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A B S T R A C T

An 11 year dataset of concentrations of E. coli at 10 spatially-distributed sites in a mixed land-use catchment
in NE Scotland (52 km2) revealed that concentrations were not clearly associated with flow or season. The
lack of a clear flow-concentration relationship may have been due to greater water fluxes from less-contam-
inated headwaters during high flows diluting downstream concentrations, the importance of persistent point
sources of E. coli both anthropogenic and agricultural, and possibly the temporal resolution of the dataset.
Point sources and year-round grazing of livestock probably obscured clear seasonality in concentrations. Mul-
tiple linear regression models identified potential for contamination by anthropogenic point sources as a sig-
nificant predictor of long-term spatial patterns of low, average and high concentrations of E. coli. Neither
arable nor pasture land was significant, even when accounting for hydrological connectivity with a topo-
graphic-index method. However, this may have reflected coarse-scale land-cover data inadequately represent-
ing “point sources” of agricultural contamination (e.g. direct defecation of livestock into the stream) and tem-
poral changes in availability of E. coli from diffuse sources. Spatial-stream-network models (SSNMs) were
applied in a novel context, and had value in making more robust catchment-scale predictions of concentra-
tions of E. coli with estimates of uncertainty, and in enabling identification of potential “hot spots” of faecal
contamination. Successfully managing faecal contamination of surface waters is vital for safeguarding public
health. Our finding that concentrations of E. coli could not clearly be associated with flow or season may sug-
gest that management strategies should not necessarily target only high flow events or summer when faecal
contamination risk is often assumed to be greatest. Furthermore, we identified SSNMs as valuable tools for
identifying possible “hot spots” of contamination which could be targeted for management, and for highlight-
ing areas where additional monitoring could help better constrain predictions relating to faecal contamination.

© 2017.

1. Introduction

When faecal material is transferred to surface waters, the delivery
of faecal pathogens including Escherichia coli O157, Campylobacter
and Cryptosporidium parvum may also occur (Oliver et al., 2005a).
Such pathogens can lead to gastrointestinal illness in humans if expo-
sure to contaminated water occurs through, for example, recreational
uses of water or consumption of drinking water from poorly-treated
private supplies (Fewtrell and Kay, 2015; Strachan et al., 2006). In
the European context, legislation such as the Drinking Water Direc-
tive (Council Directive 98/83/EC) and revised Bathing Water Direc-
tive (Council Directive 2006/7/EC) stipulate acceptable concentra
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tions of faecal indicator organisms (FIOs), used as a proxy for faecal
contamination, that should be complied with for different uses of wa-
ter in order to safeguard public health. Such legislation has prompted
increased recognition of the need to better understand the dynamics
and drivers of faecal contamination in surface waters, so that effective
management strategies can be devised that permit microbiological wa-
ter quality standards to be met (Kay et al., 2008a).

In rural areas, the potential for faecal contamination is often high
due to potential for contributions from both point and diffuse sources.
Sewage infrastructure is often more rudimentary in such areas, with
septic tanks and combined sewer overflow waste water treatment
works (WWTWs) being common, both of which represent impor-
tant point sources of contamination (Kay et al., 2008b). Meanwhile,
spread manure and faeces from grazing animals arising from intensive
agriculture are examples of diffuse sources (Chadwick et al., 2008).
The high potential for faecal contamination in rural areas can im-
pact on a number of downstream water uses which, in turn, has im-
plications for meeting legislative requirements and for public health.
For example, exports of faecal contaminants from rural catchments
have been suggested to account for large proportions of contamina

https://doi.org/10.1016/j.scitotenv.2017.08.151
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tion observed in coastal bathing waters (Crowther et al., 2003). Fur-
thermore, private water supplies are commonly relied upon to provide
drinking water in rural areas, some of which may be drawn from sur-
face waters. However, such supplies often employ only limited treat-
ment mechanisms, meaning there is increased potential for human in-
fection by faecal pathogens when the microbiological quality of the
raw water of a private supply is poor (Kay et al., 2007). As such, there
is a vital need to better manage faecal contamination in rurally-influ-
enced catchments.

Compared with other types of water pollution, the evidence-base
for understanding the behaviour and survival of faecal pathogens and
FIOs in the environment has, historically, been more limited (Kay et
al., 2008a). Significant knowledge gaps still persist in relation to un-
derstanding the spatio-temporal dynamics of faecal contamination, es-
pecially at the catchment scale where decisions regarding management
of water quality need to be made (Oliver et al., 2016). In particular,
understanding the response of concentrations of FIOs to hydrological
conditions and season using datasets long enough to capture sufficient
hydroclimatic variation, and developing models that can be used to in-
fer potential sources of contamination from spatial patterns of FIOs
and make robust predictions for unmeasured locations represent key
challenges at this scale (Kay et al., 2010; Tetzlaff et al., 2012; Vitro et
al., 2017).

Previous catchment-scale studies (e.g. Crowther et al., 2002, 2003;
Kay et al., 2005, 2008b; McGrane et al., 2014; Tetzlaff et al., 2012)
have offered important insights into the dynamics and controls of fae-
cal contamination. In particular, high flow events and summer have
often been identified as periods when concentrations of FIOs are
likely to be elevated. In addition, multiple linear regression models
(MLRMs) linking spatial patterns in concentrations to readily-avail-
able land-cover variables as proxies for different sources of contam-
ination have generally identified intensive livestock farming and hu-
man sewage inputs as potentially important sources. Where more de-
tailed datasets have been available, some studies have further iden-
tified physical, chemical and biological factors that can be signifi-
cantly associated with spatial patterns of FIOs. For example, Dwivedi
et al. (2013) found temperature, dissolved oxygen, phosphate, ammo-
nia, suspended solids and chlorophyll to be important for estimating
E. coli loads in Plum Creek, Texas. However, many past studies have
generally been constrained by the availability of only short-duration
(< 1–2 year) datasets relating to concentrations of FIOs. Furthermore,
many of the regression models based on land cover for FIOs are fairly
simple in their implementation (Kay et al., 2010). For example, el-
evated concentrations of FIOs during high flow conditions are often
attributed to increased hydrological connectivity between sources of
contamination and the stream network, particularly via overland flow
(Dwivedi et al., 2016; Kay et al., 2008b; Tyrrel and Quinton, 2003).
However, conceptualisation of the connectivity potential of certain
land covers within regression models is rare (an exception is Crowther
et al., 2003, who showed that concentrations of FIOs during low
flows were most influenced by improved pasture within 1–2 km sur-
face-flow distance of a sub-catchment outlet, whilst during high flows
improved pasture across the whole of a sub-catchment was important).
Also rare is the recognition that concentrations of FIOs at flow-con-
nected sampling sites along a stream network may not be independent
of one another (although Vitro et al., 2017 successfully account for
this with a spatial regression model). This may give rise to spatial au-
tocorrelation between sampling sites, which, if not accounted for, may
lead to significance being incorrectly assigned to the land-cover vari-
ables of the models (Isaak et al., 2014).

