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A B S T R A C T

Understanding, predicting, and managing the spatiotemporal complexity of stream thermal regimes requires
monitoring strategies designed specifically to make inference about spatiotemporal variability on the whole
stream network. Moreover, monitoring can be tailored to capture particular facets of this complex thermal
landscape that may be important indicators for species and life stages of management concern. We applied
spatial stream network models (SSNMs) to an empirical dataset of water temperature from the Snoqualmie River
watershed, WA, and use results to provide guidance with respect to necessary sample size, location of new sites,
and selection of a modeling approach. As expected, increasing the number of monitoring stations improved both
predictive precision and the ability to estimate covariates of stream temperature; however, even relatively small
numbers of monitoring stations, n = 20, did an adequate job when well-distributed and when used to build
models with only a few covariates. In general, winter data were easier to model and, across seasons, mean
temperatures were easier to model than summer maximums, winter minimums, or variance. Adding new sites
was advantageous but we did not observe major differences in model performance for particular new site lo-
cations. Adding sites from parts of the river network with thermal regimes which differed from the rest of the
network, and which were therefore highly influential, improved nearby predictions but reduced model-esti-
mated precision of predictions in the rest of the network. Lastly, using models which accounted for the network-
based spatial correlation between observations made it much more likely that estimated prediction confidence
intervals covered the true parameter; the exact form of the spatial correlation made little difference. By in-
corporating spatial structure between observations, SSNMs are particularly valuable for accurate estimation of
prediction uncertainty at unmeasured locations. Based on our results, we make the following suggestions for
designing water temperature monitoring arrays: (1) make use of pilot data when possible; (2) maintain a dis-
tribution of monitors across the stream network (i.e., over space and across the full range of covariates); (3)
maintain multiple spatial clusters for more accurately estimating correlation of nearby sites; (4) if sites are to be
added, prioritize capturing a range of covariates over adding new tributaries; (5) maintain a sensor array in
winter; and (6) expect reduced accuracy and precision when predicting metrics other than means.

1. Introduction

Understanding, predicting, and managing the spatiotemporal com-
plexity of stream thermal regimes on entire stream networks requires
carefully designed monitoring strategies. Water temperature regimes on
stream networks, influenced by incoming solar radiation, groundwater
and atmospheric inputs, as well as a wide range of landscape features
such as elevation, human development, riparian vegetation, and geo-
morphology (Caissie, 2006; Webb et al., 2008), vary within a day and
across seasons. These temporal patterns are distributed spatially, with

some tributaries experiencing, for example, large daily fluctuations in
water temperature during summer and other tributaries experiencing
dramatic annual fluctuations (Steel et al., 2016). Capturing the fine-
scale temporal variability in temperature at many discrete locations on
one stream network is possible using relatively inexpensive in-stream
sensors. Site-based measurements can then be used to interpolate par-
ticular facets of the thermal regime, e.g., mean summer temperature, to
unsampled parts of the network as well as to estimate the effect of
variables believed to control water temperature. These models of
thermal regimes on stream networks can help identify suitable habitats,
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prioritize management actions, estimate compliance with legal reg-
ulations, and indicate relationships between watershed and instream
condition.

As budgets for research, management, and conservation efforts re-
main limited, new guidance is needed for designing efficient mon-
itoring arrays (a set of spatially distributed monitoring sensors) that
capture the spatiotemporal complexity of thermal regimes on the
stream network. Moreover, practitioners may wish to understand and
predict one or more specific indicators that are of importance for target
species and life stages or for protecting thermal regimes through reg-
ulatory thresholds. For instance, summer maximum temperatures at
least partly determine growth and survival of juvenile salmonids
(Satterthwaite et al., 2009) and upriver migration success for returning
adults (Martins et al., 2011). These relatively well-understood physio-
logical relationships have ensured that summer maximum temperature
is one of the most commonly evaluated facets of water temperature
regimes. However, other facets of the thermal regime may be equally
important for species viability. For example, daily fluctuations in winter
temperature, when salmonid eggs are incubating in the gravel, are
correlated with fry emergence phenology (Steel et al., 2012). Without
data on winter variance, ecologists and managers may not be able to
account for (or even question) its effect on later life stages. Future
monitoring designs may need to be tailored to specifically capture
particular facets of the thermal regime and seasons or time windows of
interest.

Spatial stream network models (SSNMs) can be fit from water
temperature data that were originally collected for other purposes (e.g.,
Isaak et al., 2011) and not necessarily designed purposefully for
building models of water temperature across entire networks. However,
ad hoc datasets may not adequately represent spatiotemporal variation
in thermal regimes at appropriate scales for managing thermally sen-
sitive species and water uses. Researchers therefore need guidance on
necessary sample sizes and best locations for placing additional loggers
that will improve predictions and/or estimation of model parameters.
Using toy and simulated stream networks, Som et al. (2014) suggest
that effective sampling designs should include sites along the full range
of important environmental gradients, in major tributaries, in spatial
clusters of sites, and at the outlet and headwaters of the stream net-
work. Li (2009) and Zimmerman (2006) found that clustered designs
and a mix of space-filling and clustered designs were optimal for similar
situations. Falk et al. (2014), using a combination of simulated data on
simulated networks and empirical data from the Lake Eacham basin in
Queensland, Australia, found that optimal designs for prediction were
distributed fairly evenly over the network but that optimal designs for
parameter estimation were somewhat clustered.

In this paper, we use empirical data to expand on the work con-
ducted by Som et al. (2014) and others. We provide practical guidance
on the design of monitoring arrays for accurately modeling and pre-
dicting particular indicators within complex thermal landscapes. We
assess predictive accuracy and estimation of covariate effects from

Fig. 1. Map of Snoqualmie River, Washington, USA. Sites withheld to test predictive accuracy in resampling analyses, evaluating effect of sample size, and comparing modeling
approaches (Analysis I and III; Table 1; Fig. 2) are identified with an inner dot. Sites systematically added to explore how the addition of particular sets of sites affects model performance
(Analysis II; Table 1) are identified with solid symbols: star, triangles, pentagons, circles. Sites in which model performance was evaluated in Analysis II are labeled with a short site name
which is also used in Fig. 5 and Fig. 6. Time series of temperature data for five sites associated with the confluence of the Tolt and Snoqualmie Rivers are inset to display differences in
data for nearby sites. The two sites added in Analysis II (Table 1, Fig. 5, and Fig. 6) for the Tolt River confluence are identified as solid triangles in inset which, unlike the triangles in the
main figure, represent just one site each.
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models fit to data from the Snoqualmie River watershed, WA. The
models fit in the paper are Gaussian SSNMs, which are geostatistical
models that allow for multiple spatially varying random effects (z),

= + + + +Y Xβ σ z σ z σ z σ zEUC EUC TD TD TU TU NUG NUG

where NUG is the nugget effect, and =cor z R( )EUC EUC, =cor z R( )TD TD,
=cor z R( )TU TU are matrices of autocorrelation values for Euclidean

(EUC), tail-down (TD), and tail-up (TU) correlation structures (Peterson
and Ver Hoef, 2010). Using these models and our monitoring array of
over 40 sensors, we uniquely address the following questions: (I) how
big are improvements in model performance with increases in the size
of the monitoring array?; (II) where is the best place to add sites to meet
particular monitoring goals?; and (III) to what degree does specification
of the correlation structure influence the performance of SSNMs? For
each question, we explicitly consider whether results differ across facets
of the thermal regime (mean, minimum, maximum, and variability) or
season (summer and winter). We use empirical data in which the un-
derlying covariance function is not known and, like most rivers, is likely
not truly stationary.

