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ABSTRACT
The authors propose a hydrologic evaluation framework for
gridded rainfall products. This framework makes use of the
Spatial Stream Network (SSN) statistical method to provide spatial
characterization of the discrepancies between two gridded rainfall
products. The SSN method relies on using stream network length
rather than the traditionally used Euclidean distances.It also
accounts for the flow connectivity information between the net-
work segments. This concept is relevant in hydrological modeling
since rivers transport accumulated precipitation that occurred over
different parts of the basins, and stream networks do not repre-
sent Euclidean space. To demonstrate, we used this framework to
compare the satellite rainfall product called Integrated Multi-
satellitE Retrievals for GPM (IMERG) with the ground-based Multi-
Radar/Multi-Sensor (MRMS) rainfall product. The results show that
the magnitudes of the rainfall discrepancies tend to decrease as
rainfall accumulates in the downstream direction. However, the
covariance range between these discrepancies is much larger
along flow-connected stream network segments than in flow-
unconnected stream segments. This in turn could have an effect
on the error correlation of the predicted discharges. In addition,
the spatial linear models of rainfall errors improved significantly
with SSN based models in comparison to pure Euclidean separa-
tion distance models.
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1. Introduction

Many studies have aimed to evaluate or enhance the performance of satellite rainfall
products in hydrologic applications (e.g., Gourley et al. 2011; Vergara et al. 2014; Habib
et al. 2014). A few studies have modeled the spatial dependence of the rainfall errors
from different sensors but limited the considerations to the Euclidean space (e.g.,
Vergara et al. 2014; Mandapaka et al. 2009). This Euclidian based characterization is
suitable for many applications such as runoff generation, evapotranspiration (ET), or soil
moisture content estimation since these variables are continuous in Euclidean space.
However, variables such as stream discharge are confined by the stream network, which
is dichotomous in nature and a fractal (e.g., Rodriguez-Iturbe and Rinaldo 1997).
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In this paper, we present an example of river network based characterization of uncer-
tainties in remote sensing rainfall products. River networks act as low pass filters on highly
variable rainfall and its estimates, but their averaging properties are different from those of
Euclidean domains. Our application is limited to rainfall only but similar considerations, with
substantially more difficulties, apply to the transformed variables of runoff and streamflow
and their characteristics such as peak and low flows. We characterize spatial dependence of
rainfall errors using the tools of geostatistics, namely the semi-variogram (e.g., Cressie 1993).
In addition, we compare the performance of multiple spatial statistical linear models that
utilize Euclidean or stream distance based covariance.

The stream network method we use to characterize the errors is described by Ver Hoef,
Peterson, and Theobald (2006) and called the Spatial Stream Network (SSN). SSN accounts
for the nested nature of the stream network by using stream distances and site connectivity
information. Studies such as Ver Hoef, Peterson, and Theobald (2006), Ver Hoef and Peterson
(2010), and Zimmerman and Ver Hoef (2017) proved that this method is substantially more
accurate in modeling stream network variables such as water chemistry and temperature
since it takes into account the transport of water from one location to another; they also
discussed the various SSN covariance model types in details. Nevertheless, the SSN method
has received little to no attention in hydrologic modeling studies but we find it highly
relevant for applications since river networks play a dominant role.

2. Rainfall products and study area

In this study, we characterize spatial uncertainties of the satellite rainfall product
Integrated MultisatellitE Retrievals for GPM (IMERG) Final Run (Huffman et al. 2015).
IMERG combines rainfall estimates from Microwave (MW) sensors on board the Global
Precipitation Measurement’s (GPM) satellite constellation as well as estimates from
Infrared (IR) sensors on board geostationary satellites (Hou et al. 2014). The IMERG
product undergoes bias correction using the monthly rain gauge estimates provided
by the Global Precipitation Climatology Centre (GPCC). The product has a half-hourly
temporal resolution and is available on a 0.1° square grid with a global coverage
between 60° N and 60 S° (Liu 2016). Our benchmark (reference) product in this study
is the Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimate (QPE). This
product uses data from the Weather Surveillance Radar-1988 (WSR-88D) and is corrected
using rain gauge data provided by the Hydrometeorological Automated Data System
(HADS) (Zhang et al. 2013). The product is available on a 0.01° square grid and at hourly
temporal resolution.

