ratio = production/respiration ratio) according to the six categories established along the river

network in the study. Boxplots are for the 25th, 50th (median) and 75th percentiles; whiskers display minimum and

maximum values if these are lower than 1.5 times the 25th and 75th percentiles, respectively. Values outside these limits

are marked with asterisks. Observed points are marked with gray circles.
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C10; Figure 1, 6D). It is also important to notice the

differences in minimum water temperatures from

the main Deva (D5 to D8 and D14-D15) and Cares

(C1 to C4) river axis, reaching more than to 3�C for

a similar catchment area. Finally, ChlA and EpB

tended to increase downstream in the Deva catch-

ment, except for some high values (D14, D15 and

D25), whereas exceptions in the Cares catchment

were much more numerous (C6, C8, C9, C10 and

C15).

GPP and ER also showed a general pattern of

increasing in downstream direction for the Deva-

Cares catchment (Figure 7A, B, respectively), al-

though some headwater reaches showed higher

GPP (for example, C10, C11, D25) and ER (for

example, C6, C10, C11, C14, C15, C16, D25) values

than middle reaches. In general, GPP and ER in-

creased slightly in deforested headwater reaches

(similar heterotrophic status that forested reaches,

see brown box in Figure 7), except in those reaches

affected by effluents (see purple box in Figure 7),

where both GPP and ER increased a lot, mainly

GPP, reaching an autotrophic status (NDM and P/R

ratio in Figure 7C, D, respectively). On the other

hand, in forested headwater reaches with sewage

effluents (see green box in Figure 7) only ER in-

creased, increasing the heterotrophic status (NDM

and P/R ratio in Figure 7C, D, respectively).

Whole River Network Metabolism
Estimation

GPP for the entire river network was

5.55 t O2 day-1 (that is, 1.73 t C day-1), while

ER 7.02 t O2 day-1 (that is, 2.24 t C day-1).

NDM was - 1.47 t O2 day-1 (that is, - 0.50 t

C day-1), whereas the mean P/R ratio was 0.79.

In relative terms, the Deva-Cares river network

produces 1.73 gO2 m-2 day-1 (that is, 0.54 gC m-2

day-1), but consumes 2.24 gO2 m-2 day-1 (that is,

0.70 gC m-2 day-1), resulting in a net balance of

- 0.46 gO2 m-2 day-1 (that is, - 0.16 gC

m-2 day-1).

DISCUSSION

The combination of field data, Virtual Watershed

approach and SSN models has allowed determining

REM patterns and the main factors controlling

them. This approach has also produced a REM

estimation for all the river reaches within the Deva-

Cares catchment and for the whole river network.

GPP was influenced by river reach cross-sectional

area, minimum water temperature, nitrate con-

centration, biofilm biomass (expressed as ChlA and

EpB) and light, whereas ER was related to GPP,

river reach cross-sectional area, minimum water

temperature and biofilm biomass. The spatial vari-

ability of GPP and ER throughout the river network

can be accurately predicted from an interplay of

these river reach variables using spatial kriging

with hydrological distances. We believe that the

approach and the results provided in this study

certainly help to increase our understanding of

how river ecosystem processes are constrained by

catchment and river reach characteristics and hu-

man impacts.

REM River Network Patterns

In general, the spatial patterns of REM in the Deva-

Cares catchment support the theoretical predictions

of the river continuum concept (RCC, Vannote and

others 1980) that heterotrophy is reduced in the

downstream direction, because GPP tends to in-

crease to a greater extent than ER in the middle

and lower sections. However, some important

deviations from the RCC were noticed. For exam-

ple, the average NDM and P/R values were below

the autotrophy for all size categories even in the

lowest river reaches, which might be characteristic

Table 3. Summary of the Spearman Rank
Correlation Between River Metabolism Rates
(GPP and ER) and Potential Drivers