2. Methods

2.1. Study area

The Snoqualmie River drains a 2400 km2 watershed on the west side
of the Cascade Range, Washington (Fig. 1). The river begins as three
forks whose headwaters lie in mostly forested public land. Just below
the convergence of the three forks at the Three Forks Natural Area in
Snoqualmie, WA, the river flows over Snoqualmie Falls, a spectacular
82 m drop. Below the falls, the river runs through a wide floodplain
dominated by agricultural, residential, and commercial land use. Much
of this floodplain lies within one of King County’s agricultural protec-
tion districts. Below the study area, the Snoqualmie River merges with
the Snohomish River which drains to Puget Sound shortly thereafter.

2.2. Data

Monitoring sites were located throughout the mainstem and the
three main forks of the Snoqualmie River, as well as in the major and
minor tributaries (Fig. 1). Practical limitations forced sites to be pub-
licly accessible and within 1 km of a road. The Raging River, a major
tributary in the lower watershed, was intentionally oversampled to
enable analyses of the effects of scale on monitoring designs in future
studies. Thermal regimes on the Snoqualmie River have both a seasonal
and daily cycle: though they are fairly messy time series, similar pat-
terns can be observed at a variety of sites on the network (Fig. 2).

For analyses I and III (Table 1), we used empirical data collected
every 30-min in summer (May 1, 2014–August 31 2014) and winter
(November 1, 2013–March 31, 2014). Analysis II relied on data col-
lected every 30-min during shorter but similar time windows in summer
(July 1, 2014-August 31, 2014) and winter (January 1, 2015- February
28, 2015) at subsets of the available sites (Table 1). Data going back to
July 2011 were available from many of our monitoring sites. At sites
where comparison data were available, data from the same time periods
in 2012 and 2013 were visually similar to data used in this analysis and
we therefore conclude that this was a typical year.

Data measured within the seasonal windows were summarized by
four metrics, each describing a unique facet of the thermal regime. We
included a mean (average of all weekly average temperatures; AWAT),
a minimum (minimum of all weekly average temperatures; mWAT), a
maximum (maximum of all weekly average temperatures; MWAT), and
empirical variance (calculated from all observations of the time series;
NaiveVar). Prior to calculating summary metrics, data were cleaned to
remove missing or erroneous data (Sowder and Steel, 2012). Missing
and erroneous data are common with stream temperature data and
most often result from loggers coming out of the water during droughts

or high flows and recording air temperature.

2.3. Spatial stream network models (SSNMs)

Spatial correlation is the tendency for measurements of the same
variable to exhibit similarities as a function of the spatial distance be-
tween them. Traditional spatial statistical methods account for the
spatial autocorrelation of model residuals via Euclidean distance
(straight line distance between locations); however, when working with
stream networks this approach may not be ecologically appropriate. For
data collected on a river network, spatial stream network models
(SSNMs) include more ecologically appropriate covariance structures.
These models use moving averages based on stream distance and spatial
weights to build statistically valid autocovariance models (Ver Hoef and
Peterson, 2010). SSNMs can capture the unique branching structure of
the river network, connectivity between sites that are flow-connected,
streamflow volume, and directionality of streamflow as well as dis-
continuities that often occur at river confluences (Cressie et al., 2006;
Ver Hoef et al., 2006). The SSNM framework is flexible enough to allow
for a mixture of covariance structures within one statistical model
(Peterson and Ver Hoef, 2010).

Models were fit using the SSN package (Ver Hoef et al., 2014) in R
statistical software (R Core Team, 2012). In analysis I and II (Table 1),
we used an exponential tail-up SSNM. In tail-up SSNMs, the moving
average function points in the upstream direction and spatial correla-
tion is restricted to locations that are flow-connected. In analysis III
(Table 1), we considered other exponential covariance structures. In all
cases, we used mean annual stream flow to determine the spatial
weights that split the moving average function at confluences. All
models included the same set of covariates: elevation, mean annual
flow, and percent commercial land use. Covariates were held constant
across models in order to draw conclusions about the effect of logger
placement and quantity of loggers used. Models were not intended to be
best-fit models, but rather reasonable models that can be used for
comparing alternative sampling designs or correlation structures.
Models performed similarly with respect to root mean squared error
(RMSE), estimated nugget (e.g., remaining unexplained variation) and
nugget to sill ratio (e.g., measure of the strength of the spatial de-
pendency), with the exception of winter mWAT and NaiveVar (both
seasons) which did not perform as well with respect to these model fit
metrics as other season/facet combinations (Table SM1). Parameter
estimates, standard errors, and covariance were estimated using re-
stricted maximum likelihood (REML).

2.4. Analysis I: Do we need more sites?

We used a resampling analysis (N = 1000 iterations) to quantify the
effect, via model estimated coefficients and model predictions, of in-
creasing the number of sites within a monitoring array. For each
iteration, a random set of sites was sampled from our existing array and
the SSNM was fit to this subset of the total sites. Resampled arrays
included 20, 25, 30, and> 30 sites (Table 1). The largest array used
three less than the total number of sites available for a particular season
after withholding five sites for a prediction analysis. Not all seasonal
windows had the same number of sites due to missing data. We com-
pared changes in model performance by metric (AWAT, mWAT, MWAT,
and NaiveVar) and by season (summer or winter).

In our resampling approach for analyses I and III, we always in-
cluded one of the two most downstream sites. First, for ecological
reasons, it is difficult to conceptualize a stream network without its
most downstream reaches. Second, for practical reasons, these down-
stream sites are rarely skipped in field-sampling programs. And, third,
for statistical reasons, both Som et al. (2014) and Falk et al. (2014)
observed that optimal sampling designs include the most downstream
monitoring station. To prevent imbalance in the odds of selecting the
same monitoring array twice between sampling arrays of different sizes,
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we identified all possible sets of sampling sites for each array size that
also included one of the two most downstream sites. We then selected
1000 possible monitoring arrays, without replacement, from this set of
all possible monitoring arrays, ensuring that, for all sizes of monitoring
arrays, 1000 unique sets of sampling arrays were selected. We note that
because we had a finite number of sites with empirical data, sampling
arrays with 20 sites were less likely to contain a similar collection of
sites than sampling arrays with 33 sites; however, the effect on the
Monte Carlo simulations was small and, to a large degree, reflects the
on-the-ground reality of site selection in any particular river network
with a finite set of access points.

To explore the effect of adding sites on parameter estimation, we
retained the elevation coefficient in each of the above 1000 resampling
iterations. We chose the elevation coefficient for exploration because, of
the three covariates in our models, elevation has the strongest esti-
mated effect on average water temperature (Steel et al., 2016). We also
fit a model with a set of 20 well-distributed sites and a model with all
available sites, each time retaining the model-estimated coefficient and
model-estimated coefficient standard error. To explore the effect of
adding sites on predictive accuracy, we identified a set of five sites that
were spread across the network, withheld these five sites from all re-
sampling iterations, and compared model predictions for these five sites

to empirical observations (Table 1; Fig. 1; Table SM2). Data from the
five withheld sites had similar thermal regimes when compared to other
sites on the network (Fig. 2). Model predictions at these sites were
compared visually and the root mean squared error (RMSE) was cal-
culated to measure the difference between model predictions and the
empirical observations by season and array size.

2.5. Analysis II: What is the best location for new sites?

While there may be only a small influence of adding a small number
of sites, many on-the-ground practitioners are faced with the question
of exactly where to add a few sites when additional funds for mon-
itoring become available. This analysis explores the change in model
performance between a model with a base array of sites (n = 31 in
summer and n = 33 in winter) and a model fit with two additional
sites. The base monitoring array model was fit using all available sites
after removing all of the pairs of sites tested in analysis II. Additionally,
we looked at whether the effect of adding particular sites to the mon-
itoring array depended on the metric or season of interest. In this
analysis we considered the following four metrics: mean, minimum,
maximum, and variance of the empirical data (Table 1). These are si-
milar to AWAT, mWAT, and MWAT but because available data series

Fig. 2. Observed data for the five sites withheld to test predictive accuracy in resampling analyses, evaluating effect of sample size, and comparing modeling approaches (Analysis I and
III; Table 1). These five sites are spatially identified in Fig. 1. Only data collected at 6am and 6pm are displayed for clarity. Observed data from the furthest downstream site on the
mainstem and from the furthest upstream sites on the North Fork, South Fork, Middle Fork, Tolt River, and Raging River are displayed in grey for context.

Table 1
Summary of the three analyses including model function, temporal window, associated figures, number of sites used in the random sampling or model-fitting, and metrics considered.

Model Function Season Figure Number # Sites Used Metrics

I. Do we need more sites?
Parameter Estimation Summer 2014 3 20–33 (ALL) AWAT, mWAT, MWAT, NaiveVar
Parameter Estimation Winter 2014 3 20–34 (ALL) AWAT, mWAT, MWAT, NaiveVar
Prediction Summer 2014 4 20–33 AWAT, mWAT, MWAT, NaiveVar
Prediction Winter 2014 4 20–34 AWAT, mWAT, MWAT, NaiveVar

II. Best location for new sites?
Parameter Estimation July − Aug. 2014 Sup. 31, 33 Mean, Max, Min, NaiveVar
Parameter Estimation Jan. − Feb. 2015 Sup. 33, 35 Mean, Max, Min, NaiveVar
Prediction July − Aug. 2014 5, 6 31, 33 Mean, Max, Min, NaiveVar
Prediction Jan. − Feb. 2015 Sup. 33, 35 Mean, Max, Min, NaiveVar

III. How do modeling approaches compare?
Parameter Estimation Summer 2014 7 20, 33 AWAT, mWAT, MWAT, NaiveVar
Parameter Estimation Winter 2014 7 20, 34 AWAT, mWAT, MWAT, NaiveVar
Prediction Summer 2014 8, 9 20, 33 (ALL) AWAT, mWAT, MWAT, NaiveVar
Prediction Winter 2014 8, 9 20, 34 (ALL) AWAT, mWAT, MWAT, NaiveVar

*All = 41 sites in summer and 42 sites in winter; indicates that no random sampling was used.
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for this analysis were short, temperature was not summarized weekly
before analysis. The data series for this analysis was shorter due to
missing or erroneous data at some of the additional sites that were of
particular interest, e.g. at tributary confluences and within the spatial
cluster.

We considered four approaches for adding two additional sites to a
base monitoring array: (1) adding additional sites at tributary con-
fluences (in the tributary and mainstem below the confluence where a
site already existed above the confluence), (2) creating a spatial cluster
(two sites just upstream of an existing site), (3) adding sites at the
spatial extremes of the network (just above furthest downstream site
and just below one of the furthest upstream sites), and (4) more densely
sampling one tributary with potentially strong influence (adding a tri-
butary and mainstem site to the Raging River) (Fig. 1).

To explore the effect of adding any particular pair of sites on
parameter estimation, we retained the model-estimated elevation
coefficient and the model-estimated coefficient standard error from
each model. To explore the effect of adding any particular pair of sites
on predictions, we retained model predictions, model residuals, and
model-estimated prediction standard errors for a suite of 12 sites both
far away from and nearby each pair of additional sites (Fig. 1). The suite
of sites included the most upstream and downstream sites in the mon-
itoring array (far) and sites just above and below each additional pair
(near). The residual at a particular site is the difference between the
observed value of the metric at that site and the model-estimated value
of the metric at that site; positive residuals indicate model under-pre-
diction, whereas negative residuals indicate model over-prediction.

2.6. Analysis III: How do modeling approaches compare?

Practitioners may wonder which covariance structure is best. We
used a resampling analysis (N = 1000 iterations) to compare SSNMs
with tail-up, tail-down, Euclidean, combined tail-up and tail-down, and
combined tail-up, tail-down and Euclidean correlation structures. For
completeness, we also compared SSNMs to simple linear models that
assume independence. For all models, we compared model performance
in terms of parameter estimation and prediction accuracy, across two
sizes of sampling arrays (n = 20 and n = 33 or 34), four metrics, and
two seasons (Table 1).

To explore the effect of model covariance structure on parameter
estimation, we retained the elevation coefficient from each model. To
explore the effect of modeling approach on predictions, we withheld the
same set of five sites as in analysis I and used each model to predict
values for these sites by metric and season. We also fit a model with all
available sites by metric and season, each time retaining the model
prediction and model-estimated prediction standard error at each of the
five withheld sites. The predictive accuracy of each modelling approach
was compared by visually estimating whether the bulk of the resampled
distribution of predictions covered the true value. Additionally, we
assessed predictive accuracy in terms of the distance from the true
value of the prediction using all sites, and whether there was appro-
priate coverage of the model estimated 95% confidence interval.

3. Results

3.1. Analysis I: Do we need more sites?

3.1.1. Parameter estimation
In summer, estimates of the elevation parameter on AWAT in-

creased in precision with increasing sample size (Fig. 3, upper left) as
expected. In the absence of a known elevation coefficient, we used the
estimated elevation coefficient for an SSNM with all available sites as
our best description of the truth (Table SM1). When compared to this
best description of the truth, parameters describing the effect of ele-
vation on AWAT were fairly accurate even with smaller sample sizes. In
fact, the elevation coefficient from the model using only 20 well-

distributed sites was nearly identical to that of the elevation coefficient
estimated from all 41 sites; model-estimated standard errors were only
somewhat larger for the model built from nearly half as many sites.
However, models built from a random set of 20 sites sometimes esti-
mated coefficients that were fairly far from our best estimate of the
truth.

Precision did not increase with sample size at the same rate across
all metrics in summer. It was also more difficult for the SSNMs of other
metrics to accurately estimate the elevation coefficient at small sample
sizes. We refer here not simply to the mean or bulk of the resampled
distribution at each array size but to the variability of these resampled
estimates, the possibility that an array of a certain size would provide a
very in accurate estimate. For example, the effect of elevation on
NaiveVar was not well-estimated from a set of 20 well-distributed sites
and models built from monitoring arrays that included a random set of
20 sites were often particularly inaccurate; accuracy did not improve
substantially with increasing number of sites (Fig. 3, left).

For a given sample size, there was generally less variability in the
estimate of the elevation coefficient in winter than in summer for all
metrics except mWAT, where variability was about the same. In winter,
estimates of all metrics were fairly accurate (Fig. 3, right). We also
observed an increase in precision of the elevation coefficient across
monitoring arrays with an increase in sample size; however, the effect
was somewhat less dramatic in winter than in summer, perhaps because
coefficients were relatively more precise at smaller sample sizes. SSNMs
of mWAT showed the most dramatic increase in precision with in-
creasing sample size (Fig. 3, right).

3.1.2. Prediction
In summer, precision of predicted AWAT at unmeasured sites in-

creased with sample size (Fig. 4, upper left). For some sites, e.g., NF
County Bridge and Raging Bridge, accuracy also seemed to increase
with increasing sample size but for other sites, e.g. Tokul and Taylor,
accuracy seemed to decrease. Although AWAT was not perfectly pre-
dicted at any of our five test sites, it was reasonably well-predicted for
all of them. Looking across metrics in summer, mWAT was adequately
predicted but MWAT and NaiveVar were not well-predicted at most of
the five sites, and particularly poorly predicted at some sites. Looking at
summer metrics, the root mean squared error (RMSE) averaged across
sites was largest when modeling MWAT and NaiveVar (Table SM2)
regardless of sample size. The SSNMs tended to under-predict summer
MWAT at all five sites. And metrics describing the same site were not
systematically under- or over-predicted. For example, AWAT on Taylor
River was over-predicted but MWAT was under-predicted (Fig. 4, left).

In winter, predictions of AWAT were also reasonably accurate at
small sample sizes and increased in precision with increasing sample
size. For AWAT in winter, RMSE averaged across all five sites was about
the same when increasing from 20 sites to 34 sites; 0.306 and 0.246
respectively (Table SM2). Looking across metrics in winter, accuracy
did not necessarily increase with increased sample size. As sample size
increased, predictive accuracy of NaiveVar at Raging Bridge became
noticeably worse. When comparing one metric in winter to the same
metric in summer, there was generally greater predictive accuracy in
winter for all sites (Fig. 4; Table SM2). Also comparing across seasons,
there were shifts in under- versus over-prediction for a given metric at a
given site (Fig. 4).

3.2. Analysis II: What is the best location for new sites?

3.2.1. Parameter estimation
In both July through August and January through February, esti-

mates of the elevation parameter on mean temperature were similar
regardless of which two new sites were added to the monitoring array.
The same was observed for other metrics, regardless of season (Fig.
SM3).
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3.2.2. Prediction
There was very little difference in predicted mean summer tem-

perature (or model residuals) for any site, when two new sites were
added to the monitoring array. This result was consistent whether sites
were added at tributary confluences, in a cluster, at the tips of the
network, or within a particular subbasin (Fig. 5, top and middle). Tiny
shifts were detectable in predictions for some sites when two new sites
were added. For example, the predicted value for the most upstream
site on the Tolt (T1) was a bit warmer when two sites surrounding
where the Tolt River joins the mainstem Snoqualmie River were added
to the monitoring array (Fig. 5, top and middle).

The standard errors of model predictions did change as sites were
added to the monitoring array (Fig. 5, bottom). Adding additional sites
in the Raging River (Add Dense in Fig. 5) resulted in a greater range of
prediction standard errors across our set of example sites. Interestingly,
when two sites surrounding the Tolt River confluence with the

mainstem were added to the monitoring array, there was a marked
increase in prediction standard error across all sites, even sites far from
the Tolt River confluence (Fig. 5, bottom). In exploring this result, we
found that the thermal regimes of the three sites surrounding the con-
fluence are very different from one another (Fig. 1) and, furthermore,
that when we added of a pair of close-in-space yet similar sites along
with the Tolt River confluence sites, this increase in prediction standard
error was ameliorated (results not shown).

Comparing model performance across metrics by looking at model
residuals (Fig. 5, middle; Fig. 6), there were no major differences when
two sites were added, regardless of which sites were added, which
metrics were being considered, or which site was estimated. As ob-
served for July through August mean temperature, adding sites from
the Tolt River confluence increased some but not all of the July through
August maximum temperature predictions (Fig. 6, middle).

In winter, most patterns were similar, except in the Raging River,

Fig. 3. Elevation parameter estimates from SSNM resampling analysis (Analysis I) varying sample size, season (summer and winter), and metric (AWAT, mWAT, MWAT, NaiveVar). The
bars for N = 20 and N = 41 or 42 in each panel show the estimated elevation parameter using either a well-distributed set of 20 sites or all available sites, along with the 95% confidence
interval for each estimate. The dashed line corresponds to the estimate from the model using all available sites and is included for easy comparison across sample size.
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where the effect was in the opposite direction. A denser set of sensors in
the Raging River resulted in higher winter mean and winter maximum
temperature predictions at most sites throughout the watershed (Add
Dense in Fig. SM1; Fig. SM2). The inclusion of the spatial cluster sites,
sites at the Sunday River confluence, or sites at the far ends of the

network (e.g., UpDown sites) noticeably reduced mean temperature
prediction standard errors across the network, though the predicted
mean temperatures themselves were not very different from those of the
model with the base array of sites (Fig. SM1).

Fig. 4. The model-predicted metric values at the five left-out sites from the SSNM resampling analysis (Analysis I). Predictions at each site are from models that vary by sample size,
season (summer and winter), and metric (AWAT, mWAT, MWAT, NaiveVar). Predictions are compared to the observed value at each site (solid line).
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3.3. Analysis III: How do modeling approaches compare?

3.3.1. Parameter estimation
In summer, estimates of the elevation parameter on AWAT were

similar across modeling approaches, using either 20 or 34 sites, and
across the four model structures (Fig. 7, top left). When comparing
across metrics in summer, the linear model estimated a stronger ne-
gative relationship between elevation and mWAT than did any of the
SSNM estimates, and this effect persisted across the two sample sizes.
The tail-up, tail-down, and Euclidean mixed-model estimated an ele-
vation parameter on summer NaiveVar very similar to the other models,
however, when the number of sites was increased to 34 this model
estimated a notably weaker positive relationship between elevation and
summer NaiveVar than the other models (Fig. 7, left).

In winter, models disagreed slightly in estimates of elevation’s effect
on AWAT and MWAT, whereas they agreed very well for mWAT and
NaiveVar (Fig. 7, right). When modeling winter AWAT and winter
MWAT, the linear model estimated a stronger negative relationship
with elevation than the SSNMs.

3.3.2. Prediction
In summer, the tail-up SSNM tended to result in a more accurate

AWAT prediction at four of the five sites than did the linear model using
either 20 or 34 sites (Fig. 8, top left). The only strong pattern was, as
expected, that the coverage of the model-estimated confidence interval
from the linear model was generally much poorer than that of any of
the spatial models (Fig. 9). However, there was no one covariance
structure that always resulted in a more accurate AWAT prediction

Fig. 5. The July − August mean SSNM predictions, residuals, and prediction standard errors from each ‘add two sites’ model and from a base monitoring array model which did not
include any of these additional sites. Model predictions, residuals, and prediction standard errors are reported at a suite of 12 sites which include the most upstream and downstream sites,
a flow unconnected site (far), and sites above and below the added pairs (near). The nearby sites corresponding to each added pair of sites are indicated by filled in circles. All sites are
labeled corresponding to their location in the network (i.e. middle fork, mainstem, or tributary name) and to their position in the direction of water flow (high numbers being more
downstream and low numbers being more upstream). Added sites and predicted sites are further identified in Fig. 1.
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(Fig. 9, top left) and the predictive accuracy varied quite a bit between
the different SSNMs. When comparing across metrics and sites in
summer, there were no consistent patterns. For example, the linear
model had better predictive accuracy for Tokul Creek than the SSNMs
when modeling summer mWAT, while the SSNMs had better predictive
accuracy when modeling summer MWAT (Fig. 9, left). At the smaller
sample size, the tail-up SSNM often had more variability in metric
predictions at the five sites than the linear model; particularly when
modeling MWAT and NaiveVar (Fig. 8, left).

In winter, again, predictions from the SSNMs were not uniformly
more accurate than those from the linear models but the coverage of the
model-estimated confidence interval was much better for SSNMs
(Fig. 9, right). There was little difference across correlation structures
(Fig. 9, right).

4. Discussion

Arrays of temperature sensors for measuring and modeling stream
temperature are being installed on many river networks. Our resam-
pling study provides guidance with respect to sample size, locating new
sites, and selection of a modeling approach across multiple facets of the
thermal regime and two seasons. This guidance is intended for networks
on which data do not yet exist. We have demonstrated that, as expected,
increasing the number of monitoring stations improves both predictive
precision and the ability to estimate covariates of stream temperature;
however, even relatively small numbers of monitoring stations, n = 20,
can do an adequate job when well-distributed and when used to build
models with only a few covariates. However, particular caution is ne-
cessary with small arrays. For example, for some arrays with n = 20,

Fig. 6. The July− August minimum, maximum, and variance SSNM residuals from each ‘add two sites’model and from a base monitoring array model which did not include any of these
additional sites. Model residuals are reported at a suite of 12 sites which include the most upstream and downstream sites, a flow unconnected site (far), and sites above and below the
added pairs (near). The nearby sites corresponding to each added pair of sites are indicated by filled in circles. All sites are labeled corresponding to their location in the network (i.e.
middle fork, mainstem, or tributary name) and to their position in the direction of water flow (high numbers being more downstream and low numbers being more upstream). These sites
are further identified in Fig. 1. The gray horizontal lines correspond to the zero residual line, indicating a perfect prediction.
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the predicted metric value was quite off relative to larger sample sizes
(Fig. 4). In general, winter indicators on the Snoqualmie River are ea-
sier to model than summer indicators and mean temperatures in both
seasons are easier to model than maximums, minimums, or variance.
Adding new sites is advantageous but we did not observe major dif-
ferences in model performance as a result of exactly where new sites
were added, except that adding sites which are close together in net-
work space but which differ in their thermal regime reduces model-
estimated predictive accuracy across the network. Lastly, using models
which account for the network-based spatial correlation between ob-
servations made it much more likely that estimated prediction con-
fidence intervals covered the true parameter, but the exact form of the
spatial correlation made little difference. We note that these findings
are particular to the Snoqualmie River; they are likely to be useful in

other river systems with similar thermal regimes and highly spatially-
structured covariates. In the future, results from similar studies across a
range of river networks can provide more global guidance.

4.1. Implications of variation in monitoring array performance across
sample size, metric, and season

4.1.1. Sample size
As expected, precision of the elevation parameter and precision of

predictions at unsampled sites improved with increasing sample size.
However, even monitoring arrays of only 20 sites were relatively un-
biased with respect to parameter estimation, and most sets of 20 sites
performed similarly to the full set of 41 sites for summer mean tem-
perature. Because we used empirical data, we did not have access to the

Fig. 7. Elevation parameter estimates from linear models and SSNMs using randomly selected sites for two sample sizes. Models varied by season (summer and winter), metric (AWAT,
mWAT, MWAT, NaiveVar), and correlation structure. U is tail-up correlation, D is tail-down correlation, UDE is combined tail-up, tail-down, and Euclidean correlation, and I is the linear
model with an independent correlation structure (no spatial correlation). Random sampling was done at sample sizes of 20, and three sites less than the total number of available sites
after removing the five withheld sites (N = 33 in summer; 34 in winter).
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true effect of elevation for an estimate of the accuracy of the model
estimation procedure; yet, we did not observe a shift in the parameter
estimate with increasing sample size for any metric or season. Such a
shift would be an indication of a change in the magnitude of the

parameter estimate and therefore a change in accuracy. Accuracy of
parameter estimates and of predictions at unsampled sites rarely im-
proved with increased sample sizes, but there were wide differences
across facets of the thermal regime, season of monitoring, and site being

Fig. 8. The model predicted metric values at five withheld sites from linear models (I) and exponential tail-up SSNMs (U) where the sites included in the model were randomly selected at
two sample sizes. Sites and models are compared during two seasons (summer and winter), and for four metrics (AWAT, mWAT, MWAT, NaiveVar). Random sampling was done at
monitoring array sizes of 20 and 33 in summer, and 20 and 34 in winter. The solid horizontal lines represent the observed metric value at that site.
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estimated. For example, when considering summer AWAT, the RMSE
across five unsampled sites decreased by 19.8% when increasing the
sample size from 20 to 34 sites, while winter NaiveVar decreased by

32.5% (Table SM2).
Interestingly, Sály and Erös (2016), in an investigation of the effect

of sample size and sampling design on ordination-based variance

Fig. 9. The model predicted metric values at the five withheld sites from SSNMs with different exponential correlation structures and from linear models (I). SSNM correlation structures
include tail-up (U), tail-down (D), Euclidean (E), combined tail-up and tail-down (UD), and combined tail-up, tail-down, and Euclidean (UDE). Models were fit for four metrics (AWAT,
mWAT, MWAT, NaiveVar) and during two seasons (summer and winter). All network sites except the five withheld sites were used to fit the models. Predicted values include +/− one
estimated standard error and are compared to the observed metric value at each site (solid line).
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partitioning of data collected on a dendritic network, found that in-
creasing sample size did little to reduce residual error. In their analysis,
the primary effect of increasing sample size was to decrease the var-
iance explained purely by environmental covariates and increase the
variance explained by the interaction of environmental covariates and
spatial structure. Though they caution that such results may be specific
to their study site, such results are likely quite universal on river sys-
tems because of the strong underlying spatial correlations between
drivers of instream condition and the river network itself (Lucero et al.,
2011). It is difficult, in fact, to think of any environmental covariate,
e.g. geology, elevation, mean annual stream flow, percent agriculture,
road density, which might be randomly distributed across a river net-
work aside from, in very extreme situations, point-source anthro-
pogenic pollution. While the structure of water temperature on a river
is specific to the system being investigated, the spatial correlation in the
data will necessarily increase with increasing sample size, assuming
sites are reasonably distributed across available space. Take as an ex-
treme example, data from three sites distributed across a river network.
It is quite possible for these observations to be relatively uncorrelated.
Now consider data from 100 sites distributed on the same river net-
work; unless the river network is gigantic, it is highly unlikely that
these data do not exhibit spatial structure. Although we did not test this
specifically, sample size, or rather sample density, is likely to affect
estimates of the degree of spatial correlation between observations on
river systems (Sály and Erös, 2016) as it does in other spatial contexts
(Zhu and Zhang, 2006).

4.1.2. Metric
While means were relatively easy to understand and predict, other

facets of the thermal regime were more complicated. For some sites,
predictions of one facet were relatively accurate while predictions of
other facets were not. Overall, summer maxima tended to be under-
predicted and estimates of summer variance were inaccurate at all sites
tested. There has been an increasing emphasis on measuring, mon-
itoring, and understanding patterns in thermal variability (Arismendi
et al., 2013). Understanding covariate effects on variability and pre-
dicting variability at unsampled locations may be more difficult than
similar analyses on mean temperatures.

Model performance for any particular facet of a particular stream
network will be a function of the distribution of the facet, the strength
of the relationship between available covariates and the facet, the
spatial variability of that facet, and the spatial variability of the thermal
regime in that river system. In our analysis, we considered a set of three
covariates with widely understood relationships to thermal regimes;
however much of the work has been done on summer mean tempera-
ture and these same covariates are not necessarily as strongly related to
other facets of the thermal regime. Where covariates are poorly corre-
lated with the response of interest, modeled predictions for new areas
will all tend toward the overall mean. As more research is completed on
landscape factors that influence minimums, maximums, and variability
in thermal regimes, modeled predictions are likely to become more
accurate overall. Statistical developments will also contribute to im-
proved models. The Gaussian SSNMs fit in this paper assume normally
distributed residuals, which is likely not the case when modeling ex-
tremes. So when using SSNMs to model extremes or temperature
variability, exercise caution and take steps to evaluate model perfor-
mance.

4.1.3. Season
Historically, most stream temperature measurements have been

recorded in summer; however, riverine thermal regimes on the
Snoqualmie River and on similar temperate rivers are likely easier to
model in winter because most facets of the thermal regime show less
spatial and temporal variability in winter than in summer (Steel et al.,
2016). According to the high estimated nugget to sill ratio for 3 of the 4
winter metrics, the tail-up SSNMs we fit indicate a weaker spatial

dependency than the corresponding metrics in summer (Table SM1).
Predictions of all four facets, even minimum temperature, at all five
withheld sites, were more accurate in winter than in summer (Table
SM2). These results are extremely helpful because often there are fewer
loggers in winter monitoring arrays. Keeping temperature loggers in-
stalled successfully in winter is more challenging than in summer as
snow may prevent access to sites for checkup visits and high flows from
winter storms can wash loggers out of the water or even wash the logger
and the entire anchoring system, tree or boulder, downstream. Mon-
itoring programs interested in minimum temperatures, however, gen-
erally do need to have a large number of loggers recording during
winter months. Precision of winter minimum temperature predictions
at most of the five unsampled sites increased significantly with in-
creasing number of sites; indeed, prediction of winter minimum tem-
perature varies greatly for most sites at the smaller monitoring array
sizes. While larger sample sizes are needed for monitoring programs
designed to capture minimum temperatures, there appears to be only a
weak effect of elevation on minimum temperature in winter, making
access to sites higher in the watershed not quite as essential. Although
the weak effect of elevation in winter has only been documented for this
river basin, similar results are likely for other networks; reductions in
thermal variance at cold temperatures are driven by the inability of
flowing waters to drop far below zero and the buffering effects of snow
fall and snow melt.

The effects of minimum temperature have been less well-studied for
most aquatic species than the effects of maximum temperature, but
evidence is mounting that for some species and in some areas,
minimum temperatures can be limiting (Jonsson and Jonsson, 2009)
and we expect climate change to have a pronounced effect on minimum
temperatures in this region (Arismendi et al., 2013). Better estimates of
minimum temperatures across stream networks and an understanding
of correlates and drivers of minimum temperatures may require an
increased density of temperature loggers in many monitoring arrays. In
particular, having more loggers at spatial locations spread across a
greater range of available covariates.

4.1.4. Site
On the Snoqualmie River, as is common on other rivers, some sites

were simply different from the rest of the river network and these dif-
ferences made them difficult to model. We found for example that
Lower Cherry was unusual and more difficult to predict across all four
facets of the thermal regime in summer and for both maximum and
minimum winter temperatures. The full network includes a site not too
far upstream on Cherry Creek, but there are changes in land-use and
land-form, i.e. increases in small farms and decreases in hillslope, as the
creek moves downstream and there may be inputs of colder or warmer
water (e.g., subsurface seeps) that make facets of the summer thermal
regime at the lower site difficult to predict from nearby data. Facets of
the thermal regime that are patchy and that are not well-correlated
with commonly-used two-dimensional correlates, e.g., elevation or
land-use, will simply be challenging to model and to predict at un-
sampled sites.

Biologists and statisticians building and using predictions from
SSNMs sometimes have a latent belief that the models are evenly in-
accurate over space and time. This is, of course, not true. We have
demonstrated that the model tends to over or under predict some me-
trics and some sites, no matter where on the stream network the data
are collected. While the details may vary from site to site and from
network to network, the more general result that model accuracy varies
on the network likely holds in all basins. Looking again at Cherry Creek
where the thermal regime is warmer most of the year than even the
Lowest Mainstem, highly variable in summer, and less variable in
winter (Fig. 2), we found that the SSNM always predicted summer
water temperatures that were much cooler than what was observed
(Fig. 4). Unless a covariate is included that can explain the warm
summer temperatures at Cherry Creek, the model will fall short.
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Winter temperatures on Lower Cherry were more similar to those
observed in other parts of the network and the model, not surprisingly,
did much better at predicting averages and variance. Unusual sites that
are cooler than expected, for example the aptly named Icy Creek which
drains into the warm Raging River, or Taylor River which is cooler than
might be expected from its location in the network (Fig. 2) will also
always be poorly predicted unless the underlying processes driving the
cool temperatures are captured by the covariates in the model.

4.2. The effect of adding particular sites to the Snoqualmie River monitoring
network

While the addition of new sites is clearly advantageous for any
monitoring array, there were few observed differences in model per-
formance based on which particular sets of sites were added. Model-
estimated elevation coefficients for any of the four facets and model
residuals for any of the four facets and for any of the twelve example
sites changed very little no matter which two sites were added to the
array, suggesting that adding easy access sites, wherever they are,
should be considered. However, a few surprising and helpful insights
did emerge.

First, we note that additional sites on the Raging River (Add Dense,
Fig. 6, middle) decreased many predictions of maximum temperature in
other parts of the network, even at sites fairly far from the Raging River.
The two added sites included an additional warm site on the mainstem
Raging, very close to similar sites, and an unusually cold small tributary
to the Raging. It is intuitive to want to include sites in parts of a river
network that are unusual in some way, for example, cold and stable
ground-water fed sites. However, adding these unusual sites may shift
predictions of particular facets at sites across the river network due to
both model covariates and spatial structure. The trade-off of including
such sites will often be valuable, but it will be important for managers
and modelers to explore these possibilities when selecting sites and
interpreting model results.

Second, the addition of pairs of sites that are nearby in space yet
which have very different thermal regimes from each other, perhaps as
a result of a cold water tributary or a point source input of warmer
water, may increase the prediction standard errors across the entire
network. In our analysis, the addition of just two sites around the Tolt
River confluence, where it joins the mainstem Snoqualmie River
(Fig. 1), radically increased model estimated prediction standard errors
even at the lowest mainstem site, the furthest upstream tributaries, and
at flow unconnected sites. This result likely arises because the addition
of the Tolt River tributary sites forced a fairly large reduction in the
estimated spatial covariance of nearby sites and therefore reduced
model confidence across the network. This effect was slightly dimin-
ished with the addition of a set of two nearby clustered sites that were,
in fact, very similar to one another and to a third nearby site on the
Raging River. The addition of this second spatial cluster increased the
modeled estimate of spatial covariance at nearby sites, reducing the
effect of the Tolt River tributary. A similar increase in prediction
standard errors across the network when adding the Tolt tributary sites
was also observed when considering the other three metrics (max, min,
and variance), though it was most pronounced when modeling mean
and maximum temperatures. The addition of new sites to an existing
array may therefore impact models and estimates of some facets of the
thermal regime differently than models and estimates of other facets.

Adding sets of sites that are close together in space (spatial clusters)
is important for a clear understanding of spatial heterogeneity in
thermal regimes and for estimating the left side of the semivariogram
(Som et al., 2014). Design of monitoring arrays also needs to consider
that, especially when there is only one or just a few such clusters of
sites, these clusters will strongly influence estimates of spatial structure
across the river network. While application of SSNMs assumes statio-
narity of the correlation structure, there could be few natural rivers for
which this assumption holds perfectly. Consider two sites located 100 m

apart on almost any mainstem; all facets of water temperature regimes
are relatively highly correlated between these sites even after covariates
are incorporated into the model. Now consider any place on the same
river network where a cool tributary flows into a warmer tributary and
imagine two sites that are also 100 m apart but with one site situated on
each of the two tributaries. There will be much less correlation in
thermal means or in any other facet of the thermal regime between
these two sites even after covariates are incorporated. While the per-
formance of these models is strong even when assumptions are not met
perfectly, it is important to evaluate the application of these models
using empirical data from natural systems. The improved estimation of
the spatial heterogeneity as a result of inclusion of spatial clusters in the
monitoring design will be reflected in a shift of the prediction standard
errors across the network, and not just the sites near the spatial cluster.
Maintaining these spatial clusters long-term is a challenge due to the
higher probability of at least one sensor in a spatial cluster failing (a
minimum of 3 are needed) and therefore an important consideration in
monitoring array design and maintenance.

4.3. Guidelines for selecting a modeling approach

Application of SSNMs to summer mean temperatures, thereby ac-
counting for the spatial correlation in the data, has been shown to
significantly improve accuracy of predictions of summer mean and
maximum temperatures at unsampled locations (Isaak et al., 2010;
Ruesch et al., 2012). However, in selecting a modeling approach, there
are two decisions that need to be made. The first is whether to fit a
standard linear model which assumes independent errors or to fit a
SSNM that addresses the spatial autocorrelation between sites on a
branching river network. If the SSNM approach is chosen, one must
then decide what type of spatial covariance structure to impose on the
stream network.

In our analysis, the predictions at unsampled sites from the SSNMs
did not uniformly have greater accuracy than the predictions from the
linear models. However, the prediction intervals around the SSNM
predictions typically covered the true parameter, whereas the predic-
tion intervals from the linear model did not. Due to the spatial de-
pendence in the data, the linear model assumes there are more in-
dependent samples, and thus a bigger effective sample size then there
truly is. As a result, the resultant predictions from the linear models
tend to be over-confident; they do not have appropriate coverage of the
true parameter.

One possible explanation for why the SSNMs did not uniformly have
greater accuracy than linear models is that different facets of the
thermal regime have more and less spatial covariance. Variance de-
composition is used to attribute the total amount of variation in the
model response variable to particular sources, including model cov-
ariates and residuals. Decompositions using SSNMs include those
sources, but also include the spatial network structure. By decomposing
the variance, we gain insight into what processes are at work in our
network and into the relative strength of each of those processes. Using
the data from our river network, Isaak et al. (2014) used wavelet me-
trics on intra and inter-daily time steps to fit both nonspatial models
and SSNMs, and decomposed the variance in order to analyze the re-
lative strength of the spatial structure. The results of that analysis
suggested that stream temperature fluctuations on the Snoqualmie
River have a strong spatial component over short periods (intra-daily),
but a weak spatial component over longer periods (inter-daily) (see
Fig. 5 in Isaak et al., 2014). The metrics used in our analysis were on a
weekly time step (i.e. average weekly average temperature (AWAT)),
and according to the variance decomposition, after accounting for the
spatially structured covariates, the relative strength of the network
spatial structure was not as strong. This could explain why SSNMs,
which accounted for spatial network structure, did not uniformly per-
form better.

The SSNMs tended to have greater predictive accuracy than the
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linear model when modeling summer MWAT, which, of the summer
metrics included in our analysis, has one of the strongest spatial
structures (Steel et al., 2016) and also has clearly understood biological
(Ebersole et al., 2001) and regulatory implications (Poole et al., 2004;
Ruesch et al., 2012). So if a manager is interested in thermal maxima,
using a model that incorporates the spatial network structure is parti-
cularly important in getting a prediction with good coverage. Specific
results may differ in other basins, particularly where the best set of
covariates contains little spatial structure. For other applications, an
assessment of the estimated covariance parameters can help guide the
choice of a spatial versus non-spatial model.

Once the decision was made to fit a SSNM, we observed very few
differences in elevation parameter estimates or metric predictions at
unsampled sites between the alternative exponential covariance struc-
tures. Even at the small network size of 20 sites, the elevation para-
meter estimation was approximately the same regardless of whether we
used the exponential tail-up, exponential tail-down, or the mixture
exponential tail-up, tail-down, and Euclidean models. Given that no
major differences were observed between the SSNMs, there appears to
be no penalty in adding the additional covariance components.
Covariance doesn’t suffer from the problem of overfitting that happens
when including additional covariates. It is also worthy of note that
when fitting SSNMs with a mixed covariance structure, there is no need
to determine a priori which covariance models to include (Frieden
et al., 2014).

4.4. Guidelines for selection of water temperature monitoring sites on a river
network

Combining results from Som et al. (2014), who used a wide variety
of toy and simulated river networks, with our results, based on em-
pirical data from one year and one network, a few key principles can be
distilled. First, pilot data distributed across the network is extremely
useful. Such pilot data can help identify river reaches with thermal
regimes that differ from the rest of the network. These reaches have the
potential for high leverage and are recommended as good sample sites
(Som et al., 2014). Pilot data might be available from historical records,
a small set of loggers deployed across the network in advance of the
design of the full monitoring array, remotely-sensed data, or even spot
data collected through quick visits to remote parts of the network on a
few days with similar cloud cover and precipitation histories.

Second, maintaining a distribution of sample sites across the entire
network, from upstream to downstream, across the full range of cov-
ariates, and in a balance of areas with high leverage is ideal. In terms of
long-term maintenance, access issues often preclude high elevation or
remote sites in the winter months. Installing loggers at these challen-
ging sites anyway and accepting some logger loss in winter may be
worth the trade-off for improved precision of estimates in summer, and
in particular, if winter minimums are of interest. Areas with high
leverage are generally those that are much cooler or much warmer than
other sites with similar network position and covariates; they may be
difficult to identify in advance. Ideally, new covariates can eventually
be identified that explain unusual patterns in water temperature re-
gimes.

Third, one cluster at the top and bottom is recommended by Som
et al., 2014, but we note that nearby sites which differ from one another
can have a very strong influence with respect to estimating spatial
correlation. A distributed set of clusters from outlet to headwaters may
be ideal, even though unintuitive. Managers may wonder, why “waste”
loggers measuring temperatures that we know are similar to those
measured by a nearby logger; yet, those clusters provide important
information to the model about just how similar nearby sites may be
with respect to particular indicators and take little extra effort to
maintain because they can all be accessed during one site visit. Only
one or two such clusters, located accidentally in areas of high or low
spatial covariance could be dangerous. A larger set of clusters reduces

the risk of incorrectly applying a particularly low or high estimate of
spatial covariance across the network. Another good argument for
maintaining several clusters is that the logistics of keeping all three
loggers that form a cluster in the water are challenging. The loss rate for
a cluster of three sites is three times higher than the expected loss rate
for just a single logger. So, maintaining a monitoring program with a
few spare clusters for challenging years is a good idea.

Fourth, adding more sites is always a good idea even if they are not
in ideal locations. We found no evidence that, for the Snoqualmie River,
it mattered much which sites were added. We had just over 40 tem-
perature loggers dispersed throughout the river network. According to
Isaak et al., 2014, a minimum of 50 loggers are needed to fit SSNMs
with multiple covariates. We didn’t have access to more empirical data,
however many people are making decisions based on approximately
20–40 loggers. The number of loggers that need to be deployed in a
network will depend on the spatial heterogeneity in that network, the
strength of the covariates, and the size of the network. Larger networks
will be better modeled with more loggers.

Capturing tributary confluences, while intuitively important, may
not be essential. In Som et al. (2014), confluence-focused clusters
tended to be the optimal design in inference regarding estimation of an
overall mean for tail-up spatial processes. Although we did not estimate
an overall mean in our analyses, we did not find a strong relative im-
portance of including these confluence triads in terms of model per-
formance. Rather, when adding more sites, it may be best to spread
these sites out across a greater range of model covariates which are
likely to influence the facet of interest (Jackson et al., 2016).

Lastly, more sites will be required to estimate some facets than
others. If extremes or variability are indicators of important biological
phenomena, more sites will be needed than for means. Advances in our
understanding of the ecological drivers of these facets and modeling
advances for describing unusually distributed facets on river networks
will improve our ability to monitor the full spatiotemporal complexity
of riverine thermal regimes.
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