Whilst dataset length may be logistically constrained, representing
hydrological connectivity in models is a possibility. A potential ap-
proach is the use of topographically-based indices, such as the Net-
work Index (Lane et al., 2004). This is an extension of the topo-
graphic wetness index of Beven and Kirkby (1979) and accounts for
the requirement that for a saturated area to be hydrologically con

nected to a stream via an overland flow path, the entire flow path
must be saturated to prevent disconnection by processes such as re-in-
filtration (Lane et al., 2004, 2009). However, whilst this metric has
potential in characterising the hydrological connectivity likelihood of
diffuse sources of pollution, it has rarely been implemented in this
context (Lane et al., 2009; an exception being SCIMAP outlined by
Reaney et al., 2011).

Spatial-stream-network models (SSNMs) represent an advance-
ment in geostatistical methods that mean it is also now possible to ac-
count for spatial autocorrelation between observations along stream
networks (see Ver Hoef and Peterson, 2010 and Ver Hoef et al., 2006
for full details). Central to SSNMs is that, unlike traditional geosta-
tistical methods, autocorrelation between observed locations is based
on stream distance as opposed to Euclidian distance. Stream distance
is the shortest distance between two points when following the stream
network. Autocovariance functions based on stream distance are based
on moving average constructions, and may be defined for sites that are
flow connected and unconnected. In this way, SSNMs are uniquely
placed to account for spatial autocorrelation that may arise in stream
networks due to both passive (e.g. downstream transport of bacteria)
and active (e.g. upstream migration of fish) interactions with flow
(Peterson and Ver Hoef, 2010; Ver Hoef and Peterson, 2010). Where
SSNMs have been developed for water quality variables (e.g. temper-
ature), accounting for spatial autocorrelation has helped to prevent sig-
nificance being incorrectly assigned to dependent variables and also
improved the accuracy of predictions (e.g. Isaak et al., 2014). How-
ever, to the authors' knowledge, there is only one instance where a
SSNM-like approach has been applied to FIO data (Money et al.,
2009).

Here, we aim to use a long-term dataset of spatially-distributed
concentrations of E. coli and novel modelling approaches to under-
stand and predict the spatio-temporal dynamics of faecal contamina-
tion in a mixed land-use catchment in NE Scotland. Our specific ob-
jectives were to:

1. Understand the response of concentrations of E. coli to hydrologi-
cal conditions and season based on long-term data;

2. Investigate whether long-term spatial patterns of low, average and
high concentrations of E. coli can be linked to land–cover proxies
for different sources of contamination, and how accounting for hy-
drological connectivity potential might affect this;

3. Assess the value of SSNMs as tools to understand and predict
long-term spatial patterns of concentrations of E.coli in water qual-
ity studies.

2. Study site

The Tarland Burn (71 km2) is located in NE Scotland, and is a
sub-catchment of the River Dee. Earlier assessments of diffuse pol-
lution within the Dee identified that increasing agricultural land use
in lowland tributaries adversely affected water quality (Langan et al.,
1997). The Tarland is the first upstream tributary draining significant
areas of intensive agriculture. This became possible following exten-
sive field drainage and canalisation of the Tarland Burn in the 1800s
for agricultural improvement. The Tarland catchment is a focus for
research assessing point and diffuses source pollution and evaluating
best management practices for mitigation (Bergfur et al., 2012). As
such, long-term water quality monitoring has been taking place at 10
nested sampling sites (ranging from < 1 to 52 km2) in the upper catch-
ment (Fig. 1a; Bergfur et al., 2012); the area of focus for this study.

Elevation in the catchment ranges from 136 m to 618 m (Fig.
1a). Freely-drained brown earth and humus‑iron podzols are the main
soils, but poorly-drained peaty gley podzols and non-calcareous gleys
are also present with the former dominating the upper catchment (Fig.
1b). Land cover is mixed (Fig. 1c). Based on the CORINE Land
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Fig. 1. Tarland Burn catchment showing a) Topography and location of long-term sampling sites; b) Distribution of soil classes according to Digitised Soil Map of Scotland, scale
1:25,000 (Soil Survey of Scotland Staff, 2014); c) Land cover based on CORINE 2012 dataset (Cole et al., 2015) and additional mapping of dispersed dwellings.
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Cover 2012 dataset (Cole et al., 2015), pasture land for cattle and
sheep grazing is the main land cover (39.8%), whilst forestry (24.9%)
and arable land (18.6%) are other major land covers. The main set-
tlement in the catchment is Tarland village (population 650; Bergfur
et al., 2012), however, there are also a number of dispersed dwellings
and farms across the catchment. There are 58 private water supplies
serving a number of properties in the Tarland, 13 of which are sourced
from surface waters (DWQR for Scotland, Personal Communication).
Some properties in the catchment are connected to a WWTW ~ 3 km
upstream of the catchment outlet (Fig. 1c), however, many of the
dispersed dwellings and farms are served by septic tanks. The sep-
tic tanks are often of an older style and discharge into ditches or the
stream itself. Treated effluent from the WWTW normally discharges
into a wetland or occasionally to the stream under licenced consent;
however, as the WWTW is a combined sewer overflow, effluent with
limited treatment can be discharged directly to the stream during peri-
ods of heavy rainfall (Stutter et al., 2010).

3. Material and methods

3.1. Study period and hydrometric data

The study spans 11 water years (October 2004–September 2015).
Hourly discharge was calculated at the catchment outlet, Site 1 (Coull
Bridge; Lat: 57.111 | Lon: − 2.810) using measured stage recorded
by a sonic range sensor (SR50, Campbell Scientific, Loughborough,
UK) and a rating curve based on velocity-area profiling (Stutter et
al., 2008a, 2008b). Hourly air temperature was also recorded at Coull
Bridge. Precipitation was measured at a meteorological station at
Aboyne (Lat: 57.077 | Lon: − 2.836, ~ 4 km SW of the catchment).
Hydrometric data was amalgamated to daily time steps, by averaging
discharge and temperature, and summing precipitation.

3.2. Water sampling and microbiological analysis

Samples were collected from 10 spatially-distributed sites on a
monthly to three-monthly basis, with all sites sampled on the same
day (Bergfur et al., 2012). This gave ~ 80 samples per site. Samples
were collected in sterile bottles and analysed within 6 h of collection
for E. coli using the Colilert-18 most probable number (MPN) method
(IDEXX Laboratories, Westbrook, Maine, USA). Where high concen-
trations of E. coli were likely present, appropriate dilutions were made
using sterile Ringers solution. The detection limit for an undiluted
sample is < 1 MPN colony forming units (CFU) 100 ml− 1. These data
form part of the dataset of Langan et al. (n.d., DOI pending).

