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Abstract 

1. In streams, hydrology is a predominant driver of ecological structure and function. 

Providing adequate flows to support aquatic life, or environmental flows, is therefore a top 

management priority in stream systems.   

2. Flow regime classification is a widely accepted approach for establishing environmental 

flow guidelines. However, it is surprisingly difficult to quantify relationships between 

hydrology and ecology (flow-ecology relationships) while describing how these relationships 

vary across classified flow regimes. Developing such relationships is complicated by several 

sources of spatial bias, such as autocorrelation due to spatial design, flow regime 

classification, and other environmental or ecological sources of spatial bias.  

3. We used mixed moving-average spatial stream network models to develop flow-ecology 

relationships across classified flow regimes and to assess spatial patterns of these 

relationships. We compared relationships between fish traits and life-history strategies with 

hydrologic metrics across flow regimes and assessed whether spatial autocorrelation 

influenced these relationships. 

4.  Trait-hydrology relationships varied between flow regimes and across all streams 

combined. Some relationships between traits and hydrologic metrics fit predictions based on 

life-history theory, while others exhibited unexpected relationships with hydrology. Spatial 

factors described a large proportion of variability in fish traits and different patterns of spatial 

autocorrelation were observed in different flow regimes.   

Synthesis and Applications. Further work is needed to understand why flow-ecology 

relationships vary across classified flow regimes and why these relationships may not fit 

predictions based on life-history theories. Managers determining environmental flow 

standards need to be aware that different hydrologic metrics are often important drivers of 

fish trait diversity in different flow-regimes. Flow-ecology relationships may therefore be 
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confounded by spatial structure inherent in flow regime classification and much existing 

biological data. Complex patterns of spatial bias should be considered when managing stream 

systems within an environmental flows framework.  

 

Keywords: environmental flows, fish, hydrology, life-history strategies, spatial 

autocorrelation, streams, traits, spatial stream network models 

 

Introduction 

Maintaining natural flow dynamics in streams is recognized as a water management 

priority (Poff et al., 2010). Natural flow regimes are critical for sustaining freshwater 

ecosystems (Bunn & Arthington, 2002; Postel & Richter, 2003; Poff, 2009), but are 

increasingly threatened by water demands, landscape changes, and climate change (Postel & 

Richter, 2003; Palmer et al., 2008). Alterations of natural flow regimes can have profound 

effects on the biophysical attributes and ecological functioning of lotic systems (Infante, 

Wiley & Seelback, 2006; Poff & Zimmerman, 2010; Webb et al., 2013). Therefore, we are 

faced with the challenge of managing water use to meet societal demands while also 

maintaining natural flow regimes and the ecological integrity of streams.  

Environmental flows (Brisbane Declaration, 2007) are water management guidelines 

derived from data-driven estimates of flow-ecology relationships in streams. This requires 

quantifying flow patterns and linking them to ecological responses (Arthington et al., 2006). 

Many hydrologic metrics have been developed to quantify ecologically important 

components of flow regimes including magnitude, duration, timing, rate of change, and 

frequency of flow events (Richter et al., 1996, Olden & Poff, 2003, Poff et al., 1997). 

Quantifying flow-ecology relationships and developing effective flow standards for all 

streams within a management area is a data- and resource-intensive task. Hydrological and 
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biological data can only be collected from relatively few streams, and ecological responses to 

hydrology likely depend on the type of stream in question (e.g. intermittent, perennial, 

groundwater-influenced). Classifying streams into hydrologically similar groups (flow 

regimes) allows data-driven flow standards to be generalized more effectively among streams 

with similar flow patterns (Poff et al., 2010).   

Trait-based approaches may be advantageous over species-specific analyses for 

identifying flow-ecology relationships across broad spatial scales (Heino, Schmera & Erös, 

2013). Trait-based approaches assume species traits like reproductive strategies, maturation 

time, and longevity, will converge when environmental pressures (e.g. hydrology) are similar, 

regardless of the specific taxa involved (Southwood, 1988). Based on this theory, 

categorizing species by different traits allows for the study of communities across 

biogeographic boundaries (Schluter, 1986; Statzner, Dolédec, & Hugueny, 2004). The ability 

to develop flow-ecology relationships across biogeographic boundaries is important because 

flow classification schemes or management areas are likely to include multiple drainage 

basins with different species pools. For example, a recent environmental flow study found 

family-level macroinvertebrate community indices were best described by ecoregion and did 

not show a response to natural flow variability (Buchanan et al., 2013). This inability to 

observe variation in ecological response variables to natural flow variations hindered the 

development of flow classification schemes (Buchanan et al., 2013).  

Traits are also advantageous because they facilitate the use of existing biological data. 

Existing datasets may offer the spatial coverage necessary to develop flow-ecology 

relationships at coarse spatial scales, but inconsistent sampling methods, taxonomic bias, and 

other issues often make abundance data unreliable. Trait-based approaches can more 

effectively utilize presence-absence data to mitigate these issues. Traits also represent long-

term patterns in community structure (Poff & Allan, 1995; Poff et al., 2006; Tedesco et al., 
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2008), which is important because flow regime classification is based on long-term 

hydrologic trends (i.e. decades), not short-term hydrological events like a severe flood in a 

single year (Kennard et al., 2010). Trait-based approaches may also be advantageous because 

the mechanisms driving ecological-flow relationships can be hypothesized more directly than 

when assessing taxonomic relationships (Southwood, 1977; Poff ,1997; Heino et al., 2013). 

