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Abstract Species distribution models combining envi-

ronmental andspatial components are increasinglyused to

understand and forecast species invasions. However,

modelling distributions of invasive species inhabiting

stream networks requires due consideration of their

dendritic spatial structure, which may strongly constrain

dispersal andcolonizationpathways.Hereweevaluate the

application of novel geostatistical tools to species distri-

bution modelling in dendritic networks, using as case

study two invasive crayfish (Procambarus clarkii and

Pacifastacus leniusculus) in a Mediterranean watershed.

Specifically, we used logistic mixed models to relate the

probability of occurrence of each crayfish to environmen-

tal variables,while specifying three spatial autocorrelation

components in random errors. These components

described spatial dependencies between sites as a function

of (1) straight-line distances (Euclidean model) between

sites, (2) hydrologic (along the waterlines) distances

between flow-connected sites (tail-up model), and (3)

hydrologic distances irrespective of flow connection (tail-

down model). We found a positive effect of stream order

onP. clarkii, indicating an association with the lower and

mid reaches of larger streams, while P. leniusculus was

affected by an interaction between stream order and

elevation, indicating an association with larger streams at

higher altitude. For both species, models including

environmental and spatial components far outperformed

the pure environmental models, with the tail-up and the

Euclidean components being the most important for P.

clarkii andP. leniusculus, respectively. Overall, our study

highlighted the value of geostatistical tools to model the

distribution of riverine and aquatic invasive species, and

stress the need to specify spatial dependencies represent-

ing the dendritic network structure of stream ecosystems.
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Introduction

The invasion of stream ecosystems by exotic species is

a cause of concern worldwide due to their negative

environmental and economic impacts (Strayer 2010;

Walsh et al. 2016). Therefore, understanding how

invasive freshwater species spread into novel areas is

essential to prevent further expansion, promote erad-

ication, or adapt to their continued presence. This

problem has often been addressed using distribution

modelling tools, aiming to understand invasion

drivers, predict species range expansions or contrac-

tions in relation to natural and anthropogenic factors,

and to guide early detections (Capinha and Anastácio

2011; Siesa et al. 2011; Larson and Olden 2012;

Václavı́k et al. 2012; Capinha et al. 2013). However,

studies often ignore the specificities of aquatic organ-

isms, particularly those living along dendritic stream

networks, which may bias model results and ulti-

mately mislead management prescriptions (Peterson

et al. 2013).

While terrestrial species live and move in a two-

dimensional space, the movements of stream species

are constrained by the topology of the dendritic

stream network, which strongly affects their distri-

bution, persistence and diversity (Carrara et al. 2012;

Altermatt 2013). This applies to strictly aquatic

species such as freshwater molluscs and fish, but also

to species that move preferentially along waterlines

but that can also travel overland such as amphibians

and semi-aquatic mammals (e.g., Grant et al. 2010;

Quaglietta et al. 2014). In invasive species, the

stream spatial structure may constrain the patterns of

expansion from initial founder populations, with

individuals dispersing up- and downstream and

progressively colonizing favourable habitats across

the stream network (Bernardo et al. 2011; Bronnen-

huber et al. 2011; Hein et al. 2011). Stream reaches

that are connected and close to founder populations

may thus become occupied first, while farther or

unconnected reaches may take more time to be

colonized, even if there are favourable habitat

conditions. Early during expansion, the distribution

is unlikely to be in equilibrium with the environment,

as a species may be absent from potentially suit-

able sites because of colonization time lag and

dispersal limitations (Václavı́k and Meentemeyer

2009, 2012). Over time, the species may progres-

sively spread across the river network and eventually

colonize all suitable habitats, thereby converging to

an equilibrium with prevalent environmental condi-

tions. At this stage, the stream network topology may

still be important because, for instance, reaches

sharing the same headwaters are likely to have

similarities in terms of flow regime and water

chemistry, thus providing similar habitat conditions

(Carrara et al. 2012; Peterson et al. 2013; McGuire

et al. 2014). Failure to incorporate these spatial

processes may introduce errors and biases in distri-

bution modelling, such as over-estimating the impor-

tance of environmental factors (Diniz-Filho et al.

2003; Václavı́k et al. 2012), under-estimating poten-

tial distribution ranges (Václavı́k and Meentemeyer

2012), or over-estimating actual distribution ranges

(De Marco et al. 2008; Václavı́k and Meentemeyer

2009; Václavı́k et al. 2012).

The use of geostatistical modelling to account for

spatial dependencies in physical and ecological

processes across stream networks was first intro-

duced by Ver Hoef et al. (2006), providing a valuable

tool to improve distribution modelling of aquatic

invasive species. Geostatistical models are similar to

conventional linear mixed models, with spatial

autocorrelation specified in the random errors. In

ecological applications, the deterministic mean of the

dependent variable is modelled as a linear function of

explanatory variables, and local deviations from the

mean are modelled using the spatial autocorrelation

between nearby sites (Ver Hoef et al. 2006; Ver Hoef

and Peterson 2010; Peterson and Ver Hoef 2010).