Data type Variable qGPP qER

Light Light 0.57 –

Hydraulic A 0.78 0.55

D 0.76 0.51

W 0.74 0.53

Water quality TSS 0.31 –

MinTw 0.54 0.44

MeanTw 0.47 0.35

MaxTw 0.47 –

pH 0.38 –

TON 0.48 –

NO3 0.48 –

NO2 0.34 –

SiO2 - 0.41 –

Biofilm EpB 0.70 0.48

ChlA 0.68 0.48

Stream metabolism GPP – 0.70

Bold variables were selected as predictor variables for GPP and ER spatial stream
network models. GPP gross primary production; ER ecosystem respiration; Light
relative light level; A cross-sectional area; D depth, W channel width, TSS total
suspended solids; MinTw minimum water temperature; MeanTw mean water
temperature; MaxTw maximum water temperature; TON total organic nitrogen;
NO3 nitrate; NO2 nitrite; SiO2 silicate; EpB epilithic biomass; ChlA chlorophyll a
Only variables with significant correlation coefficients are shown (p
value < 0.05) for the Deva-Cares catchment.
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of river networks receiving a majority of forest

subsidies (for example, Fisher and Likens 1973;

Marcarelli and others 2011).

A more detailed analysis of GPP and ER spatial

patterns revealed the differential behavior between

the Deva and Cares catchments. The first one was

clearly heterotrophic along the entire main axis,

showing a positive gradient in the downstream

direction for GPP and ER. However, the Cares river

reaches presented different GPP and ER patterns.

GPP was higher in some tributaries that did not

correspond to their size category (close to the

headwaters), for example, C10, C11, C8 and C9,

while ER showed also relatively higher values for

these reaches but also for C4, C14, C15 and C16

(Figures 1, 7). We believe that these observed

deviations from the general RCC can be explained

by the interplay of three key factors: light avail-

ability, nutrient availability and water temperature.

In this regard, the Deva River maintains a fairly

broadleaf forest cover all along its length (limiting

light availability), except in the reaches located

above the tree line, where the greater light avail-

ability favors higher GPP and ER rates (see results

within the brown box in Figure 7). Nutrient con-

centration in the Deva-Cares seems to be related to

the geographic structuring of pollution sources (see

Appendix S1: Figure S4 for location of sewage

outflows in the Deva-Cares and for NH4 and PO4

concentration, and Figure 6 for NO3 concentra-

tion), as has been found in other studies (for

example, Garreta and others 2009). In addition, the

Deva River receives numerous sewage outflows,

several of them with a high population equivalent

(see Appendix S1: Figure S4), that contribute to

increase nutrient concentration (NO3, NH4 and

PO4) and biofilm biomass (ChlaA and EpB) as we

move downstream (see Appendix S1: Figure S4,

and Figure 6D, E, F, respectively). On the other

hand, the Cares River receives major contributions

Table 4. Configuration and Statistic Comparison of SSN and NS Models for All Response Variables

Response vari-

ables

Predictor

variables

Model

type

Moving average

models

Autocovariance

functions

AIC RMSPE R2

log(Light) Intercept** NS – – 44.51 0.41 0.28

SLTE**

BRD* SSN Tail-up Epanechnikow 34.75 0.33 0.55

CONG**

A Intercept NS – – 228.45 3.82 0.59

AREA** SSN Tail-up Linear-with-sill 231.15 3.61 0.62

Minimum Tw Intercept** NS – – 167.14 1.78 0.48

COND**

DND** SSN Tail-up Linear-with-sill 156.69 1.36 0.71

ELEV**

NO3 Intercept** NS – – 505.87 151.69 0.08

LIMS** SSN Tail-up Linear-with-sill 497.56 120.73 0.42

ChlA Intercept* NS – – 338.78 16.48 0.44

PREC*

PERM** SSN Tail-up Epanechnikow 340.36 15.79 0.49

TEMP*

EpB Intercept** NS – – 725.14 2895.97 0.28

PERM**

N_EFFL* SSN Tail-up Linear-with-sill 710.35 2199.40 0.58

log(GPP) Intercept** NS – – 49.34 0.41 0.56

log(A)**

ChlA Tail-up Exponential 39.65 0.33 0.73

log(NO3)** SSN Tail-down Linear-with-sill

log(ER) Intercept NS – – 10.70 0.24 0.56

log(GPP)** Tail-up Euclidean Spherical Gaussian 11.37 0.21 0.67

MinTw

The highest R2 value between the NSand SNN models is shown in bold
Signif. codes: *< 0.05 y **< 0.01.
A cross-sectional area, MinTw minimum water temperature; NO3 nitrate; ChlA chlorophyll a; EpB epilithic biomass; GPP gross primary production (log-transformed); ER
ecosystem respiration. See Table 1 for the explanation of the abbreviation of topographic, climatic, geological, land cover and anthropic pressures data. AIC Akaike information
criterion, RMSPE Root-mean-squared prediction error, R2 coefficient of determination.
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of ground water in the downstream direction (C5

to C2) from many springs that drain the ‘‘Picos de

Europa’’ central massif (Adrados and others 2010),

which might be causing the 3�C difference in

minimum water temperature in comparison to

river reaches with a similar catchment area in the

Deva River (see Appendix S1: Table S4). These

lower minimum water temperatures might be

lowering ER in the Cares river axis prior to the

confluence with the Deva River (Figure 7B).

Temperature has also been shown as a major con-

trol of ecosystem respiration elsewhere (Beaulieu

and others 2013; Smith and Kaushal 2015; Escof-

fier and others 2016; Saunders and others 2018).

Moreover, a conjunction of lower riparian vegeta-

tion (higher light flux, Figure 6A) and the presence

of sewage outflows (higher nitrate concentration,

see Appendix S1: Figure S4, and Figure 6D,

respectively) might be responsible for higher GPP

and ER in C8, C9, C10 and C11 (see results within

the purple box in Figure 7). This positive relation-

ship has also been found in many other studies in

the literature (Bernot and others 2010; Finlay

2011; Griffiths and others 2013). However, good

riparian cover and the presence of sewage outflows

only produced higher ER but similar GPP in C6,

C14, C15 and C16 (see results within the green box

in Figure 7). Thus, sewage outflows under closed

riparian canopies seem to be affecting ER more

than GPP rates.

REM River Network Balance

The combination of field observations, Virtual

Watershed approach and SSN models has produced

an estimate of ecosystem metabolism during the

low flow season for the whole Deva-Cares river

network. The obtained daily GPP (0.003–

2.11 gC m-2 day-1) and ER (0.061–2.16 gC

m-2 day-1) rates for the different river reaches

were within the range of values obtained in the

literature for other river reach studies (see Hall and

others 2016, for a review). However, this study is

one of the first attempts to estimate ecosystem

metabolism rates integrating all the spatial units of

a whole river network, and thus our whole river

network estimates can not yet be compared to

other approaches.

Other studies have tried to produce global esti-

mates of stream and river metabolism rates by

upscaling directly from river reach estimates to the

whole surface area that these ecosystems compose

globally but without accounting for the spatial

variation on river ecosystem rates across river

networks (that is, see Battin and others 2008).

When we compare our spatialized GPP and ER

averages from our whole river network estimates

(0.54 and 0.70 gC m-2 day-1, for GGP and ER,

respectively) to those studies, we observe that our

spatialized averages are below the average for both

metabolic processes. We believe that this is because

Figure 5. Summary of the proportion of explained variance for the non-spatial (A) and spatial models (B) selected to

predict all the response variables (Light = relative light level; A = cross-sectional area; MinTw = minimum water

temperature; NO3 = nitrate; ChlA = chlorophyll a; EpB = epilithic biomass; GPP = gross primary production;

ER = Ecosystem respiration). Black = covariates; gray = spatial autocovariance functions; white = residuals.
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our estimates incorporate the metabolism of all the

small tributaries within the Deva-Cares catchment

and, thus, produce a much more reliable approach

from a spatial point of view. Complementing this

spatial approach with REM annual river reach

estimates in different river reach size categories will

improve the accuracy of REM annual estimates for

entire river networks.

Finally, the advantages of the approach we have

used in this study is that the contribution of each

spatial unit (that is, subcatchments or river

reaches) to autotrophy or heterotrophy was spa-

tially explicitly quantified. Thus, this approach

could be used to better understand the effects of

global change on river networks specifically, but

also on global carbon circulation models. This ap-

Figure 6. Field data (circles) and predicted values for each reach of the whole river network for relative light levels (Light,

map a), cross-sectional area (A, map b), minimum water temperature (MinTw, map c), nitrate (NO3, map d), chlorophyll a

(ChlA, map e) and epilithic biomass (EpB, map f).