Spatial autocorrelation likely influences the interpretation of flow-ecology 

relationships based on traits because spatial patterns are inherent in most hydrological and 

biological data. Spatial autocorrelation represents the degree of statistical dependency 

between random variables based on proximity—nearby sites tend to be similar to one another 

(Cressie, 1993).  Stream hydrology is influenced by broad-scale factors including climate, 

geology, topography, and vegetation (Poff & Ward, 1989), so streams with similar hydrology 

are likely spatially clumped along these environmental gradients. Spatial autocorrelation can 

also arise from biological processes like dispersal limitation, historical biogeography, and 

small-scale habitat heterogeneity (Erős & Schmera, 2010). Logistical constraints and other 

sources of sampling bias may also lead to spatial autocorrelation via geographically clumped 

sites in ecological response datasets or bias in sampling locations (for example, wadeable 

streams near road crossings; Domisch et al.  2015).   

Spatial autocorrelation can be accounted for using geostatistical models, a common 

approach in terrestrial studies, but streams present unique challenges for spatial models 

because they are organized into hierarchical networks with unidirectional flow. The degree of 

similarity between neighboring sites depends on the direction of flow and the stream distance 

between them, not just Euclidean distance. Due to the historical lack of appropriate models to 

represent spatial autocorrelation in streams (Ver Hoef & Peterson, 2010), the role of spatial 

drivers of ecological patterns within stream networks has been largely ignored.  
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 We used a trait-based approach to quantify flow-ecology relationships in classified 

flow regimes and assessed the influence of spatial autocorrelation on our inferences. Our 

main objective was to compare relationships between stream hydrology and fish traits among 

flow regimes. For comparison, we also assessed these relationships for all streams combined, 

ignoring flow regime classifications. Several studies have documented strong relationships 

between fish traits and hydrology at broad spatial scales, but these studies did not account for 

differences among flow regimes (Poff & Allan 1995; Poff et al., 2010; Mims & Olden, 2012; 

Mims & Olden, 2013; McManamay, Bevelhimer, & Frimpong, 2015; McManamay & 

Frimpong, 2015). We contribute to this body of work by testing these relationships in specific 

flow regimes at a regional, management level spatial scale. 

 

Materials and Methods 

Fish Assemblage Data  

We used fish assemblage data from the Arkansas GAP Analysis (MORAP, 2009), 

which included observations of fish species occurrences at over 7,700 sampling locations 

from over 3,700 stream segments across Arkansas, USA. Government agencies, academic 

institutions, and museums collected these data between 1927 and 2009 using a variety of 

sampling methods (electrofishing, seines, rotenone, visual counts, or other methods). We 

converted abundance data to species presence-absence to help control for differences in 

collection methods and sampling periods within the dataset. We felt this was appropriate 

because our trait-based questions focused on occurrences of fish traits within the community 

and not necessarily abundances of species possessing those traits.  We only used data from 

1980 and later to assemble the presence-absence records for each stream segment. This long 

temporal sampling period allowed us to balance capturing both relatively contemporary and 

long-term patterns of community composition at each site.  
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Site Selection 

 Because we were interested in associations between fish traits and natural flow 

regimes, we only included streams with minimal flow alteration. We identified those streams 

based on six relevant watershed characteristics: road density, urban development, pasture and 

cropland cover, dam density, dam storage, and density of pollution discharge sites. These 

metrics were the basis for the widely used Hydrologic Disturbance Index (Falcone, Carlisle, 

& Weber, 2010). We only kept data from sites with values less than the medians for all six 

metrics. To minimize sampling bias, we only included sites sampled at least three times 

(Figure 1). Our final set of sites included 302 least-disturbed streams (Figure 2). See 

Appendix S1 in Supporting Information for more details about site selection and geo-

processing. 

 

Hydrologic Data 

 Flow regime classifications for all sites were derived from the flow classification 

scheme of Leasure, Magoulick, and Longing (2016). We grouped their seven flow regimes 

into three broad classes: groundwater, intermittent, and runoff (Figure 1). Groundwater 

streams have fewer than two low flow spells per year (i.e. < 5% of mean daily flow) and 

never dry completely.  They have less flow variability than runoff or intermittent streams. 

Runoff streams average more low flow spells, lower base flows, and more zero flow days per 

year.  Intermittent streams are characterized by more variability than both runoff and 

groundwater streams and may dry completely for up to three months each year. All three flow 

regimes covered a similar range of stream sizes (i.e. catchments of about 4 to 800 km
2
).   

We used random forest models (Breiman, 2001) to predict 11 flow metrics (Table 1) 

using GIS-based watershed characteristics of our sites (Appendix S2). We built a random 

forest model for each flow metric using the R package randomForest (Liaw & Wiener, 
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2002). These 11 flow metrics were selected by Leasure et al. (2016) following the methods of 

Olden and Poff (2003) to best distinguish natural flow regimes in our study area. We reduced 

this set of 11 metrics to five after removing those that were highly correlated at our sites 

(Table 1). Flood frequency (FH7) and fall rate (RA3) were log(x+1) transformed to improve 

normality. See Appendix S2 for more details about our random forest modeling to predict 

hydrologic metrics at our sites.  

