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Abstract Dissolved oxygen is a critical component of
river water quality. This study investigated average
weekly dissolved oxygen (AWDO) and average weekly
water temperature (AWT) in the Savannah River during
2015 and 2016 using data from the Intelligent River®

sensor network. Weekly data and seasonal summary
statistics revealed distinct seasonal patterns that impact
both AWDO and AWT regardless of location along the
river. Within seasons, spatial patterns of AWDO and
AWT along the river are also evident. Linear mixed
effects models indicate that AWTand low and high river
flow conditions had a significant impact on AWDO, but
added little predictive information to the models. Low
and high river flow conditions had a significant impact
on AWT, but also added little predictive information to
the models. Spatial linear mixed effects models yielded
parameter estimates that were effectively the same as
non-spatial linear mixed effects models. However,

components of variance from spatial linear mixed ef-
fects models indicate that 23–32% of the total variance
in AWDO and that 12–18% of total variance in AWT
can be apportioned to the effect of spatial covariance.
These results indicate that location, week, and flow-
directional spatial relationships are critically important
considerations for investigating relationships between
space- and time-varying water quality metrics.

Keywords Intelligent River® . Geographic information
systems (GIS) . Spatial stream networks .Water quality
monitoring

Introduction

In the southeastern USA, the Savannah River provides
drinking water, hydroelectric energy, and recreational
opportunities for the states of Georgia and South
Carolina (U.S. Army Corps of Engineers 2013). In addi-
tion, the river is home to the second largest population of
Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus),
which is known to be an endangered species (Bahr and
Peterson 2016). Modern environmental pressures from
agriculture, industry, urbanization, and climate change
make it challenging to manage water quality in many
river systems, including the Savannah River.

Dissolved oxygen is a key water quality metric that is
often the subject of monitoring and analysis efforts.
Hypoxia (dissolved oxygen <2 mg/L−1) threatens the
health of river systems resulting in great economic loss
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and a reduction in biodiversity (Wilson and Carpenter
1999). Low levels of dissolved oxygen reduce fish
development and growth, leading to mortality, and cre-
ate condition suitable for eutrophication, making the
water unsuitable for consumption. Foul odors resulting
from hypoxic conditions can also reduce the economic
gain from human recreation (Cox 2003). Runoff from
agricultural land, sewage treatment plants, or industrial
facilities often contains excess nutrients that can lead to
hypoxic conditions in river systems (Bianchi et al.
2010). In the Savannah River, specific potential sources
of nutrients and other chemical constituents that may
deplete dissolved oxygen include poultry feedlots, corn
and soy fields, leakage or runoff from coal ash storage,
and effluent water from nuclear cooling towers (Wilde
and Shealy 1992).

Internal river metrics are thought to drastically im-
pact dissolved oxygen at different spatial and temporal
scales (Huang and Scmitt 2013). Water temperature is
the primary regulating metric that determines how
much dissolved oxygen water can hold; dissolved ox-
ygen is inversely dependent on water temperature.
Heat exchange at the water’s surface is the primary
contributor to water temperature changes (Ficklin
et al. 2013). Projected effects of climate change create
a pressing need for further understanding of the rela-
tionship between dissolved oxygen and water temper-
ature in rivers and streams (van Vliet et al. 2013;
Kaushal et al. 2010). As air warming intensifies in
many areas of the globe, rivers and streams will likely
warm as well (Kaushal et al. 2010). Increases in water
temperature would thus further reduce dissolved
oxygen and negatively impact water quality. This
creates a pressing need to monitor and learn about the
spatial and temporal dynamics of water temperature
and dissolved oxygen in rivers and streams.

Seasonality is very important to consider when
assessing water quality, as seasonal effects on surface
water flow can reveal important trends or annual cycles
that have important management or forecasting impli-
cations. Qian et al. (2007) detected seasonal patterns that
were nearly identical among several nutrients in the
Indian River Lagoon in Florida. Richards and Baker
(2002) saw seasonal patterns in phosphate and nitrate
loads in Ohio. Similarly, Tufford et al. (1998) observed
seasonality in nutrient loads in Lake Marion drainage
just slightly northeast of the current study area. Seasonal
variation may affect dissolved oxygen through indirect
processes, such as the depletion of dissolved oxygen

during eutrophication of surface water during warmer
months (Minaudo et al. 2015). Young and Isely (2011)
described seasonal distributions of water temperature
and dissolved oxygen in the Thurmond Reservoir im-
mediately upstream from the current study area.
However, it is unknown how representative their esti-
mates may be for water temperature and dissolved oxy-
gen along the large section of the Savannah River below
the Thurmond Dam.