Our study area is amid-sizedCedar River basin in eastern Iowa,USAwith anoverall drainage
area of approximately 17,000 km2. The shape of the basin and the width function of the river
network are illustrated in Figure 1(a,b). The width function could be interpreted as a distribu-
tion of distances from the outlet. From Figure 1(b) it is evident that the majority of the
pathways to the outlet have length between 150 and 300 km. The basin experienced a
heavy rainfall event in September 2016, which resulted in the second highest river water
level in history on 27 September 2016 (https://www.weather.gov/dvn/summary_09272016).
We use this event as our test case for the evaluation. We use the digitized stream network
provided by the National Hydrography Dataset Plus Version 2 (NHDPlus V2, http://www.
horizon-systems.com/nhdplus/documentation.php) to obtain the necessary stream network
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information (e.g., stream distance, and stream served area). Other necessary information (e.g.,
connectivity, upstream distance from the basin outlet, and covariance function weights) is
obtained using the Spatial Tools for the Analysis of River Systems (STARS) and SSN software
packages described in Peterson and Ver Hoef (2014).

3. Methods

A good tool to estimate and visualize spatial dependence is the semi-variance which
can be illustrated using the semi-variograms. Traditionally, the semi-variogram is
constructed using Euclidean distance between the observation sites. However, for
our stream network application, it is better to characterize the semi-variance in terms
of stream distance rather than Euclidean distance. In addition, because some vari-
ables are impacted by the flow connectivity structure of the stream network (e.g.,
there is no water transport between unconnected locations as well as in the
upstream direction), it is important to separate the measured distances into two
categories. First, distances between flow-connected sites (e.g., the water flows
directly from the upstream site location to the downstream site location) are equal
to the length of the stream segments connecting the two sites. Second, distances
between flow-unconnected sites are equal to the sum of the lengths of the two
stream segments that connect each site to the nearest downstream connecting
junction. Because of this distance categorization, we obtain two semi-variograms
that when plotted simultaneously are called the Torgegram (Zimmerman and Ver
Hoef 2017). If the spatial dependence of the variable of interest is not impacted by
network connectivity, the flow-connected and flow-unconnected portions of the
Torgegram should be similar; otherwise, they could be quite different.

Figure 1. (a) The Cedar River basin located in eastern Iowa. The black lines represent the NHDPlus V2
stream network definition (Flowlines), while the blue points represents the sample sites located near
the confluences of the network. (b) The width function of the basin showing the number of streams
(y-axis) at different distances in km (x-axis) from the outlet.
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The SSN covariance models used in prediction are based on Moving Average (MA)
constructions (Ver Hoef, Peterson, and Theobald 2006). The derivation of the models is
beyond the scope of this article. However, we briefly summarize how the models are
obtained. The MA construction is created by considering a random variable to be equal
to the integral of a MA function over a white noise process on the stream network. The
MA function is only non-zero in one direction, either upstream or downstream. The
value of the moving average function is largest at the observation site and decreases as
it moves away from the site location. The smaller the separation distance between two
sites, the greater the extent of overlap of those portions of the MA functions that are
relatively large. This in turn will result in higher covariance.

Covariance models for which the corresponding MA function is only positive in the
upstream direction are called tail-up models and they only allow flow-connected sites to be
correlated. In this case, the MA function needs to split at upstream junctions with weights
relative to the served areas of the streams intersecting at this junction. Since there is no
overlap between the MA functions of flow-unconnected sites, their covariance is equal to
zero. On the other hand, tail-down models have MA functions pointing downstream.
Although useful for considering covariance between flow-unconnected sites; tail-down
models assign the same, or an even larger, covariance value between flow-unconnected
sites as they do between flow-connected sites with equivalent separation distance. This is
not appropriate for many hydrologic variables since observations at flow-connected sites
are usually more correlated than those at flow-unconnected sites that are separated by
equivalent distances. Thus, as described in Ver Hoef, Peterson, and Theobald (2006), it is
useful to construct a mixed spatial linear model that incorporates the covariance generated
by a linear combination of some or all models (e.g., tail-up, tail-down, and Euclidean).

We follow the approach described in Quintero et al. (2016) and Cunha et al. (2015) in order
to calculate the differences between the rainfall products in a stream network setting. We
convert gridded rainfall products to a more hydrologically relevant representation by accu-
mulating the rainfall for all size basins. Normalized by the drainage area, rainfall is assigned to
the river network link that drains that area. We then subtract the evaluated product from the
corresponding reference product thus obtaining a river network representation of the rainfall
differences (errors). Strictly speaking, the reference product is also subject to estimation
uncertainty (e.g., Villarini and Krajewski 2007) but we ignore it here for the sake of simplicity
of our illustration and since these errors are considerably smaller than those associated with
satellite rainfall products. We use the difference values between IMERG andMRMS at approxi-
mately two thousand sites located near the network confluences (Figure 1) over the whole
basin to perform our evaluation (e.g., to produce the Torgegrams and covariance models).