 

Fish Traits 

 We used the FishTraits database (Frimpong & Angermeier, 2009) to assign trait 

values to all fish species in our data set (Appendix S3). For species with inadequate data in 

the FishTraits database (Etheostoma artesiae, Etheostoma fragi, Etheostoma uniporum, and 

Percina fulvitaenia), we assigned trait values first by searching the literature, and if 

information was not available we used traits of the closest relative (Near et al. 2011). These 

four species were relatively uncommon across our study sites. We chose to focus on life-

history and reproductive traits (Table 2) because previous studies documented broad trends 

between these traits and hydrology (Olden & Kennard, 2010; Mims & Olden, 2012; 

McManamay et al., 2015).  

Species with common ancestry likely share similar traits, so it was necessary to 

account for phylogenetic effects to ensure independence of traits among species (Gittleman & 

Luh, 1992). We used generalized linear models (Gaussian, Poisson, or binomial depending on 

the trait) to account for variation in traits described by phylogeny (McManamay et al., 2015). 

We used family number (Nelson, 2006), which describes the phylogenetic position of 

families relative to other families (Frimpong & Angermeier, 2009), to represent phylogenetic 

relationships. We used deviance residuals from these models in all proceeding analyses to 

represent trait values corrected for phylogeny (McManamay et al., 2015).  
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We assigned each species to one of the three life-history strategies described by 

Winemiller and Rose (1992): equilibrium, periodic, or opportunistic (Appendix S4). Because 

we did not have all the data necessary to assign species to life-history categories in the same 

manner as Winemiller and Rose (1992), we followed the methods of McManamy et al. 

(2015) and Mims et al. (2010) to assign life-history strategies. We compared the Euclidean 

distance between species and endpoints representing each life-history strategy in multivariate 

space (Appendix S4). Endpoints represented hypothetical extremes of each life-history 

strategy based on the trait characteristics in our global community trait database. Our 

endpoints were based on traits described by both Mims et al. (2010) and McManamay et al. 

(2015). Mims et al. (2010) defined the opportunistic endpoint based on the minimum 

fecundity, minimum juvenile investment, and minimum maturation size observed across the 

entire species pool, whereas McManamay et al. (2015) defined the opportunistic endpoint as 

the maximum value for serial spawning and season length, and minimum values for 

maximum length, age at maturation, longevity, fecundity, and parental care. Individual 

species were assigned to the same life-history strategy based on both sets of endpoints for 

61% of species. For species in which assignments were not the same, we used life-history 

strategy classifications presented in other published works or the closest relative in our data 

set (same genus) to make final life history classifications. 

 

Statistical Analysis 

 We used mixed moving-average spatial stream network (SSN) models to identify 

relationships between hydrologic metrics and fish traits while also accounting for spatial 

autocorrelation (Ver Hoef, Peterson & Theobald, 2006; Peterson & Ver Hoef, 2010).  We 

completed analyses separately for each flow regime and for all sites combined to determine 

how flow-ecology relationships and spatial patterns differ across groundwater, intermittent, 
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and runoff flow regimes. Spatial autocorrelation is often present in fish and hydrology data 

due to stream network structure, connectivity, and flow direction (Peterson & Ver Hoef, 

2010). SSN uses three covariance structures to represent these different spatial patterns: “tail-

up” (TU), “tail-down” (TD), and classic Euclidean distance (EUC). Tail-up covariance 

matrices are based on stream distances between sites and only allow spatial autocorrelation to 

occur between flow-connected sites (i.e. water must move from one site to the other). Tail-

down covariance matrices are also based on stream distances, but they allow correlation 

between flow-unconnected sites as well as flow-connected sites. This covariance function 

may be important to fish because they can move both upstream and downstream in the 

network.  Tail-up models include spatial weights that create an additive function downstream 

throughout the network. These weights split the moving average function at confluences. We 

used spatial weights for tail-up models based on watershed area, so upstream sites with larger 

watershed areas had stronger correlations with downstream sites than smaller upstream sites. 

As recommended by Peterson and Ver Hoef (2010), we included all three covariance 

structures in our models (EUC, TU, and TD). 

 We developed SSN models with the following fish traits as response variables (Table 

2):  age at maturity, length of spawning season, spawning mode (open spawners, brood 

hiders, open substrate guarders, indifferent spawners, and nest guarders), and life-history 

strategies (equilibrium, periodic, and opportunistic). All response variables (trait values) were 

average deviance residuals derived from phylogenetic correction models for each trait.  Life-

history strategies were represented at each site by the proportion of species in each group. 

Covariates in each model included five hydrologic metric predictors, watershed area, and 

average annual air temperature range. We included watershed area and air temperature 

because stream size and temperature are two variables known to influence fish community 

structure. Because we were interested in comparing trait-hydrology relationships among flow 
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regimes, we did not use model selection procedures. All models used Gaussian link functions 

because response variables were normally-distributed after phylogenetic correction. We 

created 44 spatial models: one for each flow regime and one with data combined across all 

sites for each of the 11 response variables. All spatial models were implemented using the 

SSN (Ver Hoef et al., 2014) package in R (R Core Team, 2014). All geo-processing required 

to develop SSN models was completed using the STARS package (Peterson and Ver Hoef, 

2014) implemented in ArcGIS (ESRI, 2016) and is described in Appendix S1.     