New technologies for monitoring and assessing water
quality are being developed at a rapid pace to keep up
with increasing management demands created by the
changing environment. Recent developments in sensor
technologies allow for continuous in situ monitoring of
water quality (Sherson et al. 2015). Sensor technologies
have a clear advantage over traditional sampling
methods, which do not allow for safe or simple sampling
during less than desirable weather conditions. The con-
tinuous collection of water data allows for studies into
the dynamics of inorganic nutrients in the water and the
effects of wildfires onwater quality (Sherson et al. 2015;
Mast et al. 2016). This study utilizes the Intelligent
River® system, a network of sensors that collect infor-
mation on the Savannah River and other sites. Water
quality data is collected from in situ sensors, which are
attached to buoys along the Savannah River, and is
transmitted to an online database (https://www.
intelligentriver.org/data), where it can be retrieved for
any or all active sensors for specified time periods. The
data export module allows users to gather, share, and
apply environmental data on immense temporal and
spatial scales. The system includes novel data
collection, processing, and storage platforms, wireless
transmission technology, and presentation tools. With
the Intelligent River® system, environments can be
continuously monitored inexpensively, on a fine scale,
and over a long period, amassing a large amount of
publicly available information (White et al. 2010;
Eidson et al. 2010).

Perhaps the primary challenge of modeling relation-
ships between water quality metrics in river networks is
that these metrics are space- and time-varying, and
contained in a spatial network that is flow-directional.
Not only may data be spatially dependent, but spatially
dependent on upstream water and land conditions. Ver
Hoef and Peterson (2010) developed and implemented
spatial covariance functions as part of a generalized or
mixed linear modeling strategy that has yielded promis-
ing results for spatially modeling water quality in stream
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or river networks. This modeling strategy has been used
to spatially model mean summer stream temperature
(Isaak et al. 2010), summer median stream temperature
(Detenbeck et al. 2016), and 13 different stream tem-
perature metrics (Steel et al. 2016) at various spatial
scales in river networks. A common theme from these
studies is the use of spatially variable, but temporally
static, stream temperature metrics. Another common
theme is the use of external predictor variables outside
of the water body. Dissolved oxygen has not been
considered in this modeling strategy, and space- and
time-varying predictor variables in the river body have
also not been considered. Estimates of spatial effects
from the mixed model could provide insight as to
whether there is inherent spatial correlation in water
temperature and dissolved oxygen data in the river,
and as to whether this information may be useful for
spatiotemporal prediction of water quality.

This study uses Intelligent River® data collected
continuously during 2015 and 2016 on the
Savannah River to investigate the seasonality of
water quality and relationships between space-
and time-varying water quality metrics. The objec-
tives of this study were to (1) summarize seasonal
and within-season spatial distributions of average
weekly dissolved oxygen (AWDO) and average
weekly water temperature (AWT) on the
Savannah River during 2015 and 2016, (2) evalu-
ate in situ correlations between AWDO and AWT
at Intelligent River® sensor sites during 2015 and
2016, and (3) investigate relationships between
AWDO, AWT, and river flow conditions using a
random and mixed effects linear modeling strategy,
including the use of components of the spatial
stream network modeling strategy.

Materials and methods

Study area

The entire Savannah River basin covers approxi-
mately 2,739,900 ha and contains portions of
North Carolina, South Carolina, and Georgia.
This includes portions of the following biogeo-
graphic regions: Blue Ridge, Carolina Piedmont,
Carolina Sand Hills, and Atlantic Coastal Plains.
The U.S. Army Corps of Engineers constructed
and maintains three major dams (J. Strom

Thurmond, Richard B. Russell, and Hartwell) on
the Savannah River for hydroelectric power, flood
control, water supply, and recreational purposes
(U.S. Army Corps of Engineers 2013). The J.
Strom Thurmond Dam is farthest downstream, ap-
proximately 350 km from the Atlantic Ocean.
Water quality and subsequent analyses for this
study focus on the Savannah River portion below
J. Strom Thurmond Dam.

Data collection

The data used in this study were collected from
the Intelligent River®. The data were recorded by
ten sensors along the Savannah River below J.
Strom Thurmond Dam (Table 1, Fig. 1). The sen-
sors continuously record several water quality var-
iables at ≈ 10-min intervals. Time stamps of data
records from all sensors in the Intelligent River®

system are synchronized on Eastern Standard
Time. Dissolved oxygen (DO) readings were taken
using a YSI EXO2 multiparameter sonde with an
optical DO sensor and a temperature sensor (as
part of a combined temperature conductivity
probe). All sensors were equipped with a central
mechanical wiper that limited bio-fouling of sen-
sors by wiping sensors in between readings.
Sensors were calibrated in the lab using manufac-
turers standard calibration procedures and were
exchanged at regular service intervals (typically
every 30 days). Temperature and salinity were
adjusted for during the laboratory calibration for
field use. To further access sensor function, data
were visually inspected directly before and after
each sensor exchange to verify readings were con-
sistent and that data from a replaced sensor was
valid. In each case, data did not display noticeable
changes between sensor exchanges, indicating sen-
sor function and bio-fouling did not impact report-
ed values. For this study, all recordings of DO and
water temperature from January 1, 2015 until
December 31, 2016 were downloaded from the
I n t e l l i g e n t R i v e r ® d a t a e x p o r t mod u l e
(https://www.intelligentriver.org/export?p=6).
River flow conditions are not available at
Intelligent River® sensor sites, but seven USGS
gage stations are located along the section of the
Savannah River used in this study, some of which
are near to Intelligent River® sensor sites. Gage
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height (feet) data from these USGS gage stations
were retrieved (https://waterdata.usgs.gov/nwis/sw)

and associated with the nearest Intelligent River®
sensor sites (Table 1).