4. Results

In Figure 2, we show the rainfall accumulations during the flood event period
(September 14 through 27 September 2016) obtained from MRMS (a), IMERG (b).

The differences between IMERG and MRMS are shown in Figure 2(c) as a percentage
of the benchmark MRMS observed rainfall as follows:

Error ¼ IMERG�MRMS
MRMS

� 100% (1)
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The comparison shows that IMERG generally over-estimated rainfall on the eastern side
of the basin while missing a dense cluster of accumulation in the top half of the basin.
Nevertheless, the mean areal rainfall estimates by IMERG and MRMS are almost equiva-
lent, 123.5 and 120.5 mm respectively.

In Figure 3 we applied the accumulation method described in Quintero et al. (2016) and
Cunha et al. (2015) to each rainfall product. An important feature of this figure is how the
magnitude of errors in rainfall estimates accumulates downstream (i.e., the errors in lower
stream orders (small streams) are much higher than the errors in high order streams). In
addition, the mean areal rainfall accumulations and difference (less than 10%) are directly
visible at the stream located at basin outlet. This variability in performance across scales
indicates that as the basin size increases, the difference in the overall performance between
the benchmark product and satellite rainfall decreases. This in turn could have implications for
the performance of the hydrologic models in terms of estimated stream discharges when
IMERG is used as the rainfall input (i.e., better hydrologic models’ performance at larger scales;
Quintero et al. 2016). Next, we investigating the semi-variance of the rainfall differences.

Figure 2. Rainfall accumulations during the period of (14 September 2016 through 27 September
2016) for MRMS rainfall (a) and IMERG rainfall (b). MRMS rainfall has been aggregated in space in
order to be compared to IMERG. The normalized differences between the two rainfall estimates is
shown as % difference in (c).

Figure 3. Rainfall accumulations during the period of (14 September 2016 through 27 September
2016) for MRMS rainfall (a) and IMERG rainfall (b). Unlike Figure 2, each product was accumulated
along the stream network. The normalized differences between network based accumulations of the
two products is shown as % difference in (c).
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In case of the traditional Euclidean approach, we calculated the semi-variogram in
multiple fixed directions where 0° is the North-South direction and 90° is the East-West
direction (Figure 4). In Figure 4 the diameter of the semi-variance circles is proportional to
the number of observations that fall in a given distance bin. It is evident that the directions
with highest number of observations for longer distances are the 135° and the 0° directions
because of the basin’s shape and orientation. In addition, the sill was reached at distance of
around 55 km for the 90° and 135° directions, and at around 30 km for the 0° and 45°
directions indicating little to no autocorrelation beyond these distances.

In Figure 5(a), we show the Torgegram of rainfall differences obtained at the sites
shown in Figure 1, where the green points are the semi-variances obtained from
flow-unconnected sites, while the blue points are obtained from flow-connected
sites. It is important to note that the distance used here is the stream distance,
which should be generally greater than Euclidean distance due to the meandering
nature of rivers and streams. This is illustrated in the Figure 5(b) where the distance
between two flow-connected sites is represented by a solid line and the distance
between two flow-unconnected sites is represented by a dashed line. The semi-
variance between flow-unconnected sites is higher than the semi-variance of the
connected sites at the same separation distance and extends for longer distances.
The flow-unconnected semi-variogram reaches the range at around 150 km, while
the flow-connected semi-varigram stops increasing at around 200 km. This difference
in ranges indicates that rainfall errors among flow-connected sites are autocorrelated
for longer distances compared to flow-unconnected sites. However, the flow uncon-
nected semi-variogram experiences a large increase in semi-variance towards the
end. This also occurs in the Euclidean semi-variogram in the 0° and 90° directions

Figure 4. The directional semi-variogram obtained from the rainfall differences at the resolution of
IMERG. The direction 0◦ (a) is the North-South while 90° (c) is East-West. The size of the black circles
is proportional to the number of sites that are fall into a given distance bin. The circle with the arrow
at the bottom right of each panel shows the variogram direction.
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where the semi-variance keeps increasing without bound. In addition, it is expected
that at very large distances the semi-variance for both flow-connected and flow-
unconnected sites should be similar due to the absence of autocorrelation. This
suggests trend contamination in the data (Zimmerman and Ver Hoef 2017).