3.3. Statistical summary of spatio-temporal patterns of
concentrations of E. coli

Summary statistics of long-term concentrations of E. coli at each
site were generated based on all sampling dates and in relation to
flow and season to investigate spatio-temporal patterns. To under-
stand the data in a hydrological context, samples were separated into
those that were taken during high and low flows (corresponding to
flows ≥ Q10 and ≤ Q90 at the Coull Bridge gauging station, respec-
tively). Despite the long-term data, the coarse sample frequency meant
that high and low flows only coincided with 6 and 8 sampling dates,
respectively. For season, samples were separated into two periods,
‘summer’ and ‘winter’. Summer (April–September) is the most bio-
logically active period for this region (Dawson et al., 2008). Forty
four sampling dates fell within the summer period and 37 in the win-
ter. Given the range of the concentrations of E. coli, the log10-trans-
formed 5th, 50th and 95th percentiles were used as summaries, though
at some sites this was not possible due to samples having con

centrations of E. coli below detection limits. In these cases, a log-nor-
mal distribution was fitted to the data, accounting for samples below
the various detection limits, using a maximum likelihood estimator, to
estimate the required percentiles (Helsel, 1990).

3.4. Multiple linear regression modelling based on land cover

Spatial information required for fitting both the MLRMs and SS-
NMs (Section 3.5) was generated using the STARS package (Peterson
and Ver Hoef, 2014) within ESRI ArcMap 10.2.1. The stream network
and catchment areas of each sampling site were defined from a 5 m
resolution LandMap digital terrain model (DTM). For each site, pas-
ture and arable land cover (as % of catchment area) was derived from
CORINE 2012 (Fig. 1c; Cole et al., 2015). These catchment charac-
teristics represented potential diffuse sources of faecal contamination
from manure application to arable land and defecation of livestock on
pasture, and have been identified as significant predictors of spatial
patterns of concentration of FIOs in past studies (e.g. Crowther et al.,
2002; Kay et al., 2008b; Tetzlaff et al., 2012). We also defined an
Anthropogenic Impact Index (A.I.I.) as a lumped indicator of poten-
tial for contamination from human point sources (e.g. leaking sewage
pipes, septic tanks and open farmyards). One point was added to the
A.I.I. of each site for every dwelling (either served by a septic tank
or connected to the sewer) and every farmyard in its catchment. If
a dwelling fell within a farmyard complex only a single point was
given. Dwellings and farmyards were mapped using OS MasterMap
data and septic tank locations were obtained from the DWQR for Scot-
land (Personal Communication). The A.I.I. only represents potential
for contamination as data relating to contributions from each source it
encompasses in space and time were not available; indeed such data
are very rare or otherwise impossible to obtain (e.g. Crowther et al.,
2002; Richards et al., 2016). The catchment characteristics of each site
are summarised in Table 1. Whilst we acknowledge that additional
factors may be relevant for explaining spatial patterns of concentra-
tions of E. coli (e.g. those identified by Dwivedi et al., 2013), we chose
to focus on variables relating to land cover in our models as such data
is readily available for most catchments.

To quantify the hydrological connectivity potential of pasture and
arable land associated with diffuse sources of faecal contamination,
the Network Index (NI) of the Tarland catchment was generated from
the 5 m DTM (Lane et al., 2004). From this, the Relative Network In-
dex (RNI) was obtained (Fig. 2); this rescales the NI so that the small-
est 5% of values are given a value of 0, the largest 5% a value of 1,
and the remainder scale linearly between 0 and 1 (Lane et al., 2009).
The NI and RNI were generated using the SCIMAP Risk Maps mod-
ule (Reaney and Milledge, 2013) in SAGA 2.0 (Conrad, 2006). Two
ranges of the RNI were then chosen to differentiate between levels of
hydrological connectivity potential: 0.5 ≤ RNI ≤ 1 and RNI = 1. Areas
with an RNI in the former range are assumed to exhibit non-negligi-
ble durations of hydrological connectivity during storm events, whilst
areas with RNI = 1 are assumed to be always connected (Lane et al.,
2009; Reaney et al., 2011). The amount of arable and pasture land with
0.5 ≤ RNI ≤ 1 and RNI = 1 as a percentage of catchment area with
0.5 ≤ RNI ≤ 1 and RNI = 1, respectively, were then calculated as site
characteristics (Table 1).

To investigate possible controls on spatial patterns of concentra-
tions of E. coli, MLRMs were developed for the log10-transformed
5th, 50th and 95th percentile concentrations based on all the sam-
pling dates. These summary statistics were used as dependent vari-
ables to represent average concentrations of E. coli at each site (50th
percentile) as well as low and high concentrations (5th and 95th per-
centiles, respectively) without making assumptions about associations
with flow and season. Stata 14 (StataCorp, 2015) was used to fit
the MLRMs based on maximum likelihood and a backwards-stepwise
procedure with p ≤ 0.05 as the criteria for variable removal. Three
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Table 1
Summary of catchment characteristics for the 10 sampling sites.

Site Total catchment 0.5 ≤ RNIa ≤ 1 RNIa = 1 Anthropogenic Impact Indexb

Area (km2) % Arable % Pasture Area (km2) % Arable % Pasture Area (km2) % Arable % Pasture

1 51.98 18.62 39.77 20.65 21.19 42.93 2.09 24.91 46.09 529
2 7.70 24.87 26.77 2.89 31.37 33.24 0.31 39.95 36.19 21
3 31.41 18.05 41.32 12.37 20.63 44.77 1.25 24.08 49.01 414
4 6.48 17.05 54.72 2.52 18.81 58.62 0.24 24.77 64.57 69
5 1.62 13.34 52.75 0.54 15.59 59.67 0.05 13.87 75.30 5
6 0.93 36.27 36.61 0.36 42.58 33.45 0.05 48.57 39.41 23
7 10.40 24.24 29.48 4.46 27.79 35.56 0.46 35.40 41.34 43
8 3.96 6.46 24.27 1.44 7.77 36.45 0.12 14.13 57.62 2
9 1.77 17.30 8.08 0.73 18.04 15.06 0.06 31.95 20.55 1
10 6.92 20.99 44.19 2.32 24.38 51.71 0.24 27.79 54.78 15

a Relative Network Index. Areas with 0.5 ≤ RNI ≤ 1 are assumed to have non-negligible durations of hydrological connectivity during storm events, whilst areas with RNI = 1 are
assumed to always be connected (Lane et al., 2009; Reaney et al., 2011).
b Anthropogenic Impact Index is assigned points for farmyards, and for dwellings attached to the sewer system or septic tanks. A single point is given if a dwelling falls within a
farmyard complex.

Fig. 2. The Relative Network Index for the Tarland catchment. (The line across the centre of the dataset is a result of tile joining in the Landmap digital terrain model from which the
Relative Network Index was constructed).

models were fitted to each percentile of E. coli concentrations, mean-
ing that nine models were fitted in total. Each model started with
log10 A.I.I. and either amount of arable and pasture land based on
(a) total site catchment area, (b) area with 0.5 ≤ RNI ≤ 1, or (c) area
with RNI = 1 as possible predictor variables. Predictors were tested
for multi-collinearity, but no significant correlations were found. The
MLRMs were assessed based on the coefficient of determination (R2)
for fit and leave-one-out-cross-validation root-mean-squared predic-
tion error (LOOCV RMSPE) as a measure of predictive capability.