Table 1 Descriptions of Intelligent River® sensor sites used in this study

Intelligent River®

sensor site
Weeks with
complete data

Distance (km)
from outlet node

Upstream
area (km2)

Nearest USGS
gage station

Flow direction
↓

STM215 94 297.8 494 02195520

STM206 99 285.5 2585 021964832

STM198 94 271.6 2773 021964832

STM190 94 262.3 3497 02197000

STM185 89 248.6 3568 02197000

STM179 92 239.1 3839 02197000

STM150 89 196.7 5326 02173269

STM119 67 147.2 6580 02197500

STM061 85 58.8 9726 02198500

STM027 96 4.0 10,692 02198840

Fig. 1 Map of the study area with locations of intelligent River® sensors and USGS gage stations
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Data aggregation

Data were aggregated to average weekly dissolved ox-
ygen (AWDO) and average weekly temperature (AWT)
at each sensor site. The sensor platform did not always
report values at each location for each expected sensor
reading, and each sensor is missing at least several
weeks of data during the study period (Table 1). In cases
where sensor values were reported, the laboratory cali-
bration and sensor exchange process did not highlight
data for omission from the analysis. The quality and
temporal density of the data indicate that the missing
data is inconsequential for the analyses performed in this
study. For plotting purposes, weekly gage height data
was standardized at each site; gage heights are heights
above an arbitrary point below the water surface, mean-
ing raw values can be artificially variable between gages
based on the arbitrary point from which measurements
are made. No transformations were applied to Intelligent
River® data. All sensor sites used in this study are flow
connected to the main channel of the Savannah River.

Seasonal statistics

Seasons were defined using northern meteorological
seasons: spring (03/01–05/31), summer (06/01–08/31),
autumn (09/01–11/30), and winter (12/01–02/28).
These seasons begin 21–22 days earlier than astronom-
ical seasons. For each season, summary statistics were
computed from AWDO and AWT at each Intelligent
River® sensor site. Autumn summary statistics were
not computed for STM119 because a majority of the
data was missing. The seasonal means at each sensor
site were evaluated in an upstream-downstream manner
to identify any additive or diffusive patterns in AWDO
and AWT along the river.

Correlation between AWDO and AWT

Pearson correlations were computed between AWDO
and AWT at each Intelligent River® sensor site. It was
recognized that AWDO andAWTmay both be correlated
with time, and that this in itself may have important
management applications with regard to tracking dis-
solved oxygen across time using water temperature
values. Thus, correlations were computed over time
using the AWDO and AWT values. In order to assess
whether or not correlations between AWDO and AWT
might also represent a site-level relationship independent

of temporal processes, correlations were also computed
on residuals that resulted from subtracting the weekly
mean (among all sites) from each observation of AWDO
andAWT. These analyses were carried out in R Studio (R
Core Team 2014).

Random and mixed effects linear modeling

A random and mixed effects linear modeling strategy
was used to assess the relationship between AWDO,
AWT, and river flow conditions. To establish a baseline
to compare against models that used dynamic space-
time predictors (AWTor river flow conditions), random
effects models were fit for AWDO and AWT using the
week of observation and sensor site as random effects.
Space-time predictors were then used to fit mixed effects
linear models of AWDO and AWT, where again the
week of observation and sensor site were used as ran-
dom effects. This random effects design was selected
because it was viewed as the most appropriate modeling
structure by removing weekly variability and variability
between sites to estimate model parameters. Since some
sensors share the same USGS gage data (Table 1), river
flow conditions were generalized for river sections by
using binary low flow (25th percentile) and high flow
(75th percentile) variables computed from the weekly
mean gage height at the nearest USGS gage station.

