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ABSTRACT
Aim: We apply a novel approach in a spatial network context to identify factors influ-
encing a parasite–host system and to distinguish focal areas for conservation of inter-
acting species.
Location: Twenty river networks in southern Europe (Spain)
Methods: Spatial stream network (SSN) models were applied to analyse and predict 
density and biomass of interacting species in river networks. Density of an endangered 
freshwater mussel (parasite) and biomass data of its host fish were response variables 
for models with fixed- effect biotic and abiotic predictors and three random effect 
models for spatial covariance. Universal kriging with the SSN models was used to ob-
tain predictions for parasite density and host biomass for the entire study region.
Results: Spatial stream network (SSN) models fitted separately for parasite density and 
host biomass explained 75% and 77% of the variance, respectively. Predictors ex-
plained 5% of the variance for the parasite and 14% for the host. Host biomass was 
the most important predictor of parasite density. The tail- up and tail- down spatial 
covariances fitted to the residual variance explained more than a half of the total vari-
ance in both models. Significant biotic and abiotic predictors differed between the 
parasite and host models. Combining model predictions for parasite density and host 
biomass identified areas where different strategies might be employed to conserve 
biotic interactions.
Main conclusions: Conservation of biotic interactions requires consideration of re-
spective ecologies of the interacting species. In a network environment, connectivity 
of habitats can be an important determinant for occurrence of biotic interactions. 
Spatially explicit analyses, such as the SSN, can identify focal areas for conservation of 
biotic interactions. Conservation focused on biotic interactions, as opposed to a single 
species, could yield benefits to the focal species, the biotic community with which 
they occur and the ecosystem that supports them.
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1  | INTRODUCTION

Interactions between species are fundamental ecological processes 
that contribute to the evolution of life on earth (Levin, 1998) and they 
can affect other ecosystem processes from local (Wardle et al., 2004) 
to watershed (Lois et al., 2015) and/or continental scales of extent and 
resolution (Araújo & Luoto, 2007; Leathwick, 2002). Predation, her-
bivory, competition, parasitism and symbiosis are examples of biotic 
interactions that can influence species distribution and abundance 
(Wiens, 2011). Species interactions may affect species’ responses to 
abiotic factors across space and time, and they may have cascading 
effects on habitats, resource availability and accessibility, thereby 
jointly affecting distribution and abundance of two or more species 
(Boulangeat, Gravel, & Thuiller, 2012).

Conservation focused on maintaining population densities and dis-
tributions of strongly interactive species is an important way to facili-
tate biodiversity conservation (Soulé, Estes, Miller, & Honnold, 2005). 
However, identifying factors that limit strongly interacting species can 
be challenging where there is spatial heterogeneity in environmen-
tal conditions. For instance, abundances of interacting species may 
depend on similar (or different) biotic and abiotic features at spatial 
extents larger than a single habitat where the species might coexist 
(Boulangeat et al., 2012). Thus, the potential for biotic interactions to 
occur can depend on factors acting over much broader spatial extents 
than local habitat conditions.

Many biotic interactions are constrained to natural environments 
with network topology such as caves, spider webs, rivers and road 
networks (Campbell Grant, Lowe, & Fagan, 2007). Within network- 
constrained environments, processes such as wind, animal move-
ments, marine and freshwater currents or soil transport can cause 
spatial autocorrelation (Dormann et al., 2007). Rivers are a global ex-
ample of network- constrained environments where movements of or-
ganisms and materials occur within the network structure with strong 
influences from the contributing watershed, regional topography and 
climate. River networks have directional topology caused by water 
flow that moves organisms and materials in the downstream direc-
tion. In contrast, active movements of freshwater organisms can occur 
within the network with or against the flow direction. These passive 
and active processes on the network are of special interest when con-
sidering the conservation of biotic interactions in network- constrained 
environments.