3.5. Spatial-stream-network modelling

Spatial-stream-network models employ a linear mixed-modelling
approach to explain the variance in observations, which takes the fol-
lowing general form:

where y is a vector of observations, X is a design matrix for fixed ef-
fects (variables that are measured and explain the general spatial pat-
terns in the observations), β is a vector of coefficients for the fixed
effects, z contains spatially-autocorrelated random effects (random

variables with a spatial autocovariance structure modelled on the
residuals of the observations after accounting for the fixed effects, that
can represent both unmeasured and unknown factors influencing ob-
servations) and ε is a vector of independent random errors (Peterson
and Ver Hoef, 2010; Peterson et al., 2013). We developed SSNMs us-
ing land cover for the fixed effects and a “tail-up” spatial autocovari-
ance structure for the random effects. A tail-up autocovariance struc-
ture accounts for autocorrelation between flow-connected sites (Ver
Hoef and Peterson, 2010), and was deemed sufficient for our purpose
because: (a) E. coli is transported passively in the flow; (b) it was de-
sirable to limit the degrees of freedom of the models due to the small
number of sites used in their development (c.f. Isaak et al., 2014).

The STARS package was used to generate the network required to
build a SSNM describing the structure of the Tarland stream network
and how sampling sites are connected (Peterson and Ver Hoef, 2014).
It was also used to calculate the spatial weightings between sites re-
quired when using tail-up autocovariance structures, which here were
based on an additive function defined using catchment area (Fig. 3;
see Peterson and Ver Hoef, 2010 Appendix A). SSNMs were then de-
veloped using the SSN package (Ver Hoef et al., 2014) in the R sta-
tistical software package (R Core Team, 2016). SSNMs were devel

(1)
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Fig. 3. The network created for the Tarland catchment. Black dots represent sampling sites whilst the blue line represents the stream network. The width of the blue line reflects the
value of the additive function (dimensionless). For a given reach, this is defined by multiplying the proportional influences (based on reach catchment area) of each reach downstream
to the catchment outlet (see Peterson and Ver Hoef, 2010 Appendix A). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

oped for the log10-transformed 5th, 50th and 95th percentile concen-
trations of E. coli. Three models were constructed for each percentile,
each of which had the predictor variables from the best MLRMs for
fixed effects, and random effects with either an exponential, spheri-
cal or linear-with-sill tail-up spatial autocovariance structure (see Ver
Hoef et al., 2006). To reduce bias in the estimation of the parameters
of the spatial autocovariance functions, we used restricted maximum
likelihood as opposed to maximum likelihood when fitting the mod-
els (Cressie, 1993). An autocovariance function has three parameters:
the nugget effect (variability between locations separated by distances
close to zero), the partial-sill (variability of the random effects), and
the range (distance beyond which locations are no longer autocorre-
lated). Here, the maximum value of the range parameter was limited
to the maximum stream distance between any of the sampling sites
(8436.4 m). The performance of the SSNMs was assessed by calculat-
ing an R2 to describe the amount of variability in the observations ex-
plained by the fixed and random effects, and using the LOOCV RM-
SPE as a measure of predictive capability. To allow comparison be-
tween the SSNMs and MLRMs, the best-performing MLRMs for each
concentration percentile were refitted using restricted maximum like-
lihood.

3.6. Predicting long-term spatial patterns of concentrations of E. coli

The best models for the log10-transformed 5th, 50th and 95th per-
centile concentrations of E. coli were used to make predictions for
sites evenly distributed at 200 m intervals along the stream network.
Predictions were made using the SSN Package (Ver Hoef et al., 2014).
The position of the prediction sites within the stream network and their
connectedness to each other and observed sites was defined using the
STARS package (Peterson and Ver Hoef, 2014).

4. Results

4.1. Hydroclimatic conditions

Fig. 4 shows total daily precipitation and mean daily discharge
and temperature for the study period. Annual precipitation was either
close to or above the long term average (~ 1030 mm for 1961–1990;
~ 950 mm for 1971–2000) in NE Scotland. At Aboyne, the driest wa

ter years were 2005, 2006, 2009 and 2013, with annual precipita-
tion ranging between 581.6 mm and 681.4 mm. The wettest years
were 2007, 2010 and 2014, with annual precipitation ranging from
932.4 mm to 999.8 mm. Precipitation tended to be fairly evenly dis-
tributed throughout the year (Fig. 4a).

Discharge at Coull Bridge showed a strong, seasonally varying
baseflow component most likely dominated by groundwater (Fig. 4b).
This probably reflects the large areas of flat lowland topography in the
catchment, dominance of freely-drained brown earth and humus‑iron
podzols and the influence of underlying drift deposits. Nevertheless,
there is also a flashy, non-linear response of discharge to precipita-
tion events reflecting the hydrologically-responsive peaty gley soils in
the headwaters and the rapid transport of water through agricultural
field drains. Additionally, during larger events, the flat lowland areas
are prone to saturation, which can activate overland flow pathways
(Fig. 2). Highest mean daily flows occurred between December and
February and the lowest between May and September (Fig. 4b). The
Q90 flow for the study period was 0.41 m3 s− 1 and the Q10 flow was
1.94 m3 s− 1.

Air temperatures showed clear seasonality (Fig. 4c). The coldest
mean monthly temperatures ranged between 1.84 °C and 2.2 °C for
the months December to February, whilst July and August had the
warmest mean temperatures (13.87 °C and 13.02 °C, respectively).

4.2. Long-term spatio-temporal patterns of concentrations of E. coli

Fig. 5 shows the percentile concentrations of E. coli at the 10
sites for all sampling dates and also for flows ≥ Q10 and ≤ Q90. There
was no clear relationship between concentrations and flow conditions.
At Sites 1, 3, 5, 6 and 10, 50th percentile concentrations under high
flow conditions were greatest, whilst for the remaining sites they were
higher during low flows. In addition, the generally high intra-site vari-
ability (at least an order of magnitude) in concentrations during both
high and low flows meant that there was usually overlap in the ranges
between the 5th and 95th percentile concentrations observed under
high and low flows.

Fig. 6 shows the concentrations of E. coli for ‘summer’ and ‘win-
ter’ sampling dates. For all sites, the 50th percentile concentrations
were greater in summer than winter, but tended to be of the same or-
der of magnitude. Additionally, winter 5th percentile concentrations
were lower than those for summer, whilst summer 95th percentile
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Fig. 4. Long-term time series of a) Total daily precipitation recorded at Aboyne meteorological station; b) Mean daily discharge at Coull Bridge; c) Mean daily air temperature at
Coull Bridge.

Fig. 5. The 5th, 50th and 95th percentile log10 most probable number (MPN) concentrations of E. coli for each sampling site for all sampling dates and by flow (low flows ≤ Q90 and
high flows ≥ Q10). The 50th percentile is shown by the square markers, whilst the 5th and 95th percentiles are given by the line caps. Stars indicate where percentiles were estimated
using a log-normal distribution.

concentrations tended to be higher than winter (exception is Site 3).
There was a high degree of overlap between the summer and winter
concentrations, owing to large intra-site variability.