Spatial random and mixed effects linear modeling

The relationship between AWDO, AWT, and river flow
conditions were also assessed using spatial random and
mixed effects linear models. The same set of model
statements used in random and linear mixed effects
models of AWDO and AWTwere used, but the random
effects design differed in spatial random and linear
mixed effects models. Week was again used as a random
effect, but two random spatial effects were used in place
of sensor site as a random effect. These were estimated
using “tail-up” and “tail-down” spatial covariance func-
tions (Ver Hoef and Peterson 2010). Generally, tail-
down covariance can be viewed through the traditional
lens of spatial covariance, but the function uses distance
estimated along the stream network. Tail-up covariance
is an additional, extended spatial covariance function
intended to help adjust for situations where spatial co-
variance may depend on upstream conditions; a sensor
site is only allowed to be spatially correlated with up-
stream sensor sites. This random effects designwas used
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because it was viewed as the most appropriate spatial
analog to the non-spatial random andmixed effects linear
models, as the effect of sensor site may be spatially
dependent on other sensor sites regardless of weekly
variability. All spatial models were fit using exponential
spatial weights, in addition to the upstream area (km2) in
the case of tail-up spatial covariance. The spatial stream
network (SSN) dataset was compiled in ArcGIS 10.4
(ESRI 2014) using methods detailed by Peterson
(2015); a modified National Hydrography Dataset
(NHDPlusV2, VPU03b) and a 30-m digital elevation
model were used for the analyses. All models were fit
using the SSN package (Ver Hoef et al. 2014) in R Studio
(R Core Team 2014).

Results

Seasonal and within-season spatial distribution
of AWDO and AWT

AWDO had a distinct seasonal pattern within each study
year (Fig. 2a). All sites reached peak annual AWDO
levels in February or March, and the lowest AWDO
levels at all sites occurred around the beginning of
September. In all seasons, STM185 had the highest
AWDO (all seasonal results Table 2). In spring and
winter, the most downstream sensor site, STM027, had
the lowest AWDO. In summer and autumn, the most
upstream sensor site, STM215, had the lowest AWDO.
In all seasons, AWDO slightly increased when moving
downstream from STM215 to STM185, and then slight-
ly decreased when moving downstream from STM185
to STM027.

AWTalso had a distinct seasonal pattern within each
study year, but this pattern was opposite from AWDO
(Fig. 2b). Peak AWT at all sites occurred between June
and September, and lowest AWT at all sites occurred in
February or March. In all seasons except autumn,
STM027 had the highest AWT. In spring and summer,
STM215 had the lowest AWT. STM206 had the lowest
AWT in autumn and STM119 the lowest AWT in win-
ter. Variation in AWTamong sites was quite pronounced
in spring and summer. There was less variation in AWT
among sites in autumn, and very little variation in AWT
among sites in winter. Generally, there was a progressive
increase in AWT when moving downstream from
STM215 during spring and summer. In autumn and
winter, there were no clear upstream or downstream

patterns in AWT. Weekly gage height showed no clear
seasonal patterns (Fig. 2c), but the effects and aftermath
of the “1000-year rainstorm” of October–November,
2015 can be seen clearly (Holmes 2017). The spatial
and temporal dynamics of this “storm complex” have
not been fully assessed for the study area. No obvious
disturbances to AWT or AWDO are apparent during or
after the storm complex in the weekly data used in this
study. A closer look at the impact of this event on water
quality is a potentially exciting research opportunity, but
will likely require analysis at a much higher temporal
frequency than used in this study.

Correlations between AWDO and AWT at sensor sites

Pearson correlation analysis was conducted between
AWDO and AWT for each sensor site over time.
Results suggest a strong and significant negative corre-
lation between AWDO and AWT before the time ad-
justment (Table 3). The three most downstream sensor
sites, STM027, STM061, and STM119, had the lowest
correlation coefficients of − 0.6590, − 0.6894, and −
0.6611 respectively. All other correlations between
AWDO and AWTwere particularly strong and negative
(r < − 0.90 in all cases). After adjusting for weekly
variation by subtracting the weekly average among all
sites from each AWDO and AWT observation, the cor-
relations are much weaker and mostly non-significant
(Table 3). In fact, STM215 had a significant positive
correlation (r = 0.2786) after adjusting for weekly
variation.

AWDO models

A set of five random and mixed effects linear models
were developed to investigate the relationship of AWDO
to AWT and river flow conditions (Table 4). These five
models were fit in non-spatial and spatial contexts. In
non-spatial models, week and sensor captured the vast
majority of the total observed variance of AWDO. For
space-time predictors, AWT had a significant negative
impact on AWDO in all models. Low river flow condi-
tions (25th percentile) had a significant positive impact
on AWDO, while high river flow conditions (75th per-
centile) had a significant negative impact on AWDO.
However, in this modeling strategy, the space-time co-
variates accounted for a relatively small portion (gener-
alized R2 < 0.10 in all models) of the total observed
variance of AWDO. In fact, the proportion of
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unexplained variance (nugget = 0.16) of the random
effects model, which only includes an intercept model
parameter, was lower than all other non-spatial models.
This model also had the smallest prediction error [root
mean square error (RMSE) = 0.64].

In spatial models, tail-up and tail-down spatial
covariance functions were used in place of the sen-
sor as a random effect (Table 4). In the spatial
models, week and tail-up spatial covariance captured
the vast majority of the total observed variance of
AWDO. Interestingly, tail-up spatial covariance
seems to capture a slightly larger portion of
AWDO variance than sensor as a random effect in
non-spatial models. Tail-down spatial covariance

captured a very small portion of the total variance
in AWDO. The spatial models yielded parameter
estimates that were effectively the same as non-
spatial models, though the intercepts did differ
slightly from the non-spatial models. As was the
case with non-spatial models, space-time predictors
accounted for a relatively small portion (general-
ized R2 < 0.08 in all models) of the total observed
variance of AWDO. Also similar to the non-spatial
models, the random effects model that only includ-
ed an intercept model parameter had the lowest
proportion of unexplained variance (nugget =
0.16) and smallest prediction error (RMSE = 0.64)
of all the spatial models.

Fig. 2 Average weekly: a) dissolved oxygen (mg/L), b) water temperature (C°), and c) standardized gage height (feet) at Intelligent River®

sensor sites along the Savannah River during 2015 and 2016
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AWT models

A set of four models were developed to investigate
the relationship between AWT and river flow con-
ditions (Table 5). These four models were fit in
non-spatial and spatial contexts. In non-spatial
models, week alone captured the vast majority of
the total observed variance of AWT, while sensor
site captured a relatively small portion of the total
variance. Low weekly river flow conditions (25th
percentile) had a significant positive impact on
AWT, while high weekly river flow conditions
(75th percentile) had a significant negative impact
on AWT. Separately or collectively, river flow
conditions as space-time predictors explained a
very small portion of the total variance (general-
ized R2 < 0.03 in all models) of AWT. However,

the addition of river flow conditions as space-time
predictors slightly reduced the prediction error in
these models when comparing against the random
effects model that only included an intercept mod-
el parameter.

In spatial models of AWT, tail-up and tail-down
spatial covariance functions were used in place of
sensor site as a random effect (Table 5). In these
models, week captured less of the total observed
variance of AWT than in the non-spatial models,
while tail-down spatial covariance captured more
variance than sensor as a random effect in non-
spatial models. Tail-up spatial covariance in these
models captured a very small portion of the total
variance of AWT. Again, spatial models of AWT
yielded parameter estimates that were effectively
the same as non-spatial models. Prediction errors

Table 2 Seasonal summary statistics for average weekly dis-
solved oxygen (AWDO) and average weekly water temperature
(AWT) at Intelligent River® sensor sites along the Savannah River

during 2015 and 2016. Sensor sites are ordered vertically from the
most upstream site (STM2015) to the most downstream site
(STM027)

Variable Sensor Spring (03/01–05/31) Summer (06/01–08/31) Autumn (09/01–11/30) Winter (12/01–02/28)

Min. Max. Mean. S.D. Min. Max. Mean. S.D. Min. Max. Mean S.D. Min. Max. Mean S.D.