The study of biodiversity patterns and processes in river ecosys-
tems was defined under the concept of riverscape (Fausch, Torgersen, 
Baxter, & Li, 2002; Wiens, 2002) that included the study of patterns 
and processes in several independent drainage basins. However, com-
pared with terrestrial ecosystems, riverine systems have received 
less attention in development of appropriate statistical models and 
analytical techniques (Isaak et al., 2014; Lois, 2016) and river ecosys-
tems have especially received less attention from a biogeographical 
perspective (Olden et al., 2010). Presently, most studies of biogeo-
graphical patterns in rivers have used techniques for terrestrial envi-
ronments and conservation on rivers has been rarely addressed from a 
spatially explicit network perspective. Most prior work has focused on 

a catchment perspective by adapting techniques developed for terres-
trial ecosystems, sometimes with inclusion of river connectivity (Chee 
& Elith, 2012; Linke, Norris, & Pressey, 2008; Moilanen, Leathwick, & 
Elith, 2008; Van Looy et al., 2014). However, an analysis that ignores 
network topology will likely fail to represent the spatial relationships 
and ecological processes occurring on rivers or other network environ-
ments (Peterson et al., 2013).

We analyse a freshwater parasite–host system of biotic interac-
tions between an endangered freshwater pearl mussel (Unionoida, 
Margaritifera margaritifera L.) and its salmon and trout hosts. Freshwater 
mussel species are widespread in all freshwater ecosystems of the 
world except Antarctica and many species are critically endangered 
(Bogan, 2008). As a result, there is widespread interest in comprehen-
sive studies that elucidate factors at various spatial scales that control 
mussel populations (Atkinson, Julian, & Vaughn, 2012; Hopkins, 2009; 
Strayer, 2008).

In our study region, M. margaritifera is an obligate parasite on host 
fish (Atlantic salmon, Salmo salar L. and brown trout, Salmo trutta L.) 
during the larval (glochidial) stage. The mussel can live to 200 years 
of age (Mutvei & Westermark, 2001), whereas its mobile host spe-
cies’ life spans are <20 years (http://www.demogr.mpg.de/longevi-
tyrecords/0503.htm). Freshwater mussels are benthic filter feeding 
organisms that are patchily distributed in the riverbed environment. 
Unionoid mussels have a characteristic life cycle where the parasitic 
larva depends on attachment to a mobile freshwater host for survival, 
metamorphosis and dispersal in the river network (Strayer, 2008).

Here, we analyse the parasite–host system in 20 river networks 
(independent drainage basins) in southern Europe. We use spatial 
stream network (SSN) models to identify significant biotic and abiotic 
factors influencing parasite density and host biomass. In addition, we 
use the estimated SSN models to predict parasite density and host 
biomass for the entire study region. Finally, we use model predictions 
to identify focal areas relevant for conservation of biotic interactions.

2  | METHODS

2.1 | Study area, spatial data and environmental 
predictors

We used spatial stream network models (Peterson et al., 2013; Ver 
Hoef & Peterson, 2010) to analyse data on density and biomass for 
strongly interacting aquatic species in 20 river networks in Galicia, 
Spain. We fitted separate SSN models for parasite density and host 
fish biomass.

For modelling parasite density, a total of 435 records for mussel 
density (density, ind./m2) were selected following the criteria de-
scribed in Lois et al. (2015). The estimates of mussel density (Lois, 
Ondina, Outeiro, Amaro, & San Miguel, 2014) came from a two- phase 
doubly stratified sampling method for efficient estimation of freshwa-
ter mussel densities in large areas (Villella & Smith, 2005); field sam-
pling was conducted between 2008 and 2011. Additional details of 
sampling methods and estimation of mussel density were described 
in Lois et al. (2014). The frequency distribution of mussel density was 
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skewed with a long right tail; therefore, the response variable was log- 
transformed prior to analyses.

For modelling host biomass, data from Galician streams on bio-
mass (g m−2 yr−1) of host fish for M. margaritifera [Salmo salar (Atlantic 
salmon), Salmo trutta (resident and anadromous (migratory) eco-
types)] were obtained from the European Fisheries Database (Beier, 
Degerman, Melcher, Rogers, & Wirlöf, 2007). A total of 391 records of 
host fish biomass located in the same 20 networks as used for mussel 

density were selected for modelling. With skewness similar to mus-
sel density, host fish biomass values were log- transformed prior to 
analyses.

Model development for parasite density and host biomass began 
with a common set of 19 potential predictors for the parasite and 18 
for the host. Biomass of host fish was used as a predictor variable in the 
model of parasite density and as the response variable in the host bio-
mass model. Predictor variables were chosen to represent five general 
categories of factors that can affect biological productivity of a fresh-
water parasite–host system: climate, geology, landform, host fish and 
human land uses (Table 1). To represent climatic conditions, we used 
several measures of temperature and precipitation. We divided annual 
precipitation into two periods representing lower flow (summer, July–
September) and higher flow conditions (not summer) in Galician rivers. 
Potential landform effects on parasite and host were represented with 
elevation and slope. Influences from geological rock types that contrib-
ute to streambed habitats needed for parasite and host were included 
as watershed scale predictors. Five categories of the predominant 
human land uses in the region were also evaluated as watershed scale 
predictors to assess possible effects from anthropogenic disturbances. 
Densities of three host fish types were evaluated as predictors in mod-
els for parasite density and separately for host biomass.

The spatial stream datasets necessary to analyse SSN models were 
generated using the STARS toolset in ArcmAp 10.2; watershed area 
was used to calculate spatial weights (Peterson & Ver Hoef, 2014). 
Eight predictors (geology and land use) were generated for use as wa-
tershed explanatory variables for each stream segment using a 40 m 
digital elevation model. The 11 remaining predictors were calculated 
as site- scale explanatory variables at each sampling location. The de-
tails of spatial data processing for SSN models are given in Peterson 
and Ver Hoef (2014).

2.2 | Modelling on- networks

A generalized approach for spatial statistical network models has been 
developed in the framework of geostatistics (Cressie, Frey, Harch, & 
Smith, 2006; Peterson et al., 2013; Ver Hoef, Peterson, & Theobald, 
2006). The general idea is that SSN models, or models for other 
network- constrained environments, can include sources of spatial au-
tocovariance arising from the topology of the network.

The SSN mixed models allow fitting of fixed- effect predictors and 
random effects (non- spatial and spatial autocovariance functions). 
A variance components approach is used to quantify the fraction of 
variance in the response variable explained by the predictors and the 
fraction of the residual variance that can be explained by spatial co-
variances. When spatial dependence is well explained by autocovari-
ance functions, the SSN model (Ver Hoef & Peterson, 2010) produces 
predictions with generally smaller standard errors, at any point in the 
network, than do non- spatial methods or spatial methods that ignore 
the topology of river networks (Isaak et al., 2014). The SSN models can 
accommodate three possible sources of spatial covariance (Ver Hoef, 
Peterson, Clifford, & Shah, 2014). First, spatial covariance between 
flow- connected sites can occur in the same direction of the river flow 

TABLE  1 Predictor variables (fixed effects) used for spatial 
stream network modelling of freshwater pearl mussel density and 
host fish biomass in 20 river networks in north- western Spain

Environmental predictor 
variables Scale Units

Climatea

Average annual precipitation 
excluding summer

Site mm

Average summer precipita-
tion (July–September)

Site mm

Average annual temperature Site °C

Maximum summer 
temperature

Site °C

Minimum summer 
temperature

Site °C

Host fishb

Atlantic salmon density Site individuals/m2

Migratory trout density Site individuals/m2

Resident trout density Site individuals/m2

Salmonid biomass Site g m−2 yr−1

Landformc

Slope Site %

Elevation Site m a.s.l.

Land usec

Natural forest Watershed %

Forestry plantations Watershed %

Natural forest mixed with 
forestry plantations

Watershed %

Agriculture Watershed %

Urban areas Watershed %

Geologyd

Granitic rocks Watershed %

Detrital deposits Watershed %

Metamorphic rocks Watershed %

Salmonid biomass was the response variable for host fish biomass, whereas 
it was a predictor variable for mussel density.
aDigital Climatic Atlas of the Iberian Peninsula (Ninyerola, Pons, & Roure, 
2005)
bFish Database of European Streams (Beier et al., 2007) and Xunta de 
Galicia.
cSistema Información Teritorial de Galicia (SITGA, Spatial Data 
Infrastructure of Galicia) and CORINE Land Cover by the European 
Environmental Agency (EEA).
dSITGA.
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(tail- up spatial covariance). Secondly, spatial covariance between flow- 
connected and flow- unconnected sites can occur in association with ac-
tive movements of organisms against or with the flow (tail- down spatial 
covariance). Finally, features that span watershed boundaries of river 
networks, such as precipitation or exposed rock layers, may generate 
spatial covariance independently of the network topology, which can 
be included in the SSN models as Euclidean distance that is commonly 
used in terrestrial applications (Diniz- Filho, Bini, & Hawkins, 2003).