 Several different models are available for the EUC (Gaussian, exponential, spherical, 

Cauchy), TU (linear sill, Epanechnikov, Mariah, exponential, spherical), and TD (linear sill, 

spherical, exponential, Epanechnikov, Mariah) covariance structures (see Ver Hoef & 

Peterson, 2010; Garreta et al., 2010). We compared all combinations of the covariance 

structures for each response variable. We selected covariance structures for the final models 

based on root-mean-square-prediction error (RMSPE; Appendix S5). All final models were 

fit using restricted maximum likelihood (REML) for parameter estimation. Diagnostic plots 

of residuals were used to check heteroscedasticity and influence of outliers. Scatterplot 

matrices and variance inflation factors (VIF) were used to assess multicollinearity. We 

compared leave-one-out cross validation predictions to the observed data to calculate pseudo 

R
2
 values and prediction intervals. Based on model diagnostics, we removed open substrate 

guarders and substrate indifferent spawners from analyses, and we removed watershed area 

from all models for the runoff flow regime.  

 We also fit non-spatial linear regression models containing the same response 

variables (phylogenetically corrected traits) and predictors (five hydrologic metrics, 

watershed area, and annual average temperature range) as SSN models. We compared the 

amount of variance explained by each model and the number of significant predictors 

obtained from non-spatial  regression models to those obtained using SSN models.   
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Results 

 Summary of fish traits  

 The final assemblage dataset included 102 species from 14 families across 302 

reference sites. Table 2 summarizes the range of trait values and number of species classified 

in each life-history category. Trait average deviance (corrected by family number) varied 

within and between flow regimes, but there was no apparent difference in trait values 

between flow regimes, although this was not statistically tested (Figure 3). Notable 

exceptions include the greater age at maturity and shorter spawning season in runoff streams 

relative to groundwater and intermittent streams.  

 

Flow-ecology models 

SSN model performance varied across traits and flow regimes, but many (11) models 

exhibited relatively good fit (pseudo R
2
 > 0.5, Table 3). All SSN models described more 

variance than non-spatial linear regression models (Figure 4, Table 3). Non-spatial linear 

models produced 6 more significant relationships with covariates than SSN models (Tables 3 

and 4). These relationships included both hydrologic metrics and non-hydrologic metrics, but 

there were more significant relationships between hydrologic metrics and fish traits in non-

spatial models (Table 4). For example, across all flow regimes SSN models only produced 2 

significant relationships between traits and hydrologic metrics, while non-spatial models 

produced 9 significant relationships between traits and hydrologic metrics. For a given trait, 

SSN and non-spatial models also predicted different hydrologic and non-hydrologic metrics 

to be significant (Table 4). In SSN models brood hiders from intermittent streams had 

significant relationships with MA4 and DL4, but in non-spatial models brood hiders had 

significant relationships with MA4 and TA1.  
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SSN models revealed fish traits responded to different hydrologic and non-hydrologic 

factors in groundwater, runoff, and intermittent streams (Table 4). No covariates were 

significant predictors of any traits in runoff streams. Watershed area was an important 

predictor for most traits in intermittent streams, and across all sites combined. Variability in 

daily flows (MA4) was a significant predictor of opportunistic strategists, open substrate 

spawners, brood hiders, and nest guarders in intermittent streams.  Minimum 30-day flow 

(DL4) was an important predictor in groundwater and intermittent streams, but was important 

for different traits. Periodic strategists had a positive relationship with number of high flow 

events (FH7) in groundwater streams, but no relationship with hydrology in any other flow 

regime. Age at maturity responded to rates of declining flows (RA3) in groundwater and 

intermittent streams with a negative relationship in groundwater streams and a positive 

relationship in intermittent streams. The length of spawning season had a significant positive 

relationship with hydrology (constancy, TA1) across all streams combined. Equilibrium 

strategists had a significant negative relationship with average annual air temperature ranges 

in both intermittent streams and across all sites combined.  

We compared the relative importance of different spatial covariance structures and 

covariates, including both hydrologic and non-hydrologic variables (Figure 4). Covariates 

described more than 20% of fish trait variance in 9 of 32 final SSN models. Covariates 

explained the most variance in groundwater streams relative to other flow regimes or all sites 

combined.  Spatial autocorrelation accounted for most variation across all sites combined, 

with TU as an important predictor of life-history strategies across all flow regimes combined 

and EUC as an important predictor of open substrate spawners and brood hiders. In 

intermittent streams, a mixture of TU and EUC terms accounted for most of the variation, 

while in runoff streams, EUC was an important predictor for most traits. There was relatively 

low unexplained variance (nugget) for groundwater and intermittent streams, as well as 
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across all sites combined, while there was relatively high unexplained variance in runoff 

streams. There was no dominant spatial covariance structure describing the variation in any 

trait, except age at maturity and brood hiders. Variation in age at maturity was best described 

by covariates in groundwater streams, and EUC in runoff and intermittent streams.  Brood 

hiders were best described by EUC in runoff and intermittent streams, as well as across all 

streams combined.    

 

Discussion  

We compared relationships between fish community traits and hydrologic metrics 

across classified flow regimes, accounting for the role of spatial relationships in the river 

network. Relationships between hydrologic metrics and fish traits differed among flow 

regimes, emphasizing the importance of developing water management standards tailored to a 

flow regime.  Spatial patterns described a large proportion of variance in fish traits within 

flow regimes, as well as across our global pool of sites, indicating spatial patterns need to be 

controlled for in the development of flow-ecology relationships. Fish traits, life-history 

strategies, and flow regimes also differed in their spatial structures, highlighting the 

importance of considering site layout when designing sampling strategies for flow-ecology 

studies and providing insight into what types of covariates need to be included. 

 Three hydrologic metrics consistently predicted fish traits and life-history strategies: 

30-day minimum flows (DL4), daily flow variability (MA4), and fall rate (RA3). The 

repeated significance of these metrics suggests they may be important for developing flow 

standards in our study area, and maybe even more broadly. Low flow conditions, in general, 

were important drivers of fish traits across all sites. During drought conditions, we may 

expect to see streams dominated by fish that mature very quickly, such as Western 

Mosquitofish (Gambusia affinis) or Fathead Minnows (Pimephales promelas). Variability of 
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daily flows (MA4) and fall rate (RA3) were especially important in intermittent streams and 

across all sites combined. Both metrics are related to daily variability of flows. While we 

know fish respond to annual hydrologic variability, such as seasonal changes in the 

hydrograph (Nesler, Muth, & Wasowicz, 1988; Jespen et al., 1999; Humphries & Lake, 

2000), this finding suggests fish are also responding to short term hydrologic variability. 

Providing flows of varying magnitudes on a seasonal basis may not be enough to sustain fish 

communities, and environmental flow schemes that incorporate short-term flow variability 

may be necessary.   

 We observed complex and sometimes unexpected relationships between hydrology 

and fish traits and life-history strategies. While some of the relationships we observed fit 

predictions based on life-history studies, we will restrict our discussion to our unexpected 

results to point out potentially important new information about trait-hydrology relationships, 

as the expected relationships are discussed elsewhere (Olden & Kennard, 2010; Mims & 

Olden, 2012; Mims & Olden, 2013). For example, we observed a negative relationship 

between the variability of daily flows (MA4) and opportunistic strategists. Previous studies 

document positive relationships between opportunistic species and measures of flow 

variability or disturbance (Olden & Kennard, 2010; Mims & Olden, 2013). This unexpected 

result may be due to the temporal scale of the hydrologic metrics. Metrics used in previous 

studies represented annual variability, while MA4 captured daily variability averaged over 

the entire flow record.  Although opportunistic strategists are predicted to favor environments 

with frequent and intense disturbances, the negative relationship with the variability of daily 

flows may indicate that opportunistic strategists are not well adapted to variability at all 

temporal scales.  Also unexpectedly, we did not observe any relationships between periodic 

strategists and metrics capturing predictability. We did, however, observe a positive 

relationship with the number of flood events (FH7) in groundwater streams. Although this 
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metric does not capture predictability or seasonality of floods, this relationship emphasizes 

the importance of variability to periodic strategists. Interestingly, this relationship was 

observed in groundwater streams, which have the most stable hydrographs of the flow 

regimes in the current study. Hydrologic metrics capturing extreme events may be more 

important for periodic strategists in relatively stable streams compared to those occupying 

more variable flow regimes. 

 Some traits and life-history strategies had opposite responses to hydrology in different 

flow regimes.  This may have important consequences for the implementation of flow-

standards in classified flow regimes. Many documented flow-ecology relationships are based 

on changes in community structure after flow alteration (Freeman et al., 2001; Humphries, 

Serafini, & King, 2002; Poff & Zimmerman, 2010; Webb et al., 2013; Rolls & Arthington, 

2014), but few studies have compared flow-ecology relationships across a regional flow 

classification scheme (see Poff & Allan, 1995; Monk et al., 2006; Chinnayakanahalli, 

Hawkins, Tarboton, & Hill, 2011; Mims & Olden, 2012; McManamay et al., 2015). Like the 

current study, Mims and Olden (2012) observed predicted relationships between hydrologic 

metrics and fish life-history strategies across all sites combined. However, within classified 

flow regimes, Mims and Olden (2012, Appendix B) observed relationships that differed 

between regimes and did not fit predictions based on life-history theory. While we may 

expect different hydrologic metrics to have varying degrees of ecological relevance across 

flow regimes, opposite trait responses between flow regimes is an unexpected result. Further 

empirical and conceptual work is needed to understand how our perception of flow-ecology 

relationships may depend on the specific flow metrics used and how differences among flow 

regimes may be incorporated in predictive models and in the development of environmental 

flow standards.  

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 Observed relationships (and lack of relationships) between traits and hydrology may 

have been influenced by the regional scale of our study. Similar studies exhibiting strong 

relationships with distributions of fish traits and life-history strategies across flow regimes 

were completed at national scales (Mims & Olden, 2012; McManamay et al., 2015). Not only 

can flow classification schemes vary depending on the spatial scale of classification 

(McManamay, Orth, Dolloff, & Frimpong, 2012), but trait values may also exhibit less 

variation at smaller spatial scales. We may expect stronger relationships between fish traits 

and hydrology at broad spatial scales that include larger environmental gradients and species 

pools. When developing flow-ecology relationships, the choice to use trait-based approaches 

may be dependent on the scale of the study.  

  Trait values assigned to each species may also affect the strength of relationships with 

hydrology. In the current study, each species was assigned trait values from the FishTraits 

database (Frimpong & Angermeier, 2009). We did not observe clear separation of any traits 

among flow regimes, suggesting either trait values did not capture the true variability of 

species traits or trait composition was similar across flow regimes. Intraspecific or regional 

variations in trait values were not accounted for in the national traits database. In addition, the 

similarity of trait distributions across flow regimes may have been due to our use of 

occurrence data rather than abundance data. We may have seen stronger separation between 

flow regimes in trait space if our data were weighted by the abundance of different species at 

each site. These issues are likely common in trait-based studies using existing data and 

highlight our need for higher resolution (reliable species abundances, regional trait variation) 

community data at coarse spatial scales.  

Trait-flow relationships were also likely influenced by our choice of hydrologic 

metrics. We chose metrics that described the most variability in hydrology across the study 

area and were used to develop the flow classification scheme in the region. This point has 
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very important implications for the development of flow-ecology relationships. While we can 

assess which metrics capture the most hydrologic variability in a region before conducting 

ecological studies, it can be difficult to predict a priori which of the many (hundreds) 

hydrologic metrics are ecologically significant. The hydrologic metrics used to classify flow 

regimes may not be the most ecologically meaningful. We also analyzed the same metrics 

across all flow regimes. As our data suggests, different hydrologic metrics may be important 

in different flow regimes. When determining flow-ecology standards, it may be important for 

managers to identify which components of hydrology have the strongest ecological responses 

for individual flow regime types.  

Lastly, despite our focus on least-disturbed streams, fish communities at these sites 

may have been influenced by some flow alteration or other impacts that we did not consider. 

The hydrologic metrics used in this study represented predicted natural flow conditions and 

did not account for flow alteration. This was a necessary limitation because gage data are not 

available from most sites with existing fish survey data. While predicting flow alteration at 

ungauged sites is beyond the scope of this paper, the issue of identifying least-disturbed sites 

is not unique to the current study. For example, reservoirs and water withdrawals have altered 

flow regimes on one sixth of the global land area (Döll et al., 2009), while climate change 

will likely alter flow regimes on 90% of Earth’s land mass by 2050 (Döll and Zhang 2010). 

Identifying reference sites to understand “natural” flow-ecology relationships to define 

baseline conditions will likely continue to become more difficult. Identifying environmental 

flow standards using methods that are not reliant on historic or baseline conditions may be 

necessary to overcome these issues (discussed in Poff and Matthews, 2013).  

SSN models indicated fish traits were spatially autocorrelated in the study area, and 

this appears to be driven by the distribution of our study sites. Groundwater streams were 

clumped in the Ouachita Mountains, while runoff streams were clumped in the Boston 
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Mountains. This clumping likely drove the importance of tail-down models for several traits 

in these regimes (Figure 4). Similarly, Euclidean distance was important in intermittent 

streams, which were widely distributed across the entire study area. In these widely 

distributed sites, network connectivity may be less important relative to the broad-scale 

environmental variation captured by Euclidean distance. The use of SSN models captured 

these different spatial structures and helped account for the differences in site distributions 

between flow regimes.  

Other studies utilizing compilations of existing data likely also exhibit spatial 

clumping of sites, which violates assumptions of independence required for most statistical 

models. Failure to account for spatial autocorrelation may lead to elevated type I error rates 

(Legendre, 1993), having potentially large impacts on the interpretation of flow-ecology 

relationships. Like other studies (Isaak et al., 2014), we found SSN models explained more 

variance and had less significant relationships than traditional linear models (Tables 3 and 4), 

suggesting that failing to account for spatial autocorrelation may lead to spurious findings 

when developing environmental-flow standards.    

In addition to controlling for spatial autocorrelation, SNN models also helped us 

identify potential covariates to improve future model performance. For example, length of 

spawning season only exhibited significant relationships with hydrology across all sites 

combined. The lack of relationships between hydrology and length of spawning season in any 

flow regime may be due to regional environmental differences like water temperature 

influencing spawning season. Our models support this inference because Euclidean distance, 

which captures broad scale environmental variability, described a large (45-94%) proportion 

of variance for the length of spawning season.  McManamay et al. (2015) also found length 

of spawning season had a higher affiliation with geographic regions than hydrology, with 

length of spawning season varying along a latitudinal gradient, potentially related to 
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temperature differences from north to south.  Similarly, 75% of the variation in the 

distribution of equilibrium strategists in groundwater streams was captured by the tail-down 

covariance component, representing spatial autocorrelation independent of flow direction. 

Although the proportion of equilibrium strategists varied across the study area, there was 

clumping of equilibrium strategists within stream networks. The large proportion of 

variability captured by the tail-down covariance component may suggest that local conditions 

such as water chemistry, sediment, riparian characteristics, or temperature may be influencing 

the distribution of equilibrium strategists. Because we know processes work at multiple 

spatial scales to influence streams, SSN models can help us identify an appropriate scale for 

environmental covariates that may improve our interpretation of flow-ecology relationships.  

This study provides new considerations for the development of flow-ecology 

relationships necessary for the implementation of environmental flow standards. First, some 

flow metrics may influence community structure within a study region regardless of flow 

regime classification. Identifying important metrics such as these may help set management 

priorities before or during the development of flow classification schemes. Second, 

relationships between traits and hydrologic metrics can be complex when compared across 

classified flow regimes and may not always fit predictions. Expected relationships between 

traits and hydrologic metrics may differ among flow regimes and when flow regimes are 

ignored. Third, spatial autocorrelation is important and needs to be considered in the 

development of flow-ecology relationships, especially considering the spatial layout of sites. 