AWDO

STM215 6.65 11.82 9.31 1.54 4.88 7.67 6.14 0.90 4.91 8.26 6.40 0.93 8.30 11.98 10.13 1.24

STM206 7.68 11.75 9.73 1.17 6.51 8.96 7.68 0.73 5.99 9.28 7.35 0.89 8.45 12.13 10.21 0.94

STM198 8.68 11.47 9.96 0.76 7.74 9.60 8.51 0.44 6.99 9.92 8.36 0.72 8.99 12.07 10.39 1.14

STM190 8.14 11.08 9.71 0.83 7.27 9.18 8.29 0.53 6.91 10.28 8.37 0.89 8.91 11.89 10.33 0.90

STM185 8.78 11.67 10.06 0.75 7.77 9.04 8.65 0.33 8.19 11.07 9.10 0.82 9.42 12.73 11.22 0.88

STM179 8.30 10.78 9.54 0.63 7.46 8.71 8.22 0.30 7.67 9.71 8.48 0.55 9.02 11.55 10.38 0.88

STM150 7.43 10.05 8.79 0.76 6.56 8.01 7.40 0.36 6.99 9.20 7.64 0.68 7.58 11.29 9.72 0.93

STM119 7.36 10.30 8.74 0.86 6.83 8.32 7.51 0.43 6.68 7.49 7.08 0.34 6.40 11.61 9.81 1.55

STM061 6.68 9.32 8.05 0.65 6.28 7.87 7.28 0.37 6.36 7.84 7.08 0.47 5.56 10.99 9.22 1.72

STM027 6.08 8.97 7.49 0.57 5.35 8.41 7.10 0.71 5.02 9.25 6.94 0.93 5.84 10.67 8.90 1.34

AWT

STM215 9.33 16.15 12.47 1.90 14.20 21.47 17.55 2.09 15.96 22.85 20.57 1.87 8.53 15.51 12.06 2.27

STM206 10.06 18.87 13.90 2.25 16.00 22.72 19.72 1.83 15.85 23.43 20.43 2.32 8.54 15.25 11.87 2.19

STM198 10.79 21.31 15.42 2.65 18.24 24.68 22.01 1.64 15.87 24.69 20.67 2.82 8.15 15.30 11.92 2.37

STM190 11.16 22.81 16.21 2.93 19.66 25.81 23.23 1.66 15.85 25.56 21.00 3.09 8.19 15.42 11.87 2.14

STM185 11.27 22.95 16.44 2.93 20.06 26.09 23.60 1.53 15.86 25.81 20.91 3.34 8.16 15.32 11.80 2.25

STM179 11.48 23.31 16.80 2.96 20.62 26.41 24.04 1.47 15.94 26.00 21.08 3.26 8.28 15.34 11.82 2.23

STM150 11.79 24.04 17.53 3.08 21.98 27.39 25.09 1.35 15.48 26.34 22.11 3.49 8.43 16.22 11.58 2.09

STM119 9.15 23.32 16.03 3.88 19.43 27.24 24.44 2.39 – – – – 8.56 17.09 11.57 2.60

STM061 11.74 25.87 18.59 3.81 24.89 29.66 27.33 1.30 14.47 26.99 21.92 4.14 8.71 18.27 11.96 2.86

STM027 11.97 24.95 19.53 3.24 25.48 30.37 28.25 1.31 14.47 27.23 21.35 4.28 8.97 18.15 12.32 2.46

272 Page 8 of 14 Environ Monit Assess (2018) 190: 272



(RMSE) were also effectively the same when com-
paring non-spatial and spatial models of AWT.

Discussion

Seasonality of water quality

Results from the current study and Young and Isely
study (2011) in the Thurmond Reservoir generally agree
in terms of the seasonal distribution of both water
temperature and dissolved oxygen. Both Young and
Isely (2011) and the current study agree with the review
of stream and river temperature research by Webb et al.
2008 that states microthermal conditions are the most
variable in summer months. Many studies discuss the
temporal variation of dissolved oxygen (e.g., Williams
et al. 2000; Young and Isely 2011) and spatial variations
of dissolved oxygen in terms of variation between loca-
tions (e.g., Xia et al. 2010), but few studies discuss
dissolved oxygen in terms of upstream or downstream
spatial distributions. Mandal et al. (2010) noted that
dissolved oxygen dropped to worrisome levels in the
middle and downstream sections of the Yamuna River in
Northern India, presumably due to wastewater discharge
from the city of Delhi. Sharp et al. (2009) noted varying
average dissolved oxygen levels in different sections of

the Delaware River, but these variations, like AWDO in
the current study, did not exhibit a clear upstream or
downstream trend.

Relationships between AWDO, AWT, and river flow
conditions

Given the strength of Pearson correlations between
AWDO and AWT over time in this study, it is tempting
to assume there is a causal relationship (i.e., increasing
water temperature causes dissolved oxygen to decrease).
He et al. (2011) also found a strong negative correlation
between dissolved oxygen and water temperature using
daily measurements from two sensor sites over the course
of 1 year in Alberta, Canada. Harvey et al. (2011) used
temperature to model dissolved oxygen at daily, weekly,
and monthly time steps, and also concluded there was a
strong negative relationship between water temperature
and dissolved oxygen in Newfoundland rivers. There are
also chemistry-based reasons to assume a causal relation-
ship betweenwater temperature and dissolved oxygen, as
gases tend to become more soluble in colder water (Vega
et al. 1998).

However, the results of the current study suggest that
water temperature is actually not a very useful spatial
predictor of dissolved oxygen at any given time. When
weekly variation and variation among sites or possible
spatial correlation among sites was removed, the water
temperature had little impact on dissolved oxygen. The
SSN statistical software estimates spatial random effects
on the model residuals, meaning in this case that spatial
random effects were estimated on dissolved oxygen
values that were adjusted for variation associated with
seasonal variation in water temperature. Therefore,
results of spatial models indicate there could be a
temporally consistent spatial pattern in dissolved
oxygen that is weakly dependent on water
temperature. It is thus reasonable to suspect that there
may be another process playing out that is strongly
correlated with both water temperature and dissolved
oxygen. Ozaki et al. (2003) suggested that increases in
water temperature led to increased biological oxygen
demand in several rivers of Japan, which then led to
depleted dissolved oxygen. Biological oxygen demand
may be a variable that interacts with both water temper-
ature and dissolved oxygen (Schindler et al. 2017).
Whether or not this invalidates the use of water temper-
ature to predict dissolved oxygen is open to interpreta-
tion, as water temperature might be viewed as a potential

Table 3 Pearson correlations between average weekly dissolved
oxygen and average weekly water temperature at Intelligent Riv-
er® sites during 2015 and 2016. Correlations over time were
computed with the weekly values and correlations adjusted for
time were computed on the residuals after subtracting the weekly
average (among all sites) from each observation