Analyses of SSN models of parasite density and host biomass were 
conducted with routines implemented in the ssn package (Ver Hoef 
et al., 2014) in R (R Development Core Team, 2010). Moving average 
functions for spatial covariance in river networks (Peterson & Ver 
Hoef, 2010), along with Euclidean distance, were evaluated. Further 
details on application of SSN models are given elsewhere (Frieden, 
Peterson, Webb, & Negus, 2014; Isaak et al., 2014).

Our SSN models for parasite density and host biomass used the 
Gaussian distribution. We used a multi- step process for model de-
velopment by (1) evaluating initially the efficacy of a spatial stream 
network model relative to a non- spatial multiple regression model, 
(2) examining residuals of the selected model to identify and remove 
outliers, (3) implementing stepwise backward elimination to remove 
all non- significant predictors from the model and (4) comparing five 
moving average functions for tail- up and tail- down autocovariances 
(25 model combinations) to select a final model for parasite density 
and host biomass. Restricted maximum likelihood was used for param-
eter estimation for each final model. We used Akaike’s Information 
Criterion (AIC; Akaike, 1973) for model selection. The model with the 
lowest AIC was identified as the final model for parasite density and 
for host biomass. For these final models, we inspected bias, root mean 
square prediction error and standardized mean square prediction 
error to ensure adequacy of final models. In addition, we conducted 
leave- one- out cross- validation (LOOCV) to further inspect model 
performance and obtained cross- validation statistics for model bias, 
standardized bias, root mean square prediction error and standardized 
prediction error.

In the framework of geostatistics (Matheron, 1963), the SSN mod-
els estimate the maximal variance (the sill) between pairs of uncor-
related sites, partition it into variance (partial sill) attributable to each 
source of spatial covariance and the distance at which spatial autocor-
relation occurs (geostatistical range) for each spatial component. The 
nugget effect is composed of microscale variance in the spatial process 
and measurement error (Cressie & Wikle, 2011). These spatial param-
eters were estimated for parasite density and host biomass models 
using the ssn package in R.

2.3 | Model predictions

The model predictions of mussel density and host fish biomass were 
made using universal kriging implemented in the ssn package in R. 
Model predictions and their standard errors for parasite and host were 
obtained at 1- km point spacing in all river networks, which was con-
venient for viewing model predictions across the entire study region 
of 20 networks.

3  | RESULTS

Data were screened for outlying observations to reduce model bias; 
31 outliers were eliminated in the data for parasite density (N = 404 
in final model) and eight were removed from the host biomass data 
(N = 383). After data screening, frequency distributions for each 
response variable and the model residuals closely approximated a 
Gaussian distribution. Mean parasite density (logarithmic scale) and 
its standard error was 4.882 ± 0.071, the median was 4.695 and 
standard deviation was 1.422. Mean host biomass (logarithmic scale) 
was 9.093 ± 0.038, the standard deviation was 0.747 and median 
was 9.196. Observed parasite density and host biomass are shown in 
Figures 1a and 2a, respectively; model predictions for parasite density 
and for host biomass are shown in Figures 1b, and 2b,c, respectively.

The SSN models fitted separately for the mussel (parasite) and fish 
(host organisms) explained a majority of the variance (75% for mussel 
density, 77% for host fish biomass). For parasite and host, fixed- effect 
predictors explained less variance than did the random effects for 
tail- up and tail- down autocovariances (Table 2). For parasite density and 
host biomass, the Euclidean random effect explained less than 1% of 
the variance and it was excluded from each final model, based on AIC.

Significant predictors associated with increased parasite density 
included host biomass and percentages of granitic and metamorphic 
rocks in the watershed. Larger percentages of agricultural and urban 
land use within the watershed along with higher slope were associated 
with decreased mussel density. For parasite density, the tail- up au-
tocovariance component explained 34.2% of total variance, whereas 
the tail- down component explained 35.6%. The geostatistical range 
for the tail- up random effect was approximately 14 km, whereas the 
tail- down range was approximately 0.2 km.

For the host fish, biomass was greater with increased resident 
trout density, migratory trout density, precipitation excluding summer 
months, average annual temperature and watershed percentage of de-
trital rocks. The coefficient for migratory trout density was larger than 
the coefficient for resident trout density. The percentage of urban area 
in the watershed was a significant negative influence on host biomass. 
For the host biomass model, the tail- up and tail- down autocovariances 
accounted for 35.1% and 27.6% of the variance, respectively. The geo-
statistical ranges for tail- up and tail- down autocovariances were ap-
proximately 13 km and 27 km, respectively.