Considering flow-ecology relationships within a spatial context may improve the 

interpretation of observed relationships, help identify important environmental covariates, 

and develop new flow-ecology hypotheses.  
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Table 1. Hydrologic metrics used as predictors of fish traits in the current study.  
Code Metric Name Definition 

MA4 Variability in daily flows 2  Coefficient of variation of the logs in daily flows corresponding to the 

{5th, 10th, 15th,…,85th, 90th, 95th} percentiles. 

 

TA1 Constancy Varies inversely with amplitude of variation in mean flow. Calculated 

using the equation of Colwell (1974). See Henriksen et al. (2006, 

Appendix 5). 

 

FH7 Flood frequency 1 Mean number of high flow events per year using an upper threshold 

of 7 times median flow over all years 

 

RA3 Fall rate Mean rate of negative changes in flow from 1 day to the next.  

 

DL4 Annual minima of 30 day means of daily discharge Magnitude of minimum annual 30-day flow.  

 

 

Table 2. Traits derived from the FishTraits database (Frimpong & Angermeier 2009) used to determine life-history strategies and used in 

analyses. Median, minimum, and maximum trait values are displayed for numerical traits, while the percentage of species in each category is 

provided for categorical traits and life history strategies.   
Trait Description Median Minimum Maximum Percentage  

Maximum total length Maximum total length or asymptotic length in centimeters. 15 4 200   

Age at maturity Mean, median, or modal age at maturity in years averaged 

across populations for females or males if female data were 

not available.  

1.5  0.3 10   

Fecundity Maximum reported fecundity (count).  1,500 37 20,000,000   

Longevity Longevity in years based on life in the wild or captivity if 

wild not available. 

4 1 45   

Serial Serial or batch spawners.     55  

Season Sum of proportions of each month in which spawning occurs.  2.5 1 6.5   

Open Spawners Nonguarders; spawn over open substrates.    39  

Brood Hiders Nonguarders; brood hiders.    25  

Open Guarders Guarders, open substrate for spawning.    1  
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Nest Guarders Guarders, nest spawners.    34  

Substrate Indifferent Lumping of all bearers, spawning generalists.     1  

Parental Care Index Calculated following McManamay et al. (2015) based on 

degree of parental investment.  

     

Equilibrium Life history strategy characterized by slow maturation, low 

fecundity and high juvenile survivorship.  

   32  

Opportunistic Life history strategy characterized by fast maturation, low 

fecundity, and low juvenile survivorship.  

   44  

Periodic Life history strategy characterized by slow maturation, high 

fecundity, low juvenile survivorship.   

   24  
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Table 3. Non-spatial linear models produced more significant relationships, but explained 

less variance than spatial (SSN) models. All spatial models included three spatial covariance 

structures (Tail-Up, Tail-Down, and Euclidean), five flow metrics, and two landscape 

metrics. Pseudo R
2 
values calculated from the correlation coefficient between the observed 

values and those predicted by leave-one-out-cross-validation are provided for all spatial 

models, while adjusted R
2  

is
 
provided for non-spatial models. Highest R

2 
values of spatial 

and non-spatial models are bold.  

 

  Spatial Models Non-Spatial Models 

Flow Regime Response 
Pseudo 

R
2
 

# Significant 

Covariates 

Adjusted 

R
2
 

# Significant 

Covariates 

Groundwater Age at Maturity 0.56 2 0.18 0 

 Season 0.74 0 0.32 0 

 Equilibrium 0.06 0 0.14 0 

 Opportunistic 0.2 0 0.03 1 

 Periodic 0.26 1 0.15 0 

 Open Spawners 0.64 0 0.34 0 

 Brood Hiders 0.58 0 0.55 0 

 Nest Guarders 0.01 0 0.10 0 

Runoff Age at Maturity 0.26 0 0.01 0 

 Season 0.56 0 0.31 1 

 Equilibrium 0.04 0 0.09 0 

 Opportunistic 0.21 0 0.03 0 

 Periodic 0.64 0 0.17 1 

 Open Spawners 0.39 0 0.02 0 

 Brood Hiders 0.51 0 0.05 0 

 Nest Guarders 0.03 0 0.10 2 

Intermittent Age at Maturity 0.46 1 0.18 1 

 Season 0.28 0 0.05 1 

 Equilibrium 0.45 2 0.09 2 

 Opportunistic 0.47 2 0.17 1 

 Periodic 0.02 0 0.01 0 

 Open Spawners 0.51 2 0.18 4 

 Brood Hiders 0.61 3 0.33 3 

 Nest Guarders 0.42 3 0.10 2 

All Flow  

Regimes 

Age at Maturity 0.52 0 0.24 2 

Season 0.43 1 0.14 1 

 Equilibrium 0.34 1 0.05 1 

 Opportunistic 0.34 1 0.13 3 

 Periodic 0.14 1 0.04 1 

 Open Spawners 0.53 1 0.18 3 

 

 

Brood Hiders 0.60 3 0.30 3 

Nest Guarders 0.29 1 0.10 2 
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Table 4. Model results from spatial and non-spatial models for significant covariates for each 

trait for each flow regime. Non-spatial model results are highlighted to aid in readability.  