Site ID Over time Adjusted for time
R R

STM027 − 0.6590*** 0.0035

STM061 − 0.6894*** 0.0554

STM119 − 0.6611*** − 0.2966**

STM150 − 0.9106*** − 0.0869

STM179 − 0.9262*** 0.1881

STM185 − 0.9226*** − 0.1388

STM190 − 0.9048*** − 0.0550

STM198 − 0.9043*** − 0.4674***

STM206 − 0.9503*** − 0.1835

STM215 − 0.9099*** 0.2786**

Asterisks indicate significance at p < 0.10 (*), p < 0.01 (**), and
p < 0.001 (***)
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proxy for biological oxygen demand.Water temperature
and dissolved oxygenmay also bemore or less related at
shorter time scales.

The impact of river flow conditions on water
temperature in this study was expected. That runoff
during and after rainfall decreases stream tempera-
tures is intuitive, and this relationship has been
observed in several studies (Kieser et al. 2004).
Isaak et al. (2010) included flow as a significant
predictor of stream temperature in their models, but
they only used data from two USGS gage stations,
and their estimates were annual summer summaries
of flow. The impact of river flow conditions on
dissolved oxygen in this study is counter to results
of He et al. (2011), who concluded increasing river
flow conditions had a positive impact on dissolved
oxygen. Results of the current study also confuse the
interpretation of the relationship between water tem-
perature and dissolved oxygen, as low river flow
conditions had a positive impact on both water tem-
perature and dissolved oxygen. Given the rarity of
the 1000-year rainstorm, it is difficult to assess how
it may have impacted model estimates of relation-
ships between river flow conditions, water tempera-
ture, and dissolved oxygen when investigating at the
weekly scale. A separate study is needed to quantify
the spatial and temporal extent of this event in the

study area, and to evaluate river metrics at a higher
temporal resolution before, during, and after this
event.

There are also other factors not considered in this
study that could affect dissolved oxygen, water tem-
perature, and river flow conditions. Geomorphology
may affect these variables because the Savannah
River watershed is a geographically large area. The
entire watershed ranges from very cool, highly oxy-
genated headwaters in the southern Blue Ridge
mountains (Price and Leigh 2006) to coastal plain
and tidal marsh. In between these two extremes, the
river receives drainage from large areas of the
Carolina Piedmont and Sandhill biogeographic re-
gions. It is unknown how either the soils or vegeta-
tion of Piedmont or Sandhill regions may impact
dissolved oxygen, water temperature, or river flow
conditions. Closer to the Atlantic Ocean, the
Savannah River receives flow from several small
Coastal Plain rivers. Coastal Plain rivers in the region
are typically high in dissolved organic material, have
a distinct dark water color, and are lower in dissolved
oxygen than alluvial rivers (Ensign et al. 2014).

Another potentially critical factor affecting dis-
solved oxygen, water temperature, and river flow are
impoundments. There are numerous dams in the wa-
tershed with a range of sizes and functionality. Dams

Table 5 Non-spatial and spatial linear random and mixed effects models of average weekly water temperature at Intelligent River® sites
along the Savannah River during 2015 and 2016

Type Model statement
(random effects)

Parameter estimate (standard error) Proportion of total observed variance

β0 Low flow High flow Gen. r2 Week Sensor Tail up Tail down Nugget RMSE

Non-spatial

(Sensor, week) 18.3 (0.71) – – 0.00 0.82 0.08 – – 0.10 1.90

Low flow (sensor, week) 18.1 (0.70) 0.84 (0.19) – 0.02 0.80 0.08 – – 0.10 1.88

Low flow + high flow
(sensor, week)

18.3 (0.70) 0.78 (0.19) − 0.75 (0.27) 0.03 0.79 0.08 – – 0.10 1.88

High flow (sensor, week) 18.5 (0.70) – − 0.86 (0.28) 0.01 0.80 0.08 – – 0.11 1.89

Spatial

(Week, tail up, tail down) 18.3 (1.90) – – 0.00 0.74 – 0.04 0.12 0.10 1.90

Low flow
(week, tail up, tail down)

18.1 (2.16) 0.84 (0.19) – 0.02 0.71 – 0.01 0.17 0.09 1.88

Low flow + high flow
(week, tail up, tail down)

18.5 (2.14) 0.78 (0.20) − 0.75 (0.28) 0.03 0.70 – 0.01 0.16 0.10 1.88

High flow
(week, tail up, tail down)