Cross- validation analyses of the final models for parasite density 
and host biomass indicated relatively small bias and root mean square 
prediction error (Table 3) although the model for host fish was some-
what better than for the parasite. Cross- validation plots (Figure 3) in-
dicated that in both models there was a tendency to over- estimate 
density or biomass at low observed values of the response variable 
and under- estimate at high- observed values. Model predictions for 
1- km spaced points on each river network are shown for parasite den-
sity and host biomass in Figures 1b and 2b. To jointly visualize model 
predictions for parasite and host, we overlaid the highest 20% model 
predictions using a 50% transparency so that overlaid primary colours 
yielded a third colour to facilitate seeing important watersheds for 
conserving biotic interactions (Figure 4).
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F IGURE  1  (a) Observed parasite (mussel) density used for spatial 
stream network (SSN) modelling after data screening (n=404) for 
the 20 networks of the study region, (b) universal kriging predictions 
for parasite density, (c) a map inset showing the area bounded by 
the black rectangle in (b) where observed parasite density, model 
predictions and their standard errors (in proportional grey dots) are 
shown together

F IGURE  2  (a) Observed host fish biomass used for modelling 
after data screening (n=383) for the 20 networks of the study 
region, (b) universal kriging predictions for host biomass, (c) a map 
inset showing the area bounded by the black rectangle in (b) where 
observed host biomass, model predictions and their standard errors 
(in proportional grey dots) are shown together
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4  | DISCUSSION

We applied a novel approach to explore interactions between two 
species in a spatial network context. Using geostatistical mixed mod-
els, we identified significant biotic and abiotic predictors of parasite 
density and host biomass. The mixed model approach quantified tail-
 up and tail- down spatial covariances for parasite and host models. The 
models for our datasets provided predictions of parasite density and 
host biomass for the entire study region at a resolution of 1 km. The 
semi- continuous model predictions enabled creation of a map show-
ing where upper quantile model predictions for parasite and host 

co- occur, identifying focal watersheds relevant for conservation of 
biotic interactions in the study area.

4.1 | Predictor effects on parasite and host

Parasite density and host biomass had significant biotic predictors. 
For parasite density, the coefficient for host biomass was substantially 
larger than any of the abiotic predictors. Lois et al. (2015) previously 
noted the importance of larger size migratory hosts that produce 
more offspring as potential hosts for parasitism. The migratory hosts 
also make more extensive movements in river networks (Milner et al., 

TABLE  2 Parameter estimates for geostatistical mixed- model analyses of parasite density and host biomass for 20 river networks in 
north- western Spain. For each model, the fixed effects retained in the best (AIC- selected) models are shown. The proportion of variance is 
shown for fixed- effect predictors and autocovariances in the mixed model. Estimates, standard errors and p- values of the regression 
coefficients are given for fixed effects; estimates of the partial sill, geostatistical range (m) of spatial autocorrelation and the nugget are given 
for the autocovariances. The nugget effect is composed of microscale variance in the spatial process and measurement error

Autocovariance parameter
Proportion of 
variance Estimate SE p

Parasite model [response variable logarithm of mussel density]

Fixed effects 0.052

Intercept 3.107 0.404 <.01

Salmonid biomass 0.138 0.049 <.01

Slope −0.018 0.009 .06

Granitic rocks 0.004 0.001 <.01

Metamorphic rocks 0.003 0.001 <.01

Agriculture −0.004 0.001 <.01

Urban areas −0.050 0.020 .01

Autocovariance models

Tail- up: Linear with sill Partial sill 0.342 0.651

Range 13747

Tail- down: Exponential Partial sill 0.356 0.678

Range 222

Nugget 0.250 0.465

Host model [response variable logarithm of salmonid biomass]

Fixed effects 0.143

Intercept 6.364 0.909 <.01

Resident trout density 0.006 0.001 <.01

Migratory trout density 0.011 0.004 <.01

Ave. precipitation excluding 
summer

0.003 0.001 .02

Average annual temperature 0.113 0.054 .04

Detrital deposits 0.001 0.0005 .02

Urban areas −0.019 0.006 <.01

Autocovariance models

Tail- up: Mariah Partial sill 0.351 0.193

Range 12847

Tail- down: Linear with sill Partial sill 0.276 0.151

Range 26720

Nugget 0.229 0.126
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2003) and they enhance dispersal of mussels into unoccupied habitats 
(Schwalb, Cottenie, Poos, & Ackerman, 2011). In the SSN model for 
host biomass, resident trout and migratory trout were significant posi-
tive effects but larger size migratory trout had a stronger influence on 
host biomass than did resident trout.