 

Flow Regime Model Type Response Metric Estimate 

Std. 

Error 

T 

Value 

P 

Value 

Groundwater Spatial Age at Maturity DL4 0.010 0.027 3.740 0.001 

   RA3 -0.162 0.070 -2.314 0.031 

  Periodic FH7 1.098 0.310 3.555 0.002 

 Non- Spatial Periodic FH7 0.589 0.254 2.317 0.031 

Runoff Spatial --- --- --- --- --- --- 

 Non- Spatial Season Temperature 0.006 0.002 3.184 0.004 

  Periodic DL4 0.160 0.056 2.853 0.008 

  Nest Guarders RA3 -0.023 0.010 -2.316 0.022 

   Temperature -0.001 0.001 -2.216 0.028 

Intermittent Spatial Age at Maturity RA3 0.083 0.030 2.738 0.007 

  Equilibrium Watershed Area -0.037 0.015 -2.535 0.012 

   Temperature  -0.006 0.002 -2.805 0.006 

  Opportunistic MA4 -0.627 0.305 -2.055 0.042 

   Watershed Area 0.049 0.015 3.217 0.002 

  Open Spawners MA4 -4.189 1.626 -2.577 0.011 

   Watershed Area 0.044 0.014 3.084 0.002 

  Brood Hiders MA4 -1.293 0.346 -3.735 <0.001 

   DL4 -0.139 0.051 -2.729 0.007 

   Watershed Area -0.058 0.015 -3.935 <0.001 

  Nest Guarders MA4 0.576 0.246 2.339 0.021 

   DL4 0.068 0.035 1.978 0.050 

   RA3 0.089 0.044 2.015 0.050 

  Season TA1 0.531 0.243 2.177 0.031 

 Non-Spatial Age at Maturity RA3 0.061 0.026 2.370 0.019 

  Season TA1 0.647 0.262 2.473 0.015 

  Equilibrium TA1 -0.661 0.329 -2.101 0.046 

   Watershed Area -0.002 0.015 -2.406 0.017 

  Opportunistic Watershed Area 0.051 0.016 3.151 0.002 

  Open Spawners MA4 0.745 0.267 2.786 0.006 

   TA1 0.968 0.321 3.017 0.003 

   Watershed Area 0.032 0.015 2.179 0.031 

  Brood Hiders MA4 -1.351 0.279 -4.830 <0.001 

   TA1 -0.897 0.336 -2.674 0.008 

   Watershed Area -0.044 0.016 -2.784 0.006 

  Nest Guarders RA3 -0.023 0.010 -2.316 0.022 

   Temperature -0.001 <0.001 -2.216 0.028 

All Flow  Spatial Equilibrium Temperature -0.004 0.002 -2.174 0.031 

Regimes  Opportunistic Watershed Area 0.040 0.013 3.001 0.003 

  Periodic Watershed Area -0.024 0.010 -2.376 0.018 

  Open Spawners Watershed Area 0.032 0.012 2.77 0.006 

  Brood Hiders MA4 -0.892 0.285 -3.129 0.002 

   RA3 0.078 0.039 1.982 0.049 

   Watershed Area -0.053 0.011 -4.613 <0.001 

  Nest Guarders Watershed Area 0.024 0.009 2.703 0.007 

 Non-Spatial Age at Maturity DL4 0.034 0.015 2.197 0.029 
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   Temperature -0.002 0.001 -2.286 0.023 

  Season TA1 0.643 0.202 3.386 0.001 

  Equilibrium TA1 -0.575 0.257 -2.233 0.027 

  Opportunistic DL4 -0.069 0.030 -2.294 0.023 

  Periodic Watershed Area -0.023 0.010 -2.362 0.019 

  Open Spawner MA4 0.680 0.224 3.032 0.003 

   TA1 0.714 0.251 2.842 0.005 

  Brood Hiders MA4 -1.120 0.229 -5.215 <0.001 

   TA1 -0.631 0.257 -2.458 0.015 

   Watershed Area -0.036 0.012 -2.928 0.004 

  Nest Guarders RA3 -0.023 0.010 -2.316 0.022 

   Temperature -0.001 <0.001 -2.216 0.028 

 

Figure Legends 

Figure 1. Summary of the workflow used in analyses. The top row represents a sample of the 

raw data compiled for the current study, arrows represent processing between various forms 

of each data matrix.  

Figure 2. Natural flow regime classifications of streams in the Ozark-Ouachita Interior 

Highlands of Arkansas, USA. Circles indicate fish community sampling locations and the 

flow regime classification of each site.  

Figure 3. Box plots (median, interquartile distances, and outliers) of deviance residuals of the 

final set of fish traits (corrected for phylogeny) and proportion of life-history strategists 

within flow regime classes (groundwater (black), runoff (dark-grey), and intermittent (light-

grey)). Note open substrate and substrate indifferent spawners were removed as they were not 

included in final models.  

Figure 4. Proportion of variance explained for each trait in spatial (a.) and non-spatial (b.) 

models by covariates (hydrologic and landscape metrics), tail-up, tail-down, and Euclidean 

covariance structures, and the nugget (residual) effect for groundwater, runoff, intermittent, 

and all sites combined. In spatial models, the nugget is the amount of unexplained (residual) 

variance. Generalized R
2 
values are shown for traits in which covariates explained more than 

20% of the variance.  
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