Inter-site variability of concentrations was high when considered
across all sampling dates, by flow and by season, with each percentile
spanning at least two orders of magnitude across all sites (Figs. 5 and
6). Spatial patterns during high flows, summer and winter were all
similar to those that emerged when considering all sampling dates.
The highest 50th percentile concentrations were for Sites 1 and 3 in
the lower catchment, whilst the lowest were for Sites 5, 8 and 9. A
marked change during high flows, however, was that the 50th per

centile concentration at Site 3 (~ 3.86 log10 MPN CFU 100 ml− 1) was
more than double that at Site 1 (~ 3.46 log10 MPN CFU 100 ml− 1).
Across all sampling dates, the 50th percentile concentrations at these
two sites were very similar (~ 3.36 log10 MPN CFU 100 ml− 1). Under
low flows, the spatial pattern changed. Here, Sites 2, 3 and 7 had the
highest 50th percentile concentrations, with Site 2 having the highest
at ~ 3.60 log10 MPN CFU 100 ml− 1. Sites 5 and 9 still had the lowest
50th percentile concentrations (~ 1.70 log10 MPN CFU 100 ml− 1 for
both sites), however, Site 8 had a higher 50th percentile concentration
at ~ 2.64 log10 MPN CFU 100 ml− 1.
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Fig. 6. The 5th, 50th and 95th percentile log10 most probable number (MPN) concentrations of E. coli for each sampling site for the summer and winter periods. The 50th percentile
is shown by the square markers, whilst the 5th and 95th percentiles are given by the line caps. Stars indicate where percentiles were estimated using a log-normal distribution.

4.3. Multiple linear regression modelling based on land cover

The MLRMs developed for the log10-transformed 5th, 50th and
95th percentile concentrations of E. coli all had the log10 A.I.I. as the

Table 2
Summary statistics for multiple linear regression models for the 5th, 50th and 95th per-
centile concentrations of E. coli (log10 MPN CFU 100 ml− 1).

Model parameters Model performance

Response
variable

log10 Anthropogenic
Impact Index Intercept R2

LOOCV RMSPE (log10
MPN CFU 100 ml− 1)a

log10 5th 0.889⁎ 0.1089 0.68 0.600
log10 50th 0.7059⁎ 1.5012⁎ 0.78 0.371
log10 95th 0.5337⁎ 2.9012⁎ 0.66 0.390

⁎ Significant with at least p < 0.001.
a Leave one out cross validation, root mean squared predictive error.

only significant predictor variable (p < 0.001; Table 2). The extents
of arable and pasture land as percentages of the total area of each
sampling sites' catchment were not significant predictors. This did not
change when hydrological connectivity potential was accounted for.
The model for 50th percentile concentrations performed best, with an
R2 of 0.78 and a LOOCV RMSPE of 0.371. Whilst the model for the
5th percentile concentrations achieved an R2 of 0.68, its high LOOCV
RMSPE resulted in this being the poorest performing model. Despite
the high R2 achieved by all models, the LOOCV RMPSEs were al-
ways high, particularly for the 5th percentile model.

4.4. Spatial-stream-network modelling

The statistics for SSNMs developed for the various log10-trans-
formed percentile concentrations of E. coli are given in Table 3. Ac-
counting for spatial autocorrelation did not cause the log10 A.I.I. to be
dropped as a significant fixed effect for any of the models. With re-
spect to the parameters of the autocovariance structures, the nugget ef-
fect was consistently very close to 0, whilst the partial sill assumed

Table 3
Summary statistics for spatial-stream-network models for the 5th, 50th and 95th percentile concentrations of E. coli (log10 MPN CFU 100 ml− 1).

Fixed effects parameters
Autocovariance structure
parameters Model performance

Response
variable

Tail-up spatial
autocovariance structure

log10 Anthropogenic
Impact Index Intercept Nugget

Partial
Sill

Range
(m)

R2 (fixed
effects)

R2

(fixed + random
effects)

LOOCV RMSPE (log10 MPN
CFU 100 ml− 1)a

log10 5th None 0.889⁎ 0.1089 0.330 – – 0.68 – 0.600
Exponential 0.92205⁎ 0.09893 0.000 0.349 8436.39 0.68 ~ 1.0 0.617
Spherical 0.96476⁎ 0.04582 0.000 0.368 8436.37 0.70 ~ 1.0 0.621
Linear-with-sill 0.99095⁎ 0.01552 0.000 0.384 7361.53 0.71 ~ 1.0 0.616

log10 50th None 0.7059⁎ 1.5012⁎ 0.126 – – 0.78 – 0.371
Exponential 0.6944⁎ 1.5459⁎ 0.000 0.115 8436.40 0.79 ~ 1.0 0.334
Spherical 0.702⁎ 1.5444⁎ 0.000 0.113 8436.40 0.80 ~ 1.0 0.320
Linear-with-sill 0.7057⁎ 1.546⁎ 0.000 0.114 8436.40 0.81 ~ 1.0 0.307

log10 95th None 0.5337⁎ 2.9012⁎ 0.125 – – 0.66 – 0.390
Exponential 0.558⁎ 2.8854⁎ 0.000 0.134 8116.88 0.67 ~ 1.0 0.394
Spherical 0.582⁎ 2.8525⁎ 0.000 0.140 7713.01 0.69 ~ 1.0 0.390
Linear-with-sill 0.5884⁎ 2.843⁎ 0.000 0.142 5926.96 0.69 ~ 1.0 0.386

⁎ Significant with at least p < 0.001.
a Leave one out cross validation, root mean squared predictive error.
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a similar value to the nugget in the non-spatial MLRMs. This indicates
that much of the unexplained variance in the observations after ac-
counting for the fixed effects could be attributed to the spatially-auto-
correlated random effects. This is also reflected in the R2 (fixed + ran-
dom effects) being close to 1. The range parameter for most SSNMs
was at or close to the maximum imposed range (8436.4 m), suggesting
that all sites were autocorrelated to some degree. The exceptions were
the SSNMs for 95th percentile concentrations with spherical and lin-
ear-with-sill spatial autocovariance structures, and the 5th percentile
SSNM with linear-with-sill spatial autocovariance structure.

In terms of the predictive capabilities of the SSNMs, for the 5th
percentile concentrations, the LOOCV RMSPEs of the SSNMs were
slightly poorer than the best MLRM (Table 3). However, increases
in LOOCV RMSPEs were only ~ 1%. For 50th percentile concentra-
tions, SSNMs showed markedly improved predictive capability. The
best was for the SSNM that used a linear-with-sill autocovariance
structure for the random effects, with the LOOCV RMSPE being re-
duced by 17% compared to the MLRM. For the 95th percentile con-
centrations, only the SSNM that used a linear-with-sill autocovariance
structure showed a slight improvement in LOOCV RMSPE. Mean-
while, the SSNMs employing exponential and spherical structures
showed a slight increase and no change in LOOCV RMSPE, respec-
tively. Therefore, the SSNMs did not show consistent improvement in
predictive capability over the MLRMs, at least when quantified using
the LOOCV RMSPE.

4.5. Predicting long-term spatial patterns of concentrations of E. coli

To investigate further the dominant controls on concentrations of
E. coli and to identify “hot spots” of contamination, SSNMs that used
linear-with-sill spatial autocovariance structures for the random ef-
fects were used to predict catchment-wide concentrations. The pre-
dicted concentrations are shown in Fig. 7. The SSNMs provided good
predictions of concentrations near the sampling sites. Standard errors
were smallest for predictions made at prediction sites near to sampling
sites to which they were flow-connected, and greatest for predictions
made along tributaries which did not contain a sampling site.

Predicted 5th percentiles ranged between ~− 0.65 to 2.45 log10
MPN CFU 100 ml− 1 (Fig. 7a). Lowest concentrations were predicted
for around and upstream of Sites 5 and 9, whilst highest concentra-
tions were predicted from around Sites 2, 7 and 10 to the catchment
outlet. Predictions of the 50th percentile concentrations ranged from
~ 1.25 to 3.4 log10 MPN CFU 100 ml− 1 (Fig. 7b). Compared with the
5th percentile predictions, it was more common for headwater tribu-
taries to have lower predictions than more lowland parts of the net-
work. Highest concentrations were predicted from the lower conflu-
ence on the tributary of Site 10 to the catchment outlet. Predictions of
the 95th percentile concentrations ranged from ~ 2.5 to 4.5 log10 MPN
CFU 100 ml− 1 (Fig. 7c). The lowest predictions were made for the
tributary of Site 9, reflecting the very low observed 95th percentile of
E. coli at this site (Fig. 5). Highest predictions were generally made
downstream of Site 7 and of the lower confluence on the tributary of
Site 10.

The inclusion of spatially-autocorrelated random effects in the SS-
NMs caused some interesting features to emerge in the predicted con-
centrations. Firstly, it was possible to identify parts of the stream net-
work where higher concentrations had been predicted than would be
expected based on the A.I.I. alone. Key examples of this are the trib-
utaries of Sites 2 and 10. The 5th, 50th and 95th percentile concentra-
tions at both sites were all strongly under-predicted by the just fixed
effects of the SSNMs (Table 4). Consequently, the random effects of
the models increased the final predictions for prediction sites most
strongly autocorrelated with each site, thus elevating predicted con-
centrations along their tributaries and helping identify these areas as
“hot spots” of contamination. Areas where predicted concentrations

Fig. 7. Predictions of a) 5th percentile; b) 50th percentile; c) 95th percentile log10 con-
centrations of E. coli. Filled circles are prediction sites, with colour representing con-
centration of E. coli and size the standard error of the prediction. Large open circles are
observed sites.

were lower than expected based on just the A.I.I. could also be iden-
tified, such as at locations autocorrelated with Sites 4, 5 and 6 where
fixed effects over-predicted observed concentrations (Table 4).

Secondly, whilst 95th percentile concentrations generally in-
creased towards the catchment outlet, there was an exception just
above the confluence of the tributary of Site 2 with the main stem,
where predicted concentrations decreased before increasing down-
stream of the confluence (Fig. 7c). The decrease likely resulted from
the random effects reducing the predicted concentrations for predic
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Table 4
The residuals (observed – predicted) obtained based on the fixed effects alone of the
spatial-stream-network models for the 5th, 50th and 95th percentile concentrations of E.
coli (log10 MPN CFU 100 ml− 1).

Site Residuals (log10 MPN CFU 100 ml− 1)

5th percentile 50th percentile 95th percentile

1 − 0.414 − 0.098 − 0.406
2 0.538 0.387 0.346
3 − 0.309 − 0.033 − 0.003
4 − 0.268 − 0.394 − 0.225
5 − 0.837 − 0.411 − 0.228
6 − 0.421 − 0.291 − 0.358
7 0.141 − 0.032 0.273
8 0.218 0.141 0.194
9 − 0.181 − 0.301 − 0.312
10 1.060 0.586 0.547

tion sites increasingly autocorrelated with Site 1 to reflect a) Site 1
having an observed 95th percentile concentration that was much lower
than Site 3's (Fig. 5); b) Site 1 having a large negative residual after
accounting for the fixed effects whilst Site 3's residual was close to 0
(Table 4). Below the confluence, however, the increase in log10 A.I.I.
arising from the additional contributing area and possibly the influ-
ence of the random effects increasing the predictions made for predic-
tion sites autocorrelated with Site 2 competed with this, thus, causing
predicted concentrations to increase.

5. Discussion

5.1. How do concentrations of E. coli vary in response to
hydrological conditions and season?

Our first objective was to understand how concentrations of E. coli
responded to hydrological conditions and season using the long-term
dataset. We found no clear association between flow and concentra-
tions, with half the sites showing higher 50th percentile concentra-
tions at high flows (≥ Q10) and half at low flows (≤ Q90). High in-
tra-site variability dictated no clear distinction of concentrations un-
der each flow type. This is in marked contrast to previous studies
which have usually identified significant increases in concentrations
of FIOs during high flows (Crowther et al., 2002, 2003; Kay et al.,
2005, 2008b; Pachepsky and Shelton, 2011). Furthermore, we found
that whilst 50th percentile concentrations were highest in summer at
all sites, large overlap in summer and winter concentrations at individ-
ual sites prevented clear seasonal differentiation. Other studies have
generally found concentrations to be higher in summer than winter;
however, the increase has not always been significant (McGrane et al.,
2014; Tetzlaff et al., 2012).

Consideration of the hydrological context may help explain the
lack of a clear flow-concentration relationship. Firstly, it may reflect
the spatial organisation of hydrological source areas and heteroge-
neous distribution of concentrations of E. coli within the stream net-
work. During high flows, the headwater sites (Sites 5, 8 and 9) had
the lowest concentrations (Fig. 5). The flashy discharge response to
precipitation (Fig. 4b) probably reflects the activation of hydrological
source areas in the headwaters, where poorly-drained peaty soils (Fig.
1b) are highly responsive to rainfall. With greater fluxes of less-con-
taminated water from the headwaters, it is likely that concentrations
of E. coli dilute downstream, obscuring a clear flow-concentration re-
lationship, even though pollutant inputs from the lower agricultural/
urban areas may increase at the same time. Previous work in the
Tarland has identified the headwaters as areas that are responsive to
rainfall with the potential to effect downstream water quality (Stutter
et al., 2008a, 2008b). Furthermore, McKergow and Davies-Colley
(2010) identified a similar diluting effect on concentrations of E. coli
due to activation of hydrological source areas in less contaminated

parts of the larger mixed land-use Motueka catchment in New
Zealand.

Contributions of E. coli from different sources may also have ob-
scured a clear flow-concentration relationship. The most marked in-
crease in concentrations during high flows was at Site 1 and, in par-
ticular, Site 3 (Fig. 5). However, this may predominantly reflect the
influence of the WWTW upstream of Site 3 (Fig. 1c), which, as a
combined sewer overflow, will likely discharge poorly-treated efflu-
ent directly to the stream during high flows (c.f. Stapleton et al., 2008).
Higher concentrations at low flows could result from the main sources
of contamination being from point sources which become diluted at
high flows. Anthropogenic point sources may help explain elevated
concentrations during low flows at sites with higher values of the
A.I.I. (e.g. Sites 2, 4 and 7; Table 1). There may also be persistent
agricultural “point sources” (highly localised sources without a fixed
spatial location) such as chronic seepage of faecal pollutants from sat-
urated areas of animal congregation and direct defecation of livestock
into the stream (Davies-Colley et al., 2004; Tetzlaff et al., 2012) that
are important. Field drains may further contribute as an agricultural
point source. However, their ability to enhance or dilute concentra-
tions of E. coli is likely to depend on soil type (Hunter et al., 1999;
Oliver et al., 2005b). Changing spatial distribution of livestock or de-
pletion of existing stores of E. coli in previous high flow events may
also prevent the emergence of a clear flow-concentration relationship
by causing temporal variability in the availability of E. coli from dif-
fuse sources (McKergow and Davies-Colley, 2010).

A final possible explanation for the lack of a defined flow-concen-
tration relationship might be the coarse monthly/three-monthly sam-
pling resolution. Despite the dataset being temporally long, this sam-
pling resolution caused both high and low flows to be under-sampled
(each < 10% of the total samples). As such, it is probable that con-
centrations at high flows were under-estimated (Tetzlaff et al., 2012).
This may have been compounded by the timing of sample collection
during high flows - concentrations of E. coli have been found to peak
just prior to the peak in flow, which monthly sampling is more likely
to miss (McKergow and Davies-Colley, 2010).

The general expectation that concentrations of E. coli are lower in
winter is attributed to housing of cattle, reduced manure spreading and
depletion of stores of E. coli during wetter weather (Kay et al., 2008b;
Tetzlaff et al., 2012). However, where seasonality in concentrations
has been illusive, anthropogenic point sources of contamination re-
lated to sewage, and year-round grazing of livestock (important in the
Tarland) have been suggested to contribute to persistence of high con-
centrations in winter (McGrane et al., 2014). Furthermore, colder tem-
peratures during wet winter conditions may help increase the length of
time that E. coli persists in the environment for mobilisation by reduc-
ing die-off rates (Blaustein et al., 2013; Tyrrel and Quinton, 2003), so
long as freeze-thaw cycles are limited (Natvig et al., 2002).

These findings in relation to how concentrations of E. coli re-
spond to flow conditions and season may have important implica-
tions for the management of faecal contamination. A number of po-
tential mitigation measures (e.g. riparian buffer strips and retention
ponds) are predicated on the assumption that the greatest risk of fae-
cal contamination is during high flow events, and thus seek to re-
duce contamination by disrupting surface flow paths that connect pol-
lutant sources to the stream (Oliver et al., 2007). However, where the
influence of factors such as hydrologically-responsive, less-contami-
nated headwaters and persistent point sources of contamination pre-
vent a clear relationship emerging between flow and concentrations of
FIOs, as appears to be the case in the Tarland, such mitigation mea-
sures are unlikely to be entirely effective. Furthermore, whilst summer
is often considered as a priority time for managing faecal contamina-
tion (e.g. Kay et al., 2008b), our findings suggest that point sources,
livestock being left out over winter, and conditions potentially being
favourable for the longer-term survival of E. coli in the environment
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may allow elevated levels of contamination to persist during the win-
ter months as well. These factors should be considered when planning
management strategies, and may require the implementation of miti-
gation measures that also target persistent point sources (e.g. sewage
systems, farmyards, direct access of livestock to streams, seepages
from saturated areas and field drains) and that can be effective
year-round.

5.2. Can spatial patterns of long-term concentrations of E. coli be
linked to land cover, and what is the effect of accounting for
hydrological connectivity potential?

When developing MLRMs to link spatial patterns of low, average
and high concentrations of E. coli to land cover, only the A.I.I. was
identified as a significant predictor, explaining 66–78% of the vari-
ation in the observations (Table 2). This corroborates previous work
that has associated metrics relating to human influence (e.g. popula-
tion, percentage urban area) with spatial patterns of FIOs (Crowther et
al., 2003; Kay et al., 2005, 2008b; McGrane et al., 2014; Tetzlaff et
al., 2012).

Contrary to previous studies, however, neither the extent of pasture
nor arable land (as % of total catchment area) was identified as sig-
nificant. Whilst this may seem counter-intuitive, it can be explained.
Temporal dynamics of contamination in the Tarland suggested that
important agricultural sources of contamination include direct defeca-
tion into the stream, seepage of contaminants from areas of high satu-
ration potential where animals congregate, and potentially field drains.
As these represent “point sources” as opposed to diffuse sources of
contamination, they may not be adequately captured in coarse-scale
land-cover data (Crowther et al., 2002; Kay et al., 2008b). Further-
more, such data cannot account for temporal variation in the availabil-
ity of E. coli from diffuse sources. Whilst such smaller-scale details
may average out in larger catchments (c.f. Kay et al., 2005, 2008b),
most sampling sites in the Tarland had catchments ≤ 10 km2, possi-
bly precluding the identification of agricultural land cover as being
significant in the MLRMs. For smaller catchments, more focused ap-
proaches such as microbial source tracking may be necessary to prop-
erly characterise the contributions to faecal contamination from hu-
man and animal sources (e.g. Flynn et al., 2016).

The importance of “point sources” of contamination from farmed
land probably contributed to the insignificance of agricultural
land-cover variables that accounted for hydrological connectivity in
the MLRMs. The RNI represents hydrological connectivity (via over-
land flow) based on topographically-driven saturation potential (Lane
et al., 2004). Whilst this can be a useful connectivity metric if agri-
cultural pollution sources are diffuse and mobilised by surface runoff
(Lane et al., 2009), this conceptualisation is likely to be less helpful
where agricultural “point sources” are important. In addition, whilst
the RNI helped to identify areas which may become hydrologically
connected to the stream, the issue still remains that the availability of
E. coli from diffuse sources in these areas for mobilisation and transfer
will vary temporally. Where more detailed data are available, it may
be possible to better parameterise in statistical models the potential
processes that set spatial patterns of concentrations of FIOs, to permit
a more process-based understanding of the drivers of faecal contami-
nation (e.g. Dwivedi et al., 2013

5.3. What is gained from using spatial-stream-network models in
understanding and predicting long-term spatial patterns of
concentrations of E. coli?

To the authors' knowledge, the application of SSNMs to under-
stand and predict spatial patterns of concentrations of E. coli has been
very rare, with only Money et al. (2009) employing a similar ap

proach to predict concentrations for the Raritan River basin. Here, we
found the best SSNMs for the 5th, 50th and 95th percentile concen-
trations to be those that included a linear-with-sill tail-up autocovari-
ance structure, with the log10 A.I.I. remaining a significant fixed ef-
fect variable in all models (Table 3). The inclusion of spatially-auto-
correlated random effects in the SSNMs meant that nearly all the vari-
ance in the observed data could be explained, thus improving on the
MLRMs. The LOOCV RMSPEs of the SSNMs did not show consis-
tent improvement over those of the MLRMs, and were relatively high
for all models. However, this may reflect the relatively small num-
ber of sampling sites at which long-term E. coli data was available.
The LOOCV method suffers from high variance and pessimistic bias,
which in turn may limit its utility as a metric of model performance in
such instances (Beleites et al., 2005). The LOOCV RMSPEs of the 5th
percentile models may have been further impacted by these concen-
trations being more uncertain, since half the sites had these estimated
from a log-normal distribution (Fig. 5). Overall, predictions made by
all three SSNMs in the vicinity of the sampling sites reflected the ob-
served concentrations of E. coli quite well (Fig. 7).