T. Rodrı́guez-Castillo and others



proach could then be used to model how different

management scenarios might change GPP and ER

from the reach to the whole river network scales,

helping to design future strategies for global change

mitigation.

Benefits and Considerations for SSNs
Applications

The generation of the statistical theory for stream

networks (Peterson and Ver Hoef 2010; Ver Hoef

and Peterson 2010) and its integration into friendly

usable software (Peterson and Ver Hoef 2014; Ver

Hoef and others 2014) has brought important ad-

vances to river ecologists. Many different ecosys-

tem attributes can now be modeled for entire river

networks (for example, Detenbeck and others

2016; Xu and others 2016; Isaak and others 2017)

avoiding the spatial autocorrelation and observa-

tion independency and generating information at

relevant spatial scales for the study and manage-

ment of these ecosystems. This is also the case for

REM, from which spatial analyses for the Deva-

Cares river network allow for recognizing the main

environmental problems generating functioning

impairment and the possible solutions to fix

ecosystem functioning rates.

Our SSN models showed relatively high predic-

tive capacity and produced reliable and logical

spatial results, significantly higher than those ob-

tained with non-spatial models. Consequently, this

methodology allows us to detect not only the main

drivers of REM, but also their spatial patterns.

Therefore, we can identify where and how these

drivers modify the river ecosystem functioning,

what constitutes key knowledge to improve the

management of freshwater ecosystems and to be

able to develop more complex mechanistic models.

However, there are considerations that need to be

taken into account when using these models,

especially related to the spatial design of the field

Figure 7. Field data (circles) and predicted values for each reach of the whole river network for river metabolism rates

(map a, GPP = gross primary production; map b, ER = ecosystem respiration; map c, NDM = net daily metabolism; map d,

P/R ratio = production/respiration ratio). The boxes highlight the headwater reaches subjected to anthropic pressures:

deforestation (brown box), effluents (green box), and deforestation and effluents (purple box) (Color figure online).
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observations. In general, it is difficult to determine

the optimal distance between observation points to

minimize the model errors. For example, in this

study, the small tributaries located in the northern

fringe of the Cares River and in the southern fringe

of the Deva-Cares catchment would need addi-

tional information to improve the obtained REM

predictions (see error maps in Appendix S1: Fig-

ure S3). All those small river reaches currently

have no field observations, being the closer (hy-

drological distance) on a relatively much larger

river axis and, thus, GPP and ER estimates would

be much more uncertain (Ver Hoef and Peterson

2010; Isaak and others 2017). In fact, SSN devel-

opers have recently released a methodology to

maximize the spatial design of river networks. This

should be carefully considered in future studies and

when using data from monitoring networks as it

has been suggested by different researchers (Bar-

quı́n and others 2015; Isaak and others 2017).

CONCLUSIONS

In this study, we have determined GPP and ER

spatial patterns and the main factors controlling

these ecosystem processes for the Deva-Cares

catchment and we have also obtained an estima-

tion of ecosystem metabolism for the whole river

network. The Deva-Cares river network autotro-

phy increases downstream, although there are

some parts of the river network associated with

groundwater discharges (Cares River main axis)

and to different human activities (riparian forest

clearance or sewage outflows) that disrupt this

longitudinal pattern. In general, GPP was better

explained by a combination of ecosystem size (river

reach cross-sectional area), nitrate concentration

and amount of benthic Chl a, whereas ER was

better explained by spatial patterns of GPP plus

minimum water temperatures. The presented

methodological approach improves REM predic-

tions for entire river networks compared to current

approaches and provides a good framework to

orientate spatial measures for river function

restoration and for global change mitigation. To

reduce uncertainty and model errors, a higher

density of sampling points should be used, espe-

cially in the smaller tributaries.
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González LP, Gutiérrez Claverol M, Heredia Carballo N, Ji-
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Álvarez-Cabria M, Barquı́n J, Peñas FJ. 2016. Modelling the
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