The SSN models indicated that different abiotic factors influence 
parasite density and host biomass. Mussel density was predicted to 
be higher in watersheds with more granitic and metamorphic rock, 
whereas host fish biomass was predicted to be higher in watersheds 
with detrital rock deposits. These results are consistent with other 
work showing that spatial patterns of geology are important wa-
tershed scale features controlling different mussel (McRae, Allan, & 
Burch, 2004) and fish habitats (Miller, Burnett, & Benda, 2008).

The significant negative influence of slope on mussel density but 
not host fish biomass highlights a notable habitat difference between 
parasite and host. Habitat suitable for mussels occurs in slower current 
velocity where deposition of finer sediments occurs, producing stable 
riverbed conditions (Hastie, Boon, & Young, 2000; Strayer, 1999). In 
contrast, host fish require higher velocity habitats with gravels free of 
fine sediment for successful spawning (Louhi, Mäki- Petäys, & Erkinaro, 
2008). Dispersal of small host fish from their site of hatching into 
slower water habitats occupied by mussels provides the opportunity 
for parasitism to occur and parasitism enables subsequent dispersal 
of mussels into new habitats. The occurrence of the parasite in flow- 
unconnected sites in our study area evinces the importance of parasit-
ized hosts dispersing mussels in a river network.

Significant land use predictors show somewhat different influences 
of habitat degradation on parasite density and host biomass. The area 
of urban development is a significant negative influence on parasite and 
host, whereas agricultural area is a second negative influence on the par-
asite. The impacts of urban areas on freshwaters include a wide range of 
anthropogenic stressors including pollution and habitat  destruction that 
affect populations of the parasite (Bogan, 1993) and its host (Fenkes, 
Shiels, Fitzpatrick, & Nudds, 2016). Mussels, as benthic filter feeders 
with limited ability to move, may be more directly influenced by negative 
impacts in their habitats caused by sediment load associated with agri-
cultural activities (Wood & Armitage, 1997). The differences in signifi-
cant watershed influences in our models of parasite and host highlight 
a fundamental ecological difference between the long- lived, sedentary 
parasite and its comparatively short- lived, highly mobile host.

The predictors in our SSN model of parasite density affirm the 
results of Arbuckle and Downing (2002) and Atkinson et al. (2012), 
which indicated watershed scale predictors were important influences 

in the distribution and assemblage composition of freshwater mus-
sels. However, we found that parasite density and host biomass are 
influenced by different predictors, suggesting that the spatial extent in 
network habitats needed to sustain occurrence of biotic interactions 
depends on environmental features that jointly control the interacting 
species. Thus, conservation of a parasitic mussel must consider both 
parasite and host habitat requirements in formulating an effective 
strategy to conserve biotic interactions.

4.2 | Spatial covariances for parasite and host

Validity of ecological interpretations of spatial covariance depends 
upon the tail- up and tail- down covariance functions accurately rep-
resenting processes occurring in rivers. Because spatial covariances in 
our models are fit to the residuals after fitting the fixed- effect predic-
tors, some of the spatial covariance captured by the tail- up and tail- 
down random effects could actually represent an important predictor 
not included in the model. Although we evaluated five categories of 
predictors likely to influence parasite and host in our study region, 
the models were limited by availability of geospatial predictor values. 
Another limitation, which we addressed, is that spatial covariances can 
be strongly affected by outliers in the data. The spatial covariance pa-
rameters (partial sill and range) can differ dramatically depending on 
the dataset and shape of the autocovariance functions included in the 
model. The range estimates for the same parasite–host system may 
be different in other regions where watersheds are larger or there is a 
greater spatial extent of lower slope river channels having more local 
sites of stable, fine sediment riverbed habitats needed by the mussel.