Arguably, the key value in the SSNMs developed in this study
was making semi-continuous catchment-wide predictions of concen-
trations of E. coli with associated estimates of uncertainty, and this is
likely to have transferability value to other sites. By accounting for ad-
ditional variance in the data not explained by the A.I.I. with the spa-
tially-autocorrelated random effects, it was possible to more robustly
predict how concentrations of E. coli varied across the stream network
at the catchment scale. This helped to identify “hot spots” of contami-
nation (e.g. around Sites 2 and 10) and areas where contamination was
reduced (e.g. around Sites 4–6) that would have been missed if pre-
dictions had been based on the A.I.I. alone. By better identifying “hot
spots” of contamination, one could use SSNM predictions to deter-
mine areas for smaller-scale study to further explore drivers of conta-
mination (e.g. with microbial source tracking methods), which in turn
would aid identification of suitable mitigation strategies (Money et al.,
2009; Oliver et al., 2016). It is also possible to use the uncertainty
associated with each prediction so that additional monitoring efforts
can be targeted to better constrain predicted concentrations of E. coli
in areas where uncertainty is greatest (Peterson and Urquhart, 2006;
Peterson and Ver Hoef, 2010). Similar value of SSNMs in catch-
ment-wide assessment of other water quality variables such as tem-
perature has been recently shown (Isaak et al., 2014; Peterson and
Urquhart, 2006), and further application to microbiological parame-
ters appears to have promising potential.

There is also value in the SSNMs in allowing stream network inter-
actions to be inferred, due to the inclusion of a spatial autocovariance
function (c.f. Ver Hoef et al., 2006). For example, 95th percentile con-
centrations of E. coli in the Tarland were predicted to decrease down-
stream of Site 3 until the confluence with the tributary of Site 2 (Fig.
7c). A physically-meaningful interpretation of this could be that ele-
vated concentrations at Site 3, likely reflecting the WWTW influence,
are increasingly diluted by cleaner downstream inputs of water, per-
haps in particular from the tributary joining the main stem just down-
stream of Site 3. This would suggest that inputs of E. coli from the
WWTW are moderated within the stream network, thus limiting the
concentrations at the catchment outlet.

The SSNMs, although based on an unusually rich FIO dataset,
were based on just 10 sampling locations, which may give rise to
some limitations in comparison to applications to other water quality
variables that can be sampled at higher spatial resolution (Garreta et
al., 2009). Firstly, the 10 locations gave 17 pairs of flow-connected
sites for modelling the spatial autocovariance structures; this is lower
than recommended for less uncertain characterisation of spatial au-
tocorrelation and the parameters of spatial autocovariance structures
(e.g. Cressie, 1993). Uncertainty in the range parameter may have also
been increased by, at most, only one sampling site being present be-
tween network confluences (Garreta et al., 2009). In this case, the
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range parameter may be poorly defined and tend towards ∞, with the
spatial weightings required by tail-up autocovariance structures con-
trolling most of the changes in autocorrelation along the stream net-
work (Garreta et al., 2009; Ver Hoef and Peterson, 2010). There is
some evidence for this having been an issue with the SSNMs, with
some models in Table 3 having ranges that were at the maximum site
separation distance to which the range parameter was limited. Sec-
ondly, the small number of sampling sites will have impacted on the
SSNM predictions and their certainty. For prediction sites that were
distant from a flow-connected sampling site or along a tributary with
no sampling site and a low spatial weighting (Fig. 3), uncertainty was
increased (Fig. 7), and predictions will have increasingly reflected the
fixed effects component of the model, losing the benefit of the spa-
tially-autocorrelated random effects (Garreta et al., 2009; Peterson and
Urquhart, 2006). As stated earlier, however, the estimates of uncer-
tainty provided by SSNMs could be used to help highlight where addi-
tional monitoring could usefully take place, which, in turn, could help
to better constrain both the predictions and parameters of the models
(Peterson and Urquhart, 2006).

Whilst it is important to recognise these limitations in the SSNMs,
they have been valuable in understanding and predicting faecal cont-
amination at the catchment scale. As previously stated, such applica-
tions of SSNMs to FIO data have been very rare, likely reflecting the
paucity of long-term, spatially-extensive datasets of FIOs (Kay et al.,
2008a). However, the potential of such models to identify “hot spots”
of faecal contamination and offer insights into how the influence of
these is moderated by the stream network, as well as to help inform
future monitoring efforts, should not be ignored. Our use of SSNMs
with a unique long-term dataset provides a “proof of concept” in this
regard, for the more reliable characterisation of catchment-scale spa-
tial patterns of faecal contamination.

6. Conclusions

Understanding what drives the spatio-temporal dynamics of faecal
contamination and being able to accurately predict “hot spots” of con-
tamination are vital precursors to improving the microbiological qual-
ity of surface waters. Using a long-term, spatially-distributed dataset
of concentrations of E. coli in a mixed land-use catchment, we found
that, contrary to other catchment-scale studies, concentrations could
not be clearly associated with flow conditions. This potentially re-
flects a combination of factors, including greater water fluxes from the
less-contaminated headwaters of the catchment diluting downstream
concentrations during high flows, the importance of contributions of
E. coli from persistent point sources both anthropogenic and agricul-
tural, and possibly the temporal resolution of the dataset. Also, a clear
seasonality in concentrations was not evident, however 50th percentile
concentrations were elevated at all sites in summer. These findings
may have implications for the development of management strategies
to improve surface water quality by suggesting that efforts should not
solely be focused on high flow conditions or summer when concentra-
tions of FIOs might normally be assumed to be greatest.

Spatial patterns of concentrations of E. coli could be significantly
linked to an Anthropogenic Impact Index, a lumped metric used to
indicate potential for contamination by anthropogenic point sources.
The lack of an association with pasture or arable land may have re-
flected the inability of coarse-scale land-cover data to characterise
“point sources” of agricultural contamination and the temporal vari-
ability in the spatial distribution of diffuse sources. SSNMs were
found to have value in making more robust predictions of catch-
ment-scale concentrations of E. coli with estimates of uncertainty, and
in better characterising potential “hot spots” of contamination. Whilst
the models may have been limited by the relatively sparse (in com-
parison to other water quality variables) spatial nature of the E. coli
dataset used to define their autocovariance structures, the identifica

tion of potential “hot spots” of faecal contamination at the catchment
scale can inform possible locations for management or smaller-scale,
process-based studies that would seek to confirm and then understand
why certain areas are “hot spots”. In addition, the estimates of uncer-
tainty provided for predictions made by SSNMs could be used to help
design more spatially-intensive monitoring programmes, which, in
turn, would allow for the parameters and predictions of SSNMs to be
better constrained. The method, therefore, has the potential for wider
application in microbiological water quality studies. Future work in
the Tarland will focus on the “hot spot” area of the Site 10 sub-catch-
ment, and will employ microbial source tracking and environmental
tracers to further explore dominant sources of contamination and the
hydrological flow paths which facilitate their connection to the stream.
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