This is specified using covariance functions, which

represent the strength of the influence between sites

as a function of the distance separating such sites.

Distances can be straight-line (Euclidean) distances

measured overland, or hydrologic distances mea-

sured along the flow lines (i.e. longitudinal connec-

tion). Hydrologic distances can represent flow-

connected relations, assuming that a point down-

streammay be influenced by a point upstream, but not

the reverse (tail-up models), or both flow-connected

and flow-unconnected relations, assuming that influ-

ences are not limited by flow direction (tail-down

models). The stream network models of Ver Hoef and

Peterson (2010) account for these multiple spatial

relationships based on a mixture of covariances, each

of which may be specified using a moving-average

function (e.g. exponential, spherical, linear-with-
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sill). Covariance functions differ on how they specify

the distance-decay of spatial influences, but typically

they have three parameters: the nugget effect, repre-

senting the variation between sites when their

separation distance approaches zero; the sill, repre-

senting the variance found among spatially indepen-

dent sites; and the range, representing how fast the

covariance decays with distance (Peterson et al.

2007). Application of these models to aquatic inva-

sive species might provide information on the

relative role of environmental versus spatial pro-

cesses on current distributions, which can help

clarifying whether the species is in equilibrium with

the environment. Also, they might provide a basis to

infer likely mechanisms of expansion (e.g. Siesa et al.

2011), by comparing for instance the relative impor-

tance of different spatial components. Finally, they

might allow more robust inferences on species

occurrences at unobserved sites, using observed

values at nearby sites.

This study explores the use of geostatistical distri-

bution modelling to clarify the conditions associated

with the establishment of two invasive crayfish and to

predict their potential expansion range in dendritic

streamnetworks.We focused on the red swampcrayfish

Procambarus clarkii and the signal crayfish Pacifasta-

cus leniusculus, which are the two most widely

distributed invasive crayfish worldwide (Gherardi

et al. 2011; Hänfling et al. 2011). Previous studies have

shown that these crayfish have different environmental

requirements and that their invasion range may still not

be in equilibrium with the environment (Capinha and

Anastácio 2011; Capinha et al. 2013), but they disre-

garded the potentially important role of spatial pro-

cesses occurring across dendritic streamnetworks.Here

we use a case study in aMediterraneanwatershed ofNE

Portugal, aiming to: (1) identify the main environmen-

tal factors explaining the current crayfish distributions,

(2) quantify the relative importance of environmental

and spatial processes influencing the distributions; (3)

compare the relative importance of spatial processes

described by the Euclidean, tail-up and tail-down

models; and (4) predict the potential invasion ranges

by combining environmental and spatial predictors.

Results are used to discuss the value of geostatistical

approaches in relation to conventional species distri-

bution modelling to deal with aquatic invasive species.

Methods

Study area and species

The study was conducted in NE Portugal, in the river

Sabor watershed (N41�090–42�000, W7�150–6�150;
Fig. 1), which covers a wide range of environmental

conditions in terms of elevation (100–1500 m above

sea level), total annual precipitation (443–1163 mm),

and mean annual temperature (6.9–15.6 �C). Climate

is Mediterranean, with precipitation largely concen-

trated in October–March, while it is virtually absent in

the hot summer months (June–August). Flow regime

is highly seasonal, with most headwater streams

drying out or being reduced to a series of disconnected

pools in summer, though the main watercourse and the

largest tributaries are permanent. A large hydroelectric

power plant involving two dams located near the

mouth of the Sabor river were under construction

during the study period (Jackson 2011), but otherwise

the river was largely free flowing except for a few

small impoundments. See Ferreira et al. (2016) for

details of the study area.

The two crayfish species studied were intentionally

introduced in Europe in the 1960s (P. leniusculus) and

in the 1970s (P. clarkii), due to their economic value

(Clavero 2016), and currently have well-established

populations (Souty-Grosset et al. 2006; Capinha et al.

2013). In the Sabor watershed, P. clarkii was first

recorded in the 1990s (Bernardo et al. 2011), but

possibly was present earlier because it has spread

rapidly in the Iberian Peninsula since the first intro-

duction in 1973 (Habsburgo-Lorena 1978; Ramos and

Pereira 1981). Although P. leniusculus was also

introduced in the Iberian Peninsula in the 1970s, it

probably reached the Sabor only in 1994, following a

deliberate introduction in the Spanish sector of the

watershed (Bernardo et al. 2011). Recent studies

suggest that the two species are still expanding in the

Sabor watershed, which may be a consequence of

dispersal from source populations along the stream

network, in both the upstream and downstream

directions (Bernardo et al. 2011; Anastácio et al.

2015). Dispersal overland may also occur in at least P.

clarkii (Cruz and Rebelo 2007; Ramalho and Anastá-

cio 2015), but its contribution to range expansion in

the study area is unknown.
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Crayfish survey

We visited 167 50-m stream reaches (hereafter sites)

providing a homogeneous coverage of the Sabor

catchment during the summer of 2012 (June 13 to July

15, and August 28 to September 15; Fig. 1). At sites

where there was flowing water or isolated pