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ABSTRACT: Spatial data are playing an increasingly important role in watershed science and management.
Large investments have been made by government agencies to provide nationally-available spatial databases;
however, their relevance and suitability for local watershed applications is largely unscrutinized. We investi-
gated how goodness of fit and predictive accuracy of total phosphorus (TP) concentration models developed from
nationally-available spatial data could be improved by including local watershed-specific data in the East Fork
of the Little Miami River, Ohio, a 1,290 km2 watershed. We also determined whether a spatial stream network
(SSN) modeling approach improved on multiple linear regression (nonspatial) models. Goodness of fit and predic-
tive accuracy were highest for the SSN model that included local covariates, and lowest for the nonspatial model
developed from national data. Septic systems and point source TP loads were significant covariates in the local
models. These local data not only improved the models but enabled a more explicit interpretation of the pro-
cesses affecting TP concentrations than more generic national covariates. The results suggest SSN modeling
greatly improves prediction and should be applied when using national covariates. Including local covariates fur-
ther increases the accuracy of TP predictions throughout the studied watershed; such variables should be
included in future national databases, particularly the locations of septic systems.
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INTRODUCTION

Spatial data and analyses are playing an increas-
ingly important role in natural resource manage-
ment, particularly in a watershed context. Spatial
analysis of watersheds is continually being developed
and implemented to identify impacts on water quality

or ecosystem health (Strayer et al., 2003), prioritize
conservation and restoration (Flotemersch et al.,
2015), and predict the potential impacts of climate
change and disturbance on watersheds (Isaak et al.,
2010). Such studies are often supported by data in
geographic information systems (GIS) produced by
government natural resource or environmental agen-
cies at the national or international level. Examples
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of such databases include the National Hydrography
Dataset Version 2 (NHDPlus v2), a geospatial frame-
work of streamlines, waterbodies, catchments, and
associated attributes throughout the United States
(U.S.) (McKay et al., 2012); the equivalent Australian
Hydrologic Geospatial Fabric, or Geofabric (Bureau of
Meteorology, 2015); and the National Land Cover
Database (NLCD), which provides descriptive gridded
spatial data in thematic classes such as urban, forest,
and agriculture throughout the U.S. (Homer and Fry,
2012). Some of these data have been further refined
and summarized to increase their compatibility with
other analysis tools or packages; for example, the
National Stream Internet (NSI) (Nagel et al., 2015)
and the StreamCat database (Hill et al., 2015). The
large investment in these national and international
spatial databases is aimed at providing standardized,
readily available data coverages across large spatial
extents. Spatial data and GIS are often used in
watershed analyses for three broad types of studies:
description of the watershed; estimation of relation-
ships between a sampled response variable and land
cover or land use covariates; and spatial prediction of
a response variable at unsampled locations along the
stream network. Within each of these types of studies
numerous watershed aspects have been described
and mapped, such as hydrogeomorphic patches (Wil-
liams et al., 2013) or watershed integrity (Flotemer-
sch et al., 2015); and equally numerous response
variables have been modeled and predicted, such as
water chemistry (Johnson et al., 1997; Peterson et al.,
2006; Zampella et al., 2007), temperature (Isaak
et al., 2010), or biotic condition (Frieden et al., 2014).
Such studies often require intensive geoprocessing
and statistical analyses; thus, having nationally- or
internationally-available spatial data ready to use in
these endeavors can save considerable time and
money. Additionally, standardization of spatial data
across databases and custodians enables valid com-
parisons among such studies to be made. However,
national and international spatial databases often
contain relatively general sets of variables (e.g., land
use, elevation, soil type), and local watershed applica-
tions, such as nutrient modeling, can be improved by
including additional covariates specifically available
within that watershed (e.g., septic systems and other
point source nutrient loads; Sferratore et al., 2005).

With nationally- and internationally-available spa-
tial databases being used for an increasingly broad
range of objectives, their relevance and effectiveness
for specific applications requires some scrutiny. While
readily available spatial data coverages empower
users across all levels of research and governance,
they must be used with some caution in specific
applications. In studies of lakes throughout the U.S.,
for example, lake-specific variables are known to

produce significantly improved predictive models of
water quality and trophic state than models based on
nationally-available spatial covariates alone (Read
et al., 2015; Hollister et al., 2016). Thus, while
national databases enable prediction of response vari-
ables in lakes lacking in situ data, these predictions
can be greatly improved with additional data not cur-
rently available nationally. In a watershed context,
however, the effectiveness of nationally-available spa-
tial databases for nutrient modeling in stream net-
works remains largely unscrutinized.

Improvements to traditional statistical modeling
and prediction of response variables in watersheds
have recently been reported through the use of spa-
tial stream network (SSN) models (Frieden et al.,
2014; Isaak et al., 2014). SSN models incorporate
covariates along with spatial autocovariance in the
response variable to potentially improve upon multi-
ple linear regression in stream networks (Ver Hoef
et al., 2006). SSN models can also reduce prediction
errors at unsampled locations by incorporating
nearby, correlated observations into the prediction
(Ver Hoef and Peterson, 2010). SSN modeling has
been applied to a variety of response variables
observed through monitoring programs. Examples of
biological response variables used in SSN modeling
have included proportion of native fish expected and
macroinvertebrate indices (Peterson and Ver Hoef,
2010; Frieden et al., 2014). Stream water tempera-
ture and stream chemistry, such as pH, conductivity,
concentrations of nitrate, sulfate, and dissolved
organic carbon have also been modeled (Peterson
et al., 2006; Garreta et al., 2010; Isaak et al., 2010;
Ver Hoef and Peterson, 2010). Spatial autocorrelation
has been shown to exist in in-stream phosphorus con-
centration (Dent and Grimm, 1999; McGuire et al.,
2014), suggesting that SSN modeling would also be
useful in this context (Hagy, 2015).

Several variables in nationally-available spatial
databases have proved to be significant covariates or
predictor variables in SSN models. For example, the
covariates used by Peterson et al. (2006) included
watershed area and percentages of high intensity
urban, low intensity urban, row crop, and coal mine,
with those percentages of land cover derived from
Multi-Resolution Land Characterization (Mercurio
et al., 1999). Besides land cover, other covariates
from nationally-developed databases used in SSN
models have included percentages of particular rock
types in a watershed, mean slope, and categorization
of sites based on Ecosystem Health Monitoring Pro-
gram regions or ecoregions (Peterson et al., 2006;
Peterson and Ver Hoef, 2010; Ver Hoef and Peterson,
2010). However, the relevance and effectiveness as
model covariates of spatial data from national and
international databases largely depends upon the
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specific response variable of interest. While nation-
ally-available covariates have proved effective for
modeling certain physical parameters and biotic
indices, national databases do not currently contain
complete data on point source covariates (e.g., septic
systems and waste water treatment plants) known to
affect stream nutrient concentrations, particularly
phosphorus (Sferratore et al., 2005; Withers and Jar-
vie, 2008). Although, summaries of reported pollutant
discharges from some permitted facilities are publicly
available throughout the U.S. (e.g., the USEPA’s Dis-
charge Monitoring Report Pollutant Loading Tool;
USEPA, 2016a).

Along with increasingly available spatial data cov-
erages and a push for more spatially explicit model-
ing in watersheds, more and more observed response
data from a broad range of monitoring programs are
also becoming available. The response data can come
from existing monitoring programs (Peterson et al.,
2006; Isaak et al., 2010) or studies specifically
designed for SSN modeling (Frieden et al., 2014; Som
et al., 2014). Because of the spatial dependencies
among monitoring sites inherently necessary for SSN
modeling, the sampling design of such studies influ-
ences the statistical analysis approaches that can be
adopted (McDonnell et al., 2015) and possibly the
validity of the inferences made from their results.
Using or combining data from probabilistic and tar-
geted (nonprobabilistic) surveys can further compli-
cate analyses and inferences (Maas-Hebner et al.,
2015). Thus, careful exploratory data analysis and
study design are imperative in SSN modeling applica-
tions.

The convergence of national spatial datasets,
emerging analytical tools, and increasing amounts of
monitoring data is at the forefront of widespread spa-
tial investigations of watersheds. While these devel-
opments afford novel research avenues to scientists,
uncertainty exists around their effectiveness for
watershed-specific applications, and the implications
of using national spatial datasets and new techniques
for stream nutrient modeling should be examined.
Our objective is to determine whether improvements
to a predictive model of in-stream phosphorus concen-
tration using nationally-available spatial covariates
can be achieved by including additional locally-
derived covariates and adopting an SSN modeling
approach. We examine natural and anthropogenic
influences on our response variable of median total
phosphorus (TP) concentration in streams, and
develop models using covariate coverages that are
nationally-available throughout the U.S. and free of
charge, as well as using additional covariate cover-
ages that are highly specific to our study area and
were costly to assemble. In particular, we ask two
research questions: (1) Do models derived from

national covariate coverages predict TP concentra-
tions as well as those that include additional local
coverages? (2) Do models derived using the SSN
approach predict TP concentrations better than those
based on a more traditional multiple linear regression
approach? We also discuss approaches to SSN study
design and validation of SSN models, as well as their
effect on inferences gleaned from the results. Finally,
we make a brief comparison to SPAtially Referenced
Regression On Watershed attributes (SPARROW)
that has also been used to make predictions of TP
concentration in this watershed.

STUDY AREA

This study was conducted using data obtained
from streams in the East Fork of the Little Miami
River watershed in southwestern Ohio, U.S. The East
Fork is a major tributary of the Little Miami River,
which in turn discharges into the Ohio River approxi-
mately 6 km east of downtown Cincinnati (Figure 1).
The East Fork watershed is approximately 1,290 km2

in area and the river has a mean annual discharge of
16.3 m3/s at its mouth. The highest elevation in the
East Fork watershed is 365 meters above sea level
(m.a.s.l.), while the river’s confluence with the Little
Miami is at 149 m.a.s.l. The East Fork watershed is
comprised of two Level IV Ecoregions (USEPA,
2016b): the Loamy High Lime Till Plain and the Pre-
Wisconsonian Drift Plain. Soils in the till plain, in
the uppermost part of the watershed (Figure 1), are
more permeable and less erodible than those in the
drift plain, which is known to affect stream nutrient
concentrations in this area (Daniel et al., 2010). Till
plain soil types are abundant in the till plain itself
but also extend into the drift plain, mainly along val-
ley bottoms (Figure 1). Land use in the East Fork
watershed is dominated by row crop agriculture,
which occupies 55% of the total area, primarily in the
upper two-thirds of the watershed. Deciduous forest
occupies 32% of the watershed area, mainly in a tran-
sition zone between the agriculturally dominated
upper part and the urban-dominated lower part.
Urban development occupies 12% of the watershed.
Approximately 17,400 septic systems are also known
in the East Fork watershed. One major reservoir
exists along the main stem of the East Fork — Har-
sha Lake — with a surface area of 8.7 km2 and maxi-
mum depth of 34 m. Harsha Lake is used for
recreation and as a water source for a Clermont
County-operated drinking water treatment plant
(Karcher et al., 2013). Two smaller reservoirs —
Stonelick Lake and Lake Lorelei — also occur on
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tributaries of the East Fork. There are 28 pollutant
discharge permits authorized under the National
Pollutant Discharge Elimination System (NPDES)
permit program in the East Fork watershed (Fig-
ure 1). NPDES permits are distributed to industrial,
municipal, and other facilities that are permitted to
discharge pollutants from discrete point sources
directly into surface waters.

METHODS

Study Design and Geoprocessing

Median total phosphorus concentration (TP) was
calculated at 105 monitoring sites throughout the
East Fork stream network from multiple sampling
visits (median of 5 visits with a minimum of 3 and
maximum of 88) between June 26 and September 11,
2012. Monitoring of these sites was conducted by
either the U.S. Environmental Protection Agency
(USEPA) or Ohio Environmental Protection Agency
(OHEPA), or both, following each agency’s standard
phosphorus sampling protocols (Nietch, 2006; Ohio

EPA, 2009). The USEPA established a nutrient moni-
toring program in the East Fork beginning in 2006 as
part of a case study for watershed management
research and development. The USEPA routine
stream monitoring sites range from headwaters to
the main stem, and were established to capture land
use variation and account for spatial nesting within
tributary networks. The sites are sampled year-round
with some sites visited daily, others weekly, and
others every three weeks. The goal of the USEPA
monitoring is to assess long-term trends in nutrient
chemistry at a system scale. The OHEPA sites, on
the other hand, were established as part of the 2012
East Fork Watershed assessment for the state’s
required 303D reporting. The OHEPA watershed
water quality assessment targets the low-flow condi-
tions of streams in the region, corresponding to the
conditions during which wastewater treatment plants
(WWTPs) in the system could be having the greatest
impact on water quality. To combine the information
collected from the two programs we limited the data
obtained from the USEPA program to only the period
when OHEPA was sampling in the system. The sam-
pling schemes of both programs more readily capture
baseflow conditions. Eighty-five of these sites were
used in the construction of statistical models (called

FIGURE 1. Map of the East Fork Watershed. Regional location and detail is shown of: the stream network; location of modeling, validation,
and prediction sites; the location of wastewater treatment plants (WWTP) with known phosphorus release loads; the two level IV ecoregions
in the watershed — the till plain and drift plain (boundary indicated by dashed line); and the extent of reach contributing areas (RCAs) that
contain till plain soils in the upper part of the watershed. Note till plain soils occur in the till plain as well as in some valley bottoms in the
upper drift plain.
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modeling sites in Figure 1), while 20 sites were
selected using a spatially-balanced random sample
(Olsen et al., 2012) and withheld from the models for
validation (called validation sites in Figure 1). A fur-
ther 779 sites were included in the study for predic-
tion, which were obtained from the NSI dataset
(Nagel et al., 2015).

Two sets of covariates were used for statistical
modeling of median TP concentration. The first, from
here on referred to as the “national” dataset, included
14 covariates for which spatial data coverages are
freely available throughout the entire conterminous
U.S. These included nine landscape variables, four
land use variables, and one point source variable,
which were hypothesized to affect TP in streams
throughout the watershed (Table 1). Watershed area
was used as a surrogate for discharge because dis-
charge data were not available at every sampling and
prediction site used in the study. In addition to the
national landscape and land use variables, three
additional covariate coverages (referred to as “local”)
were available in the study area. These were the loca-
tion of septic systems throughout the watershed, as
well as the TP load and average TP concentration of
releases from all WWTPs in the watershed during
2012. A layer of septic locations throughout the
watershed was created from GIS data and parcel
numbers obtained from the five County Health
Departments within the watershed.

The Discharge Monitoring Report (DMR); (USEPA,
2016a) Pollutant Loading Tool is a national database
that does provide TP concentration, and other water
quality measurements, from many NPDES permit
holders, such as WWTPs. However, given our local
knowledge of the dischargers in the watershed we were
aware that several of the WWTPs monitored TP con-
centration as frequently as weekly, but the DMR tool
at best contains monthly values or averages. To access
the most data available on WWTP discharges we asked
a partner at the Ohio EPA to request data retrieval on
our behalf from an in-house electronic DMR database
(Paul Gledhill, Modeler, Surface Water Division, Ohio
EPA, March 18, 2014). The delivered data was the
same base information as is contained in the national
DMR tool, but instead of monthly averages for several
of the plants the data from the Ohio EPA included the
weekly values reported at select WWTPs. Using the
data from Ohio EPA, we were able to handle multiple
permitting requirements to obtain daily WWTP TP
concentrations and loads. All WWTPs in the watershed
are required to report discharge, ammonia concentra-
tion, and total suspended solids (TSS); however, sev-
eral plants do not have a reporting requirement for TP
concentration, while others do. For the plants that do
have to monitor TP concentration, we used generalized
linear modeling (GLM) to interpolate daily TP concen-
trations as a function of ammonia, discharge, and TSS.
We also tested for a seasonal effect, which was

TABLE 1. List of Covariates, Their Spatial Treatment, and Data Source. Areal covariates were considered either throughout the entire
watershed upstream of a point or as a proportion of the local RCA around that point (see text for details).

Variable Type Included in Model Covariate Spatial Treatment Data Source

Landscape National and local Watershed area (km2) Cumulative watershed NED 10 m DEM1

Tributary stream category (WS ≤ 100 km2) Cumulative watershed NED 10 m DEM1

Main stem stream category (WS > 100 km2) Cumulative watershed NED 10 m DEM1

Slope 0–2% area (km2) Cumulative watershed NED 10 m DEM1

Slope > 5% area (km2) Proportion of RCA NED 10 m DEM1

Avonburg soil area (km2) Cumulative watershed SSURGO1

Clermont soil area (km2) Cumulative watershed SSURGO1

Rossmoyne soil area (km2) Cumulative watershed SSURGO1

Till plain soils (Miamian, Russell, Xenia) Presence/absence in RCA SSURGO1

Valley soils (Cincinnati, Edenton) Presence/absence in RCA SSURGO1

Land use National and local Agriculture (km2) Cumulative watershed NLCD1

Urban/developed land (km2) Proportion of RCA NLCD1

Deciduous forest (km2) Proportion of RCA NLCD1

Pasture (km2) Proportion of RCA NLCD1

Local Area of septic systems (km2) Cumulative watershed See text
Density of septic system areas (km2/km2) Density in watershed See text

Point sources National NPDES permit address Presence/absence in watershed NPDES2

Local WWTP total P load released in 2012 (kg) Accumulated downstream See text
WWTP average TP concentration (mg/L) Accumulated downstream See text

Notes: NED, National Elevation Dataset; DEM, Digital Elevation Model; WS, Watershed; SSURGO, Soil Survey Geographic Database; RCA,
Reach Contributing Area; NLCD, National Land Cover Database; NPDES, National Pollutant Discharge Elimination System; WWTP,
Wastewater Treatment Plant.

1Data obtained from https://gdg.sc.egov.usda.gov/.
2Data obtained from http://www.epa.gov/enviro/geospatial-data-download-service/.
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significant, and, therefore, also included it in the GLM.
The model used to interpolate daily TP data was then
used in a predictive mode to obtain values for WWTPs
that do not have a TP reporting requirement or only
are required to report TP on a monthly or quarterly
basis. The daily interpolated or estimated data was
required to parameterize a watershed loading model as
part of another project (Karcher et al., 2012). For this
study, the daily TP loads were summed for each point
source to get an annual TP load for 2012. This was
divided by the summed daily discharges to get an aver-
age TP concentration for each point source for 2012.
WWTP TP loads and concentrations were calculated
for the entire year (2012) rather than for the sampling
period (June-September) in order to gain some mea-
sure of the continued long-term input of TP from
wastewater, which likely has lagged effects on in-
stream TP concentrations. We chose to include only
the location of NPDES discharge permits in the
national model because using data available on the
DMR tool would introduce caveats regarding the com-
pleteness of this database nationally, although we
acknowledge its potential utility in other studies.
Thus, the point source variables differed between our
national and local datasets in that only the location of
a discharge permit was included for the national,
whereas actual release loads and concentrations for all
WWTPs were included for the local.

Each areal covariate was hypothesized to influence
TP in the watershed in a particular spatial manner
(Diebel et al., 2009; Frieden et al., 2014). Thus, the
spatial treatment of each areal covariate was selected
a priori (Table 1), following initial exploratory spatial
data analysis. Those covariates that were widespread
throughout the watershed and hypothesized to have
cumulative effects downstream were treated in a “cu-
mulative watershed” manner; that is, the total area or
amount of that particular covariate in the subwater-
shed contributing to any reach on the stream network.
Those covariates that were patchily distributed
throughout the watershed and hypothesized to have
more localized effects were treated in a “proportion of
Reach Contributing Area (RCA)” manner; that is, the
proportion of the adjacent catchment area contributing
directly to an individual reach (RCA) (Peterson and
Ver Hoef, 2014), and not the entire subwatershed
above the reach. Reaches were delineated according to
stream segments in the NHDPlus v2 (McKay et al.,
2012). Septic systems were treated in a cumulative
watershed manner and as a density in the cumulative
watershed, because of their hypothesized potential to
influence TP concentration in a diffuse manner (Arn-
scheidt et al., 2007; Withers and Jarvie, 2008), as well
as the known effects of septic densities on other water
quality parameters in the East Fork watershed (Peed
et al., 2011; Schenck et al., 2015). The septic data

available were areal, as opposed to point data, with
each septic system occupying one or several 10 m2 ras-
ter grid cells, depending upon its size. Because of this,
our septic density covariate has the units of cumula-
tive septic area (km2) divided by cumulative watershed
area (km2). Till plain soils in the upper part of the
watershed, as well as soils occurring predominantly in
valley bottoms, were treated as presence/absence
because of the large number of zero values throughout
the watershed, which makes transformation of the dis-
tribution of continuous variables to approximate sym-
metry difficult. Discharge permits were also treated as
presence/absence in the national dataset. Waste water
treatment plant TP loads and concentrations in the
local dataset were accumulated from their point source
downstream. Release loads were “reset” below the Har-
sha Lake reservoir; that is, WWTP TP releases
upstream of the Harsha Lake were accumulated to the
reservoir but did not continue to accumulate down-
stream of the dam. This was done to account for the
nutrient “sink” effect of the reservoir. TP load and
average concentration released from the Harsha Lake
dam were known and included as the initial values for
point source accumulation downstream of the dam, to
account for dam releases as a “source” of nutrients.
Thus, Harsha Lake was considered to act as both a
source and sink of TP in the watershed.

A total of 1,311 km of digital stream network was
analyzed throughout the East Fork watershed. The
stream network was initially reconditioned from the
NHDPlus v2 to ensure only a single streamline
existed for each reach (users can now download such
reconditioned streamlines directly from the NSI
[Nagel et al., 2015] for the entire conterminous U.S.).
The stream network was then converted to a topologi-
cally constructed “landscape network” (LSN) using
the STARS 2.0.1 toolbox (Peterson and Ver Hoef,
2014) in ArcGIS 10.2.2 (ESRI, 2014). This type of
LSN is a geodatabase that contains the topological
relationship information among all segments in a
stream network, including flow direction, via a num-
ber of relationship tables (Peterson and Ver Hoef,
2014). All national and local covariates were then
attached to their respective LSN along with the 85
observation sites, 20 validation sites, and 779 predic-
tion sites, according to the methods outlined by Peter-
son (2014). The NHDPlus v2 provides additional
watershed attributes for each stream segment; how-
ever, the local covariates used in this study required
manual processing, so the national covariates were
also manually processed for consistency. Once the
geoprocessing was completed, each LSN was exported
as a .ssn file object, using the STARS 2.0.1 toolbox,
for use in the SSN package in R Statistical Software
version 3.2.0 (Ver Hoef et al., 2014; R Core Team,
2015). The final .ssn file objects used in this study
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are provided as supporting information (S1). All
exploratory analysis and model selection and evalua-
tion subsequent to the geoprocessing was performed
in R and the outputs are provided as supporting
information (S2).

Statistical Analyses

Initial model selection for both the national and
local datasets (from here on referred to as the “nonspa-
tial” models) was conducted using best-subsets multi-
ple linear regression on log-transformed covariates
and the response variable. Best-subsets regression
(BSR) (Furnival and Wilson, 1974) was used because
severe multicollinearity of the set of available covari-
ates made other variable selection procedures unten-
able. The “best” set of covariates was selected for each
dataset using Akaike’s information criterion (AIC),
with a maximum of six covariates being allowed in
each model to avoid overfitting. Although AIC can
overfit compared to some other penalized goodness of
fit measures, only AIC was readily available for the
SSN models. Therefore, for consistency, AIC was used
for model selection and comparison throughout.

Where categorical variables occurred in the six
best covariates, interaction terms were included and
BSR was repeated to determine the best set of covari-
ates including interactions, again based on AIC. The
inclusion of interaction terms required that the first
order terms in the interaction also be included in
the model, whether or not they were in the initial
BSR selection. In addition, because of the high multi-
collinearity in the covariate set and the accompany-
ing high correlation of the coefficient estimates, the
regression coefficient table p-values (Wald test) some-
times indicated that the covariates selected by BSR
were not significant. Standard diagnostic procedures
were conducted to validate the final nonspatial mod-
els including various residual plots, influence plots,
and added-variable plots (Fox and Weisberg, 2011) as
shown in the Supporting Information (S2).

Generalized variance inflation factors (GVIF); (Fox
and Weisberg, 2011) for the variables (and interac-
tions) indicated multicollinearity in the predictors;
however, the variance inflation observed in these mod-
els would not affect the ability of the models to predict
(Shmueli, 2010), which was our primary objective.
Other dimension reduction techniques, principal com-
ponents regression (PCR) and canonical correlations
regression (CC), were considered. These methods elim-
inate the multicollinearity problem by creating predic-
tors that are uncorrelated (only in a pure statistical
sense, not in a spatial sense) linear combinations of the
full set of available explanatory variables. However,
these do not identify the variables that are important

to the processes being studied and eliminate those that
are not. Since this is a scientific study, prediction mod-
els must be validated based in part on whether the
selected variables make sense scientifically.

Spatial stream network modeling was then con-
ducted for the national and local datasets (from here
on referred to as the “spatial” models) using the final
set of covariates and interactions from the nonspatial
models. SSN modeling includes any combination of
upstream and downstream spatial autocovariance
models and parameters among sites along the stream
network, as well as autocovariance parameters in
Euclidean (landscape) space. Spatial autocovariance
is quantified by the selected model type, range, and
partial sill of the semivariogram of the response vari-
able, which is estimated using a moving average
approach in SSN modeling (Peterson and Ver Hoef,
2010). The “best” set of autocovariance parameters to
include in the spatial models, along with the nonspa-
tial model covariates and interactions, was deter-
mined based on AIC. Standard diagnostic procedures
were then conducted to validate the final spatial mod-
els for the national and local datasets (S2).

Because the models were fitted using least squares
and generalized least squares (spatial models), the
normal distribution for errors was not automatically
assumed. The leave-one-out cross-validation (LOOCV)
studentized residuals from the 85 modeling sites and
the standardized residuals at the 20 validation sites
were fit very well by the normal distribution. How-
ever, the predictive distribution at the 20 validation
sites in the original scale is of primary importance.
Accordingly, the ratios in the original scale of the
observed to the predicted (exponentiated log-scale
predictions) were examined. They were fitted by log-
normal, Gamma, Weibull, and normal distributions.
In each case the appropriate distribution was selected
using AIC. The median predicted value, prediction
standard error, and 90% prediction interval were sub-
sequently back-transformed to the original scale
based on the appropriate distribution.

Multiple criteria for model evaluation were used to
compare the performance of the four final models: the
national nonspatial and spatial, and the local nonspa-
tial and spatial. Goodness of fit comparisons were
based on AIC and decomposition of model variance
components for the national and local models. Predic-
tion accuracy was compared using the Root Mean
Square of the Percent Prediction Error (RMSPPE)
and the width of the 90% prediction interval as a per-
centage of the median prediction averaged among the
20 validation sites. The latter is conceptually similar
to a coefficient of variation. The signed prediction
error (prediction minus observation) expressed as a
percentage of the median prediction was also calcu-
lated for each of the 20 validation sites.
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RESULTS

Adding the local covariates representing poten-
tially important sources of phosphorus from septic
systems and WWTPs to the covariates in the national
dataset produced different predictive models for TP
concentration in the East Fork watershed. When the
local covariates were included the multiple linear
regression (MLR) model explained more of the vari-
ance in median TP concentration with an adjusted
R2 = 0.552 compared to an adjusted R2 = 0.483 with
the national covariates. A set of four covariates and
two interactions produced the “best” model from the
national dataset, while a set of five covariates and
three interactions emerged when local covariates
were included (Table 2). Both cumulative septic area
and WWTP TP loads were significant covariates in
the local model, whereas septic density did not
emerge as a significant covariate. Furthermore, the
inclusion of septic systems and WWTP TP loads in
the dataset resulted in a different set of covariates
that were significant for predicting TP concentration.
In particular, watershed area, low (0�2%) slope area,
and Clermont soils were not significant after the sep-
tic and WWTP covariates were included, whereas
agriculture and Rossmoyne soils were (Table 2).

The coefficients of the significant covariates in the
model fit from the national dataset suggested that
with an increase in watershed area and in the pres-
ence of till plain soils there is a decrease in median
TP concentration (Table 2). The interaction between
Clermont and till plain soils further decreased med-
ian TP concentration, although the effect was smaller
than that of till plain soils alone, suggesting that as
the area of Clermont soils increases, the effect of till
plain soils on lowering median TP concentration is
reduced. Clermont soils alone did not have a signifi-
cant effect on median TP concentration. The interac-
tion of low slopes with till plain soils significantly
increased median TP concentration in the models fit
with the national dataset (Table 2). In the models fit
with the local covariates included, cumulative septic
area significantly increased median TP concentration,
as did WWTP TP load in the presence of till plain
soils (Table 2). Agricultural area also significantly
increased median TP concentration in the local mod-
els; however, the interaction between agricultural
area and the presence of till plain soils reduced med-
ian TP concentration (Table 2). Increasing area of
Rossmoyne soils significantly reduced median TP con-
centration in the model fit with the local covariates
included, whereas this covariate was not significant
in the model fit from the national dataset only. Coeffi-
cient estimates varied only modestly and consistently

between the nonspatial and spatial models for the
national and local covariates.

Spatial stream network modeling revealed that
spatial autocovariance existed among samples of
median TP concentration in the East Fork watershed.
The autocovariance structure was best explained by a
linear-with-sill tail-up autocovariance model (see Ver
Hoef et al., 2006 for details). This type of autocovari-
ance model suggests that median TP concentration at
a site is related to median TP concentration at sites
upstream, and that this relationship weakens with
distance upstream in a linear manner. The range
over which spatial autocovariance existed in median
TP concentration (i.e., the distance at which the “sill”

TABLE 2. Modeling Results. Covariates, coefficients, and goodness
of fit criteria for the multiple linear regression (nonspatial) and

SSN (spatial) models for the national and local covariates.

Covariate/Coeffi-
cient/Criteria Nonspatial Spatial

National
coefficients

Watershed area �1.096** �1.255**
Slope 0–2% area 0.9791 1.2121

Clermont soil area 0.2781 0.1731

Presence of till plain
soils

�2.729** �3.453***

Slope 0�2% area: Till
plain soils

1.936*** 2.284***

Clermont soil: Till
plain soils

�1.802*** �1.985***

Intercept �1.783*** �1.707***
National AIC AIC 144.61 135.88
National
variance
components

Covariates 0.520 0.429
Autocovariance n/a 0.432
Nugget 0.480 0.139

Local
coefficients

Agricultural area 0.387*** 0.374***
Rossmoyne soil area �0.591*** �0.583***
Presence of till plain
soils

1.2261 1.2261

Cumulative septic
area

1.376** 1.349*

WWTP TP load �0.0071 0.0031

Agriculture: Till plain
soils

�1.187* �0.990*

Septic: Till plain soils 9.6672 8.6672

WWTP TP load: Till
plain soils

0.273* 0.283*

Intercept �1.926*** �1.932***
Local AIC AIC 134.98 133.76
Local variance
components

Covariates 0.595 0.491
Autocovariance n/a 0.295
Nugget 0.405 0.214

Notes: AIC, Akaike’s information criterion; BSR, best-subsets
regression; WWTP, wastewater treatment plant; TP, total phos-
phorus.
*Coefficient p-value < 0.05.
**Coefficient p-value < 0.01.
***Coefficient p-value < 0.001.
1Added because of significant interaction.
2Selected by BSR but not by Wald test
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or maximum variance among pairs of sites was
reached) was approximately 25 river km, with the
maximum downstream travel distance in the water-
shed being around 135 river km.

In terms of goodness of fit, the spatial model outper-
formed the nonspatial model, which assumes median
TP concentration samples are not spatially autocorre-
lated, using the national dataset and when the local
covariates were included. Based on AIC, the “best”
model was the local spatial followed by the local non-
spatial, national spatial, and national nonspatial. For
the model fitted from the national covariates AIC was
reduced by 9.6 points and the nugget, or unexplained
variance, declined from 0.480 to 0.139, representing a
71% reduction, by including spatial autocovariance
parameters in the model (Table 2). In fact, more of the
variance in median TP concentration was explained by
the autocovariance structure (in-stream spatial covari-
ance) than by the covariates in the national spatial
model. Similarly, in the model fit from the dataset that
included the local covariates AIC dropped by 1.2 points
and the nugget was reduced by 47%, from 0.405 to
0.214, by including spatial parameters. The amount of
variance in median TP concentration explained by the
covariates (equivalent to the generalized R2 in MLR)
also decreased by including autocovariance parame-
ters for both the national and the local models
(Table 2). This suggests that nonspatial models may
be artificially inflating the amount of variance in med-
ian TP concentration that is being explained by the
covariates because spatial autocorrelation inherent in
the stream network is not being accounted for; that is,
the assumption of independence among samples is
being violated.

In terms of prediction accuracy, the nonspatial and
spatial models fit from the dataset that included the
local covariates predicted median TP concentration
more accurately than the national models. RMSPPE
among the 20 validation sites was lowest for the local
spatial model followed by the local nonspatial, national
spatial, and national nonspatial (Table 3). However,
all RMSPPE values were high, ranging from 89 to
106% (Table 3). These high RMSPPEs appeared to be
related to two outliers, sites CWL and 200497, which
had observed median TP concentration much higher
than predicted in all four models (Figure 2). Removal
of these two outliers reduced the RMSPPE from 106 to
56% for the national nonspatial, from 94 to 50% for the
national spatial, from 93 to 48% for the local nonspa-
tial, and from 89 to 48% for the local spatial model. Site
M04S16 also had a much higher predicted median TP
concentration than observed in the national models,
although it did not fall outside of the 90% prediction
interval (Figures 2A and 2B).

Predicted median TP concentration values were
generally close to those observed up to around

0.2 mg/L in all four models, with the 90% prediction
intervals being relatively tight in this prediction
range (Figure 2). However, there was a substantial
increase in the width of the 90% prediction intervals
as median predictions increased, particularly in the
models fitted from the national dataset (Figures 2A
and 2B). This increase in prediction intervals was
associated with fewer extreme values in the modeling
dataset; in particular, site CWL had the highest
observed median TP concentration of any of the 105
monitoring sites but was withheld from the modeling,
by chance, in selection of the validation dataset. How-
ever, by including specific local covariates in the mod-
els the prediction intervals at high prediction values
were greatly improved and no sites were extremely
over-predicted (Figures 2C and 2D). Inclusion of spa-
tial autocovariance parameters also improved predic-
tion accuracy at sites with high observed median TP
concentration. In particular, median TP concentration
at site M04S29, located near the mouth of the river,
was accurately predicted in both spatial models but
under-predicted in both nonspatial models (Figure 2).
The averages among the 20 validation sites of the
width of the 90% prediction interval as a percentage
of the predicted value were smaller for the local mod-
els than for the national models, as well as being
11% smaller in the spatial model than the nonspatial
for the national dataset (Table 3).

DISCUSSION

Model Evaluation and Prediction Using National and
Local Covariates

Nationally-available spatial databases are increas-
ingly being utilized in watershed science and man-
agement in the U.S. and other countries. Our results
suggest that while covariates from these databases
(e.g., the NLCD) can be used to produce reasonable
statistical models of nutrients in stream networks

TABLE 3. Root Mean Square Percent Prediction Error (RMSPPE)
and the Width of the 90% Prediction Interval as a Percentage of

the Prediction Averaged among the 20 Validation Sites for the Four
Models.

Model RMSPPE (%)
Average (90%

P.I./prediction) 3 100%

National nonspatial 106 203
National spatial 94 192
Local nonspatial 93 180
Local spatial 89 184
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(TP concentrations in this study), the inclusion of
additional covariates that are not currently available
nationwide, specifically the locations of septic systems
and the TP load released from WWTPs, improves
both model fit and prediction accuracy. Sferratore
et al. (2005) found that global land use and lithology
data could be used to correctly predict watershed
nutrient fluxes from diffuse sources, but that predic-
tion accuracy was sensitive to knowledge of the dis-
tribution of point sources of nutrients, particularly
for phosphorus. Our results also indicate that knowl-
edge of local point sources improves models of TP
concentration. Although our analysis covered only
one watershed, septic systems and WWTPs represent
explicit sources of phosphorus. Therefore, it is reason-
able to suggest that were these covariates available
nationally, the effectiveness of these databases for
stream network modeling of nutrients in the U.S.
would be greatly improved. Given the relevance of
predicting nutrient concentrations to water quality
management everywhere, future iterations of these
databases should aim to include such covariates.

While databases exist nationally on the location of
discharge permits and annual discharge summaries
of some facilities (e.g., the USEPA’s Discharge Moni-
toring Report Pollutant Loading Tool), these data-
bases could be built upon to become more complete
and more frequently updated. Such updates are
occurring with the DMR Pollutant Loading Tool as
electronic submission of discharge monitoring reports
can now be done. However, facilities may be missing
from the DMR Pollutant Loading Tool, as noted on
the tool website. It should be noted that WWTP
nutrient loads are often not static over time. We
found it important to have knowledge of the actual
loadings from these point sources, as opposed to just
their location in our study. If loads are changing over
time due to new permit requirements, increased
capacity, or upgraded nutrient removal technologies,
then it would be necessary to provide adequate meta-
data and make routine updates to the data contained
on point source loadings in the national databases.
This could add considerable costs to managing these
data.

FIGURE 2. Observed vs. Predicted Median Total Phosphorus (TP) Concentration at the 20 Validations Sites. (A) National nonspatial, (B)
national spatial, (C) local nonspatial, and (D) local spatial models. Locally weighted smoothing (lowess) lines are shown, as well as the 5 and

95% prediction limits. Sites with extreme observed or predicted values are labeled for discussion.
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Our results suggest that an SSN modeling
approach also improves goodness of fit and prediction
accuracy of in-stream TP concentration models com-
pared to traditional MLR. The importance of includ-
ing spatial autocovariance parameters was
particularly evident for the model based on the
nationally-available covariates (Table 2), indicating
that an SSN modeling approach should be adopted
when using national covariates alone to model TP
concentration in stream networks. Accurate predic-
tion at sites with high TP concentrations depended
upon the inclusion of spatial autocovariance parame-
ters in the national and local models, particularly in
areas around other sites of high TP concentrations.
For example, site M04S29 at the mouth of the river
(Figure 3) was under-predicted in both nonspatial
models (Figures 2A and 2C), which only have access
to the covariate values at that site in order to make a
prediction. However, both spatial models accurately
predicted median TP concentration at this site (Fig-
ure 2B and 2D) because SSN models are able to draw
upon known observed values at nearby, correlated
locations in order to improve predictions (Ver Hoef
and Peterson, 2010). In this case, there were two
sites with high TP concentrations near the mouth of
the river that were used by the SSN models to pre-
dict high median TP concentration at the validation
site M04S29 (Figure 3). These results support the
increasing evidence that SSN modeling improves on
traditional MLR in stream networks (Frieden et al.,
2014; Isaak et al., 2014).

The relatively poor prediction accuracy of models
in this study was largely attributable to two outliers
in the validation dataset (sites CWL and 200497; Fig-
ure 2). Site CWL is located on a headwater stream
surrounded by intensive agriculture and experienced
stagnant water conditions in 2012, resulting in an
extremely high TP concentration that was not pre-
dicted by the models in this study. Site 200497 is
located on a small tributary approximately 2 km
downstream of a WWTP release (Figure 1). Although
other sites directly downstream of WWTPs were
included in the modeling, 200497 is the only example
of a small tributary site receiving discharges from a
major point source. Dilution in the small tributary is
minimal compared to the main channel. Removal of
these two outliers resulted in substantial improve-
ments in prediction accuracy among the remaining
18 validation sites.

Differences among the four models inevitably pro-
duce different spatial predictions of median TP con-
centration throughout the East Fork watershed using
the NSI prediction sites (Figure 3). These differences
are most obvious in the upper part of the watershed
(i.e., in the till plain) and around the mouth of the
river (Figure 3). In particular, both national models

predict very high median TP concentration along the
main stem in the upper part of the watershed, while
tributaries are predicted to have very low median TP
concentration. Conversely, the local models predict
lower median TP concentration along the main stem
and higher values in the tributaries of the till plain
(Figure 3). In the till plain, low slopes only occur in a
relatively narrow band along the main valley floor,
coincident with the location of high predicted values
in the national models. The interaction between low
slopes and till plain soils in the national models
resulted in these sites having high predicted median
TP concentration. However, there are also septic sys-
tems in the till plain region of the watershed, as well
as three waste water treatment plants (Figure 1).
The local model coefficients suggest that septic sys-
tems and WWTP TP loads, in the presence of till
plain soils, cause the moderately high median TP
concentration values observed at the three uppermost
modeling sites. Without access to these local covari-
ates, the national model has misattributed these high
values to the interaction between low slopes and till
plain soils, and over-predicted sites in this area; for
example, site M04S16 (Figures 2A and 2B). Discrep-
ancies in predictions are also evident between the
nonspatial and spatial models along the lower main
stem near the mouth of the river (Figure 3). In par-
ticular, median TP concentration predictions in this
area are much lower in both nonspatial models com-
pared to their respective spatial counterpart. The
lower predicted values in the nonspatial models along
the lower main stem can be attributed to large water-
shed areas in the national model and large areas of
Rossmoyne soils in the local model. In contrast, the
spatial models are able to draw on the nearby model-
ing sites, which have known high values, in order to
make better predictions along the lower main stem
(Figure 3). This is also the reason why validation site
M04S29 was more accurately predicted in both spa-
tial models than in the nonspatial models (Figure 2).

The inferences gleaned from the four TP concen-
tration models in this study were influenced by work-
ing retrospectively using existing monitoring data
and by the design of our model validation approach.
Our objective was to determine how local watershed
modeling and prediction based on national spatial
databases could be improved by including additional
local covariates and adopting the SSN modeling
approach. In order to meaningfully evaluate predic-
tion accuracy, it was necessary to withhold known
observation data from the modeling process. We chose
a spatially-balanced random survey design to select
the validation sites because it guarantees that sam-
ples represent the entire extent of the 105 monitoring
sites within the study area as best as possible (Olsen
et al., 2012). Obtaining a good spatial representation
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throughout the study area is essential because the
location of observations is known to influence spatial
patterns observed in watersheds (e.g., Scown et al.,
2016). However, the statistical distribution of the
response variable among the modeling and validation
sites was overlooked by adopting a spatially-balanced
random survey of monitoring sites, as were the spa-
tial distributions of the covariates. In particular, the

sites with the highest and lowest observed median
TP concentration values of all 105 sites used in this
study (sites CWL and M04P12, respectively) were
withheld from the modeling dataset and included in
the validation dataset, by chance. Also the till plain
soils covariate was only relevant to 10 modeling sites,
with the interaction between till plain soils and other
covariates represented by even fewer sites. Thus,

FIGURE 3. Spatial Predictions of Median Total Phosphorus (TP) Concentration. Predictions are shown at 779 National Stream Internet
(NSI) sites throughout the East Fork watershed based on the (A) national nonspatial model, (B) national spatial model, (C) local nonspatial
model, and (D) local spatial model. Modeling sites are also shown with their observed median TP concentration values and validation sites

are shown with their signed error expressed as a percentage of the prediction. High resolution figure supplied in S3.
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coefficient estimations and spatial predictions were
likely affected by the spatially-balanced random sam-
pling of validation sites, and model results may have
been different had the validation sites selected been
different. The monitoring program designs adopted
by the U.S. and Ohio EPAs, whose data were used in
this study, may have further affected the model infer-
ences. The Ohio EPA monitoring program in the East
Fork watershed targets stream biotic assessments at
subwatersheds around 100 km2 in area or greater
and around the potential effects of permitted point
sources. This places sites primarily along the main
stem of the East Fork and larger confluent tribu-
taries. The USEPA monitoring program spreads sites
more evenly among small tributaries and main stems,
but focuses effort in the lower portions of the water-
shed so that all sites could be visited on the same day
and more frequently. Thus, smaller tributaries, par-
ticularly in the eastern part of the watershed, were
underrepresented in the sample of monitoring sites
(Figure 1) and median TP concentration predictions
are likely affected by the absence of monitoring data
in these areas of the East Fork watershed.

We can make some broad comparisons to other
modeling approaches, most notably SPARROW, that
have been used to predict TP concentration in the
East Fork of the Little Miami River. Although a full
comparison of SPARROW and SSN modeling is
beyond the scope of this paper, highlighting several
important differences between the two is necessary.
SPARROW models are developed for national or
regional applications (Alexander et al., 2004, 2007;
Robertson and Saad, 2011), and, consequently, use
stream network GIS data at a coarser spatial resolu-
tion (1:500,000 scale stream lines and 1-km or 100-m
DEM) compared to those used in our SSN modeling
(1:100,000 scale stream lines and 10-m DEM). The
data inputs for the response variable also differ
between SPARROW and our SSN analyses. Concen-
trations of TP used in SPARROW are derived from
gages on large rivers with long periods of record
(Alexander et al., 2004, 2007; Robertson and Saad,
2011), of which only one occurs in the East Fork
watershed at the outlet. In contrast, we used grab
samples taken at 105 locations throughout the water-
shed, including on smaller streams, for our modeling
and validation. These differences in GIS and water
quality inputs create substantial differences in the
spatial extent and resolution of TP concentration pre-
dictions. While both models are predicting over the
same areal extent of the watershed, ~1300 km2, they
differ substantially in the length of stream network
along which those predictions are made. In the head-
waters of the East Fork, which are encompassed by
the 12-digit hydrologic unit 050902021006, SPAR-
ROW predicts a TP concentration of 0.23 mg/L only

for the 23 km of stream reach of that main stem
using the MRB3 model (USGS, 2015). Our SSN pre-
dictions in that same HUC12 are at the midpoints of
49 main stem and tributary reaches, totaling 86
stream km, with TP concentration ranging from 0.08
to 0.46 mg/L with a median of 0.21 mg/L. As
intended, SPARROW models provide predictions of
nutrient concentrations at national and regional
extents in broad brushstrokes; whereas SSN can pro-
vide nutrient concentration predictions at a much
finer spatial resolution that can potentially lead to
more specific management action. Both SPARROW
(Alexander et al., 2004) and SSN (Hagy, 2015) analy-
ses have emphasized the importance of gaining accu-
rate estimates of nutrient loads from point sources to
improve those analyses.

Interpretation of National and Local Covariates

The best-subsets regression using the national spa-
tial data coverages produced a relatively generic set
of covariates whose relevance for understanding and
managing TP concentrations in the East Fork water-
shed is limited. In fact, the autocovariance parame-
ters in the national spatial model explained more of
the variance in median TP concentration than the
covariates (Table 2), indicating that knowledge of TP
concentration at nearby locations is more informative
than the set of specific national covariates used at a
particular site. The decline in median TP concentra-
tion with increasing watershed area in the national
model reflects a dilution effect and has little conse-
quence for interpretation and management. However,
the significantly lower TP concentration in the pres-
ence of till plain soils compared to drift plain soils in
the national model is consistent with the findings of
Daniel et al. (2010) who observed lower TP concentra-
tions in catchments in the till plain versus the drift
plain of the Little Miami River watershed. The pres-
ence or absence of till plain soils also had significant
interactions with cumulative Clermont soil area and
cumulative area of land having a slope of 0-2%. Cler-
mont soil, which is widespread throughout the drift
plain, appears to reduce the effect that till plain soils
have on lowering in-stream TP concentration; how-
ever, the cumulative area of Clermont soil did not
have a significant effect itself. The mechanisms
behind the observed effects of areas of soil types are
worthy of future investigation; for example, by incor-
porating into the model soil attributes such as erodi-
bility and permeability, which are contained in the
national database. The national model also appears
to have misattributed high median TP concentration
in the upper watershed to the interaction between
low slopes and till plain soils, as discussed in the

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION JAWRA13

IMPROVING PREDICTIVE MODELS OF IN-STREAM PHOSPHORUS CONCENTRATION BASED ON NATIONALLY-AVAILABLE SPATIAL DATA COVERAGES



preceding section. Despite their generality, the
national covariates are readily available, require
much less geoprocessing than the local covariates,
and produce a reasonable model of median TP con-
centration in the East Fork when combined with spa-
tial autocovariance parameters.

The covariates that emerged from the local best-sub-
sets regression model are more relevant for interpreta-
tion and management of TP concentrations in the East
Fork watershed. We observed a positive relationship
between TP concentration and cumulative agricultural
area in the local model. Agricultural land cover is a
nationally-available covariate; however, it did not
emerge from the national best-subsets regression, sug-
gesting that local covariates are required to decompose
the multiple interacting influences on TP concentra-
tions in the East Fork watershed. The positive effect of
agricultural land cover on TP concentrations observed
in this study is consistent with previous research in
the Little Miami River (Daniel et al., 2010) and other
watersheds (Carpenter et al., 1998). The interaction
between agricultural area and till plain soils had a
negative coefficient in the local model, suggesting that
till plain soils may buffer the effect of agriculture in
the East Fork watershed. This is consistent with the
findings of Daniel et al. (2010) who found that in the
till plain region of the Little Miami River watershed,
TP concentration was not significantly related to the
percentage of row crop land cover, whereas in the drift
plain there was a positive relationship. The effect till
plain soils have on lowering stream nutrient loads is
likely related to these soils being more permeable and
less erodible than drift plain soils (Daniel et al., 2010),
which may enable them to retain nutrients within the
soil profile rather than losing them to the stream via
runoff and erosion. We also observed an interaction
between the presence of till plain soils and WWTP TP
loads on stream TP concentrations. Permitted point
source discharge locations and WWTP outfalls were
excluded from the study design of Daniel et al. (2010).
In other watersheds, however, WWTP densities are
associated with higher stream TP concentrations
(Rothenberger et al., 2009), as are greater sewage
flows from treatment plants (Zampella, 1994). Septic
tanks have been hypothesized to be a low-level, but
chronic input of phosphorus into streams and rivers
(Arnscheidt et al., 2007), and we observed a significant
positive relationship between septic area and median
TP concentration in the local model. Although an indi-
vidual septic system can be considered a potential
point source of stream TP, septic systems are so wide-
spread throughout the East Fork watershed that our
results suggest they have cumulative effects on TP
concentrations and operate more like a diffuse source
at the watershed scale.

Because of the prominence of fine clay and poorly
infiltrating soil types in the East Fork watershed (i.e.,
Clermont, Avonburg, and Rossmoyne soils) traditional
septic systems that rely on buried leach fields for
wastewater treatment are prone to failure. Aerobic
septic systems, used frequently in place of the tradi-
tional systems in the watershed, require more home-
owner attention to remain effective and are often
designed with direct discharges to receiving streams.
Therefore, these conditions of onsite wastewater man-
agement that are somewhat specific to the study
watershed likely help promote the significance of sep-
tic systems found for predictive modeling of phospho-
rus in East Fork streams. Other studies conducted in
East Fork streams have found septic densities to cor-
relate well with molecular markers of human fecal
bacteria (Peed et al., 2011) and other contaminants of
emerging concern (Schenck et al., 2015). Although
cumulative septic area rather than density emerged
as a significant covariate in this study, we note this
aspect of the study system as a caveat to the relative
importance of having data on septic systems to
improve predictions for nutrients in watersheds.

CONCLUSIONS

Our objective was to determine whether a predic-
tive model of in-stream phosphorus concentrations
based on nationally-available spatial covariates could
be improved by including additional locally-derived
covariates and adopting an SSN modeling approach.
Nationally-available spatial data can be used for spa-
tial predictions of nutrients throughout stream net-
works; however, additional local covariates provided
a more mechanistic interpretation of influences on TP
concentrations in the East Fork watershed, as well as
increasing model goodness of fit and prediction accu-
racy. While the national covariates were effective in
building generic models of median TP concentration,
these models were highly susceptible to prediction
errors because of misattribution of mechanisms.
Adopting an SSN modeling approach was essential to
improve the prediction accuracies of the national
model, and inclusion of WWTP TP loads and septic
areas in the local models resulted in further improve-
ments. The advantage that the national covariates
have is that they are becoming readily available in
the format required to conduct SSN modeling (Hill
et al., 2015; Nagel et al., 2015), thus dramatically
reducing geoprocessing costs. For models built using
national covariates, as well as models with additional
local covariates, SSN prediction provides researchers

JAWRA JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION14

SCOWN, MCMANUS, CARSON, AND NIETCH



with (1) an expected value of a response variable that
can then be field tested, and (2) a spatial distribution
of prediction errors. These outcomes can be used to
inform future monitoring programs or to designate
additional monitoring sites around existing programs
(Peterson and Ver Hoef, 2010; Isaak et al., 2014). Inves-
tigation of the prediction errors associated with the
models presented in this study would likely yield valu-
able information for managers in the East Fork water-
shed; however, that is beyond the scope of this study.

The effects of monitoring and analysis design on
inferences in this study help to inform the design of
future stream network modeling studies, which will
depend upon the study objective. If the objective is pri-
marily to fit an SSN model to a response variable, per-
haps for purely explanatory purposes, all observational
data can be retained in the modeling process and vali-
dation can be conducted using various cross-validation
techniques (e.g., LOOCV). In addition, the initial
design of monitoring locations should cover a broad dis-
tribution of paired distances among sites, as well as
multiple samples around confluences, to enable longitu-
dinal network relationships to be established and auto-
covariance functions to be quantified (Frieden et al.,
2014; McDonnell et al., 2015). If the aim of the study is
to evaluate prediction accuracy, withholding of valida-
tion sites is necessary; however, the statistical and spa-
tial distributions of the response variable and
covariates must be considered when selecting these
sites. Conducting a spatially-balanced random sample
stratified by certain patchily-distributed covariates
(e.g., till plain soils in this study) may be a solution.
Imposing further constraints based on the statistical
distribution of the response variable may also be neces-
sary to accurately model and predict extreme values.
Careful consideration of such stratified sampling
approaches is essential (Maas-Hebner et al., 2015).
Iteratively conducting modeling and validation with
multiple samples could be incorporated into the process
within the SSN package in R (Jay Ver Hoef, November
5, 2015, personal communication); however, it is clear
from our results that conducting modeling and predic-
tion on a single set of modeling and validation sites can
greatly affect the study inferences. Regardless of the
approach adopted, thorough initial exploratory data
analysis is imperative in SSN modeling studies.

SUPPORTING INFORMATION

Additional supporting information may be found
online under the Supporting Information tab for this
article: S1. Final .ssn file objects (.zip); S2. R code
and outputs for entire analysis (.zip); and S3. High
resolution Figure 3 (.png).
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