To remove the underlying spatial trend, we begin with a visual inspection of the
rainfall differences field. It suggests that for this particular storm, IMERG system-
atically overestimated the rainfall amounts on the eastern side of the basin while
underestimating on the western side of the basin, thus causing differences in the
mean value at different locations within the basin. In addition, the amount of
accumulated rainfall error systematically decreases as the stream order increases.
Detailed instructions on how to deal with this effect are available in Zimmerman
and Ver Hoef (2017). Here, we follow their strategy and fit, by ordinary least squares,
a linear model to the data using stream order, longitude, and latitude as regressors.
Afterwards, we reproduce the Torgegram using the residuals of this model (Figure 6).
In Figure 6, the range of the flow-unconnected sites is similar to what it was for the
raw data (around 125 km) while the monotonic increase of the flow-unconnected
semi-variogram has disappeared. In addition, the range of the flow-connected semi-
variogram is significantly larger than that of the flow-unconnected semi-variogram
(about twice as large). This linear trend-corrected Torgegram represents the hydro-
logically-relevant spatial dependence of satellite rainfall errors.

Our next objective is to test the predictive ability of various models of the spatial
dependence. In our example, the errors are calculated and known at some 2000 loca-
tions but in some situations error prediction in river space is needed. Therefore, the next
step is fitting spatial statistical models to our data. Given the nature of our variable, both
tail-up and tail-down models should be important for error covariance modeling. This is
because some flow-unconnected streams (especially low order streams) receive the
same amount of rainfall differences due to their proximity. We compare the predictive
performance of the stream network models with that of the Euclidean models.

Figure 5. The Torgegram obtained using the differences calculated along the stream network (a).
The green circles represent the flow-unconnected sites while the blue circles represent the flow-
connected sites. The sizes of the circles are proportional to the number of sites that fall into a certain
distance bin. The schematic on the right side (b), illustrates the difference between flow-connected
(solid line) distances and flow-unconnected distances (dashed lines).
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For our example spatial linear model, we use the benchmark rainfall, upstream
distance, and served (drainage) area as predictors. For the covariance of the errors, we
produced linear models that leverage each of the tail-up, tail-down, and Euclidean
covariance functions. In addition, we produced two mixed models, one with tail-up
and tail-down, and another that included tail-up, tail-down, and Euclidean covariance
models. We used spherical covariance functions for all models. We fit all models using
ML to be able to compare their AIC scores (Akaike 1973). The mixed model with all
covariance schemes outperformed all other models and received an AIC score of 8966.
The next best model is the mixed tail-up and tail-down model, with AIC score of 9095,
i.e., only slightly worse. All mixed models performed significantly better than the pure
Euclidean model which resulted in 10,481 AIC score. In addition, the pure tail-up model
performed worse with AIC score of 11,314; we expected this since the tail-up models
allow nonzero correlation only between flow-connected sites, which is not a good
representation of our variable (rainfall differences).

5. Conclusions and future work

The main goal of this study is to present a framework that could highlight the effect of
basin size and stream network configuration on the performance of the satellite rainfall
product IMERG Final Run in hydrological modeling applications. The process of aggre-
gating rainfall estimates downstream in the network helps eliminate a large portion of
the differences between IMERG’s rainfall estimates and the benchmark product MRMS.
Nevertheless, the remaining portion is correlated for much longer ranges within the
stream network. Overall, stream based spatial statistical models resulted in better pre-
diction when compared to the Euclidean distance models. However, the choice of the
covariance moving average function has a strong impact on determining the model’s
performance. It is important to choose a moving average function that is compatible
with the nature of the variable being analyzed.

Figure 6. The Torgegram of the differences along the stream network after trend removal (a). The
green circles represent the flow-unconnected sites while the blue circles represent the flow-
connected sites. The sizes of the circles are proportional to the number of sites that fall into a
certain distance bin. The schematic on the right side (b), illustrates the difference between flow-
connected (solid line) distances and flow-unconnected distances (dashed lines).
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This approach is also applicable to other hydrologic variables, in particular to those
that result from rainfall transformation, i.e., runoff and streamflow. Specifically, we could
explore the nonlinear effects of system memory, via soil moisture, on the spatial
dependence of errors in flood peaks. Future work that builds on our present effort can
include performing hydrologic model runs and analyzing the differences in discharges
and other model variables (e.g., antecedent soil moisture) and relating them to the
discrepancies in rainfall estimates.
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