The estimates of geostatistical ranges of spatial autocorrelation 
and the amounts of variance accounted for by spatial covariances are 
consistent with the respective biology of parasite and host. Mussels 
have limited ability to move upstream and adults and larvae are bi-
ased in dispersal in a downstream direction (Terui et al., 2014), but 
a parasitized host could disperse juvenile mussels into upstream or 
downstream habitats. Hence, biology of mussels suggests that tail- up 

TABLE  3 Cross- validation statistics for the spatial stream 
network (SSN) models of parasite density and host biomass; variables 
and autocovariances in each model are shown in Table 2; RMSPE 
denotes root mean- squared prediction error, MSPE is mean- squared 
prediction error

Model Bias
Standardized 
bias RMSPE

Standardized 
MSPE

Parasite 0.0309 0.0216 1.1220 0.9625

Host 0.0045 0.0042 0.6112 0.9932

F IGURE  3 Kriging predictions plotted against observed values of 
the response variable using leave- one- out cross- validation (LOOCV) 
for (a) parasite density and (b) host biomass
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spatial covariance would have a greater geostatistical range and ap-
preciable variance would be accounted for by tail- up and tail- down 
spatial covariances. This is what we observed. Fish can move upstream 
and downstream, hence suggesting that tail- down spatial covariance 
should have a greater geostatistical range, as we also observed.

Lois et al. (2015) suggested that the geostatistical range for mus-
sel density could be considered a spatial extent at which biotic in-
teractions have occurred in the river networks of the study region. 
For species with low potential population growth rates, such as the 
long- lived parasite in our example, dispersal by host fish can be an 
important cause of spatial autocorrelation in abundance (Bahn, Krohn, 
& O’Connor, 2008).

It is notable that the geostatistical range of spatial autocorrelation 
is larger for host fish than for the parasite, which suggests that con-
servation of biotic interactions for an endangered mussel will require 
more habitat than might be targeted by simply focusing on the abun-
dance and spatial distribution of the parasite. The geostatistical range 
is a useful metric for conservation biogeography by indicating a mini-
mum amount of habitat in a river network necessary to sustain biotic 
interactions. In the case of strongly interacting species in our example, 
the larger range of the host is necessary to conserve the biotic interac-
tion between parasite and host.

There may also be ecological information in the geostatistical 
range, which for the parasitic mussel can be considered the spatial 

extent at which river power and landform, a tail- up flow- connected 
context, combine to yield areas of fine sediment deposition that are 
required by the sedentary adult mussel and control their patchy distri-
bution (Lois et al., 2014) at local spatial scales (Figure 1c). In contrast, 
the highly mobile host fish require multiple habitat types to support 
their various life history stages and this is consistent with the larger 
geostatistical range for host fish biomass (Table 2). The estimated 
geostatistical range for host biomass is consistent with the spatial ex-
tent of habitat required for conservation of salmonid fish in streams 
(Cowley, 2008; Hilderbrand, 2003).

4.3 | Conservation of biotic interactions

A map displaying the overlaid upper 20% quantile predictions of para-
site density and host biomass (Figure 4) easily identifies watersheds 
with potential high host biomass (yellow), high parasite density (blue) 
and overlap of high parasite density and high host biomass (green). 
This depiction facilitates seeing in- network connectivity between 
parasite and host. The best watersheds supporting the parasite–host 
system have high host biomass in upstream headwaters, overlap of 
high parasite density and host biomass downstream from headwaters 
where watersheds are larger, and high parasite density farther down-
stream where watersheds are largest, a yellow- green- blue pattern on 
the map from upstream to downstream. Rivers Landro, Ouro, Masma, 
Eo and Tea (Figure 4) have connectivity between headwaters and the 
sea and they support migratory host fish. Some stream networks have 
no model predictions in the upper 20% quantile and hence have no 
colour in Figure 4, suggesting they may be impaired for parasite and 
host. The results suggest there are additional areas in the study region 
that may need habitat restoration for mussel and/or fish. Stream seg-
ments of blue without green or yellow indicate high values are pre-
dicted for parasite density, but there may be limitation in availability of 
hosts for parasitism (e.g. downstream portion of river Miño, Figure 4). 
Given the long life span of the mussel, conservation strategies here 
should aim at increasing fish biomass in connected network segments 
to facilitate biotic interactions. Watersheds with extensive yellow (e.g. 
river Tambre, Figure 4) are predicted to have higher host biomass, but 
abiotic conditions may be impaired for the parasite. Watersheds such 
as these indicate potential areas for further study to identify limita-
tions on parasite density and to implement appropriate restoration 
strategies focused on the parasite. To recover mussel populations, 
connectivity of habitats within a watershed is necessary to maintain 
the biotic interaction between parasite and host.