18.5 (2.14) – − 0.88 (0.27) 0.01 0.69 – 0.02 0.18 0.10 1.89

All model parameters were significant at p < 0.05
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in large rivers have been shown to reduce dissolved
oxygen and increase temperature (Zhao et al. 2013),
and different types of water release regimes from
dams can also impact dissolved oxygen and water
temperature (Bednarek and Hart 2005). The type of
release mechanism (e.g., top or bottom release) has
also been shown to have an impact on dissolved oxy-
gen and water temperature in some smaller contribut-
ing streams of the Savannah and Altamaha Rivers
(Ignatius and Rasmussen 2016). The impact of the
Thurmond Dam on dissolved oxygen in this study
may be apparent in the seasonal statistics. For exam-
ple, the summer and autumn dissolved oxygen and
water temperature values at STM215 just several
miles downstream from the Thurmond Dam
(Table 2) closely match summer and autumn dissolved
oxygen in the Thurmond Reservoir reported by Young
and Isely (2011). Further downstream, summer and
autumn dissolved oxygen are higher than at STM215.
However, the Thurmond Dam releases water from both
the top and lower sections of the water column in
Thurmond Reservoir, for flood control and hydroelec-
tric energy production, respectively. More information
on dam release is needed in order to fully evaluate the
impact that releases from the Thurmond Dam may have
on water quality in the Savannah River.

Strengths, limitations, and applications of the study

This study used data from an advanced monitoring net-
work of water quality sensors on the Savannah River.
Having near real-time data has several advantages, in-
cluding the ability to determine if data is being collected
(or requires service) and the ability to access the general
status of the sensors. It also provides a way for other
domain scientists and concerned members of the public
to observe sensor data as soon as it is collected through
the open Intelligent River® website (http://www.
intelligentriver.org). Related technologies are expected
to become less expensive over time, so the added cost
of implementing a sensor network should eventually
become negligible when compared to the cost of
deploying sensors with non-networked data loggers.

Modeling relationships between space- and time-
varying water quality metrics in a flow-directional
spatial network is difficult to say the least. The
Spatial Stream Network (SSN; Ver Hoef et al.
2014) model is valuable for modeling spatial corre-
lation structure in linear regression models.

However, these models estimate spatial correlation
in stream and river networks as being temporally
static. This study showed that weekly or seasonal
fluctuations are the dominant source of variation in
dissolved oxygen and water temperature in the
Savannah River (Tables 2, 4, and 5). Therefore, the
main criticism of the SSN models in this study
would be that the spatial effects were constant
throughout the study period, while AWDO and
AWT varied seasonally and weekly. Despite this,
SSN models estimated that spatial correlation was
a source of 23–32% of the total observed variance in
AWDO (Table 4). This indicates that even in tem-
porally dense distributed sensor data, temporally
static spatial effects estimated using SSN models
could still be useful for spatially predicting dis-
solved oxygen along the studied section of the
Savannah River if basin-scale weekly or seasonal
variation is accounted for first. Moving forward,
more work is needed to understand if or how spatial
correlation in distributed water quality sensor data
may vary at different times and temporal scales.

Together, distributed water quality sensor networks
and SSNmodeling could be used to support management
of water resources and wildlife. For example, sensor
networks could be important for establishing background
water quality levels, which is important for determining
the impact of various human activities in the watershed
(Jahn and Srezov 2017). The endangered Atlantic
(Acispener oxyrinchus) and shortnose (Acipenser
brevirostrum) sturgeon utilize the Savannah River system
year-round, as well as populations of other migratory fish
species, such as blueback herring (Alosa estivalis),
American shad (Alosa sapidissima), and robust redhorse
(Moxostoma robustum). Dissolved oxygen (DO) can be
considered a limiting factor in fish habitat use, move-
ments, and survival (Kramer 1987). Atlantic sturgeon in
southern populations exhibit fall spawning migrations,
and individuals acoustically transmitted in the nearby
Altamaha River tend to enter the system during hot
summer months (Ingram and Peterson 2016). Dissolved
oxygen levels observed during these times in this study
are not expected to directly imperil sturgeon species in the
Savannah River, but may affect their migration and selec-
tion of spawning habitat. The combined use of distributed
water quality sensor networks and SSN modeling can
help managers understand and predict when and where
water quality problemsmay be anticipated so that specific
management strategies can be formulated.
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Conclusions

This study investigated dissolved oxygen (AWDO)
and water temperature (AWT) along the Savannah
River during 2015 and 2016 using data downloaded
from the Intelligent River®. Distinct seasonal patterns
impact both AWDO and AWT regardless of location
along the river. When evaluating summary statistics of
individual seasons, spatial patterns of AWDO and
AWTalong the river were also evident. Pearson corre-
lations ofweeklyAWDOandAWTat sensor siteswere
highly negative and significant over time, but after
attempting to control for time, correlations at sensor
sites were much less negative and mostly non-signifi-
cant.AWThada significant impact onDOat Intelligent
River® sensor sites in both spatial and non-spatial
linear mixed effects models. Low and high river flow
conditions also had a significant impact onAWDOand
AWT. Components of variance in AWDO and AWT in
these models suggest that location, week, and perhaps
flow-directional spatial relationships are much more
important than space-time predictors for predicting
AWDO and AWTat a weekly scale.
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