4.4 | Broader implications for conservation

Our results show the utility of spatially explicit models that account 
for sources of spatial dependence in network- constrained environ-
ments, where movements of organisms (Frieden et al., 2014) and 
biotic interactions are constrained to occur within the network (Lois 
et al., 2015). Recent work has suggested that species persistence 
(Mari, Casagrandi, Bertuzzo, Rinaldo, & Gatto, 2014) and biodiversity 
(Seymour & Altermatt, 2014) are influenced by network geometry 

F IGURE  4 Overlay of the highest 20% quantile of spatial stream 
network (SSN) model predictions for parasite density (blue dots) and 
host fish biomass (yellow dots) for the 20 river networks in the study 
region. Higher predicted values of parasite density that overlap with 
higher values of predicted host biomass are shown in green dots, 
reservoirs are shown in black
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and connectivity. Our analyses emphasize the importance of a formal 
statistical modelling framework, such as the SSN models, for analys-
ing data on interacting species in river networks. Presently, a limita-
tion to broad application of SSN models is rapidly being reduced for 
North American stream networks with efforts of the National Stream 
Internet Project for the conterminous USA (http://www.fs.fed.us/rm/
boise/AWAE/projects/NationalStreamInternet/NSI_network.html).

In our study region and in many rivers across Europe, conservation 
of the endangered freshwater pearl mussel depends critically on con-
servation of its host fish populations. Stocks of Atlantic salmon con-
tinue to decline in Spain and in much of the species’ former European 
range (Chaput, 2012; Garcia de Leaniz & Martinez, 1988; Parrish, 
Behnke, Gephard, McCormick, & Reeves, 1998) and migratory trout 
have suffered a similar range- wide decline (Hastie & Cosgrove, 2001). 
The Atlantic salmon formerly occurred in nearly all rivers of northwest 
Spain, but the species’ contemporary distribution is highly reduced by 
development of hydropower dams on most large rivers in the study 
area during the period 1955–1975 (Hervella & Caballero, 2002). The 
few remaining undammed rivers in our study region occur in small 
coastal watersheds and some of these small river networks continue 
to support Atlantic salmon. Elsewhere, extinction of mussels from sev-
eral rivers and upstream of dams has been linked to loss of appropri-
ate host fish (Kat & Davis, 1984; Watters, 1996). In stream networks 
where mussel populations occur upstream of a dam (e.g. headwaters 
of rivers Ulla and Miño, Figure 4), maintenance of healthy resident 
trout populations is the only alternative for providing the opportunity 
for the biotic interaction to occur between parasite and host.

Strategies for concurrent management of host fish and mus-
sel populations are important to implement because recruitment of 
mussels may be regulated by the density of both mussels and fish 
(Arvidsson, Karlsson, & Österling, 2012; Haag & Warren, 1998; Strayer 
et al., 2004). Efforts are underway in Europe and North America to 
recover unionoid populations through captive breeding (Gum, Lange, 
& Geist, 2011) and habitat management (Cope et al., 2003; Layzer & 
Scott, 2006). However, captive breeding efforts might yield greater 
benefit if integrated with simultaneous restoration of host fish pop-
ulations in targeted watersheds with sufficient connectivity between 
habitats to maintain the biotic interaction over time. Our results in-
dicate that conservation of biotic interactions must accommodate a 
sufficiently large spatial extent to facilitate successful reproduction of 
host fish, parasitism and subsequent dispersal and recruitment of ju-
venile mussels into suitable habitats.

As a final point, although mussels and their host fish are commonly 
considered a parasite–host interaction, one might imagine how con-
servation of migratory hosts that exhibit ontogenetic habitat changes 
would enable widespread dispersal of mussels, yielding numerous 
aggregations of adult mussels in a river network. The long life and 
filter feeding habit of freshwater mussels in aggregations would pro-
vide a secondary benefit to the host fish by improving water quality 
and clarity. If the ecosystem effect of the filter feeding mussels were 
large enough, it could enhance future spawning success of host fish, 
which in turn would produce more potential hosts for future parasit-
ism. Thus, a mussel–host fish system could be viewed as a positive 

interaction that may have potential to result in recruitment and facil-
itation cascades (Halpern, Silliman, Olden, Brunno, & Bertness, 2007) 
comparable to a trophic cascade. We suggest that conservation fo-
cused on facilitating biotic interactions such as these could benefit the 
focal biota, the broader aquatic community with which they occur and 
the river ecosystem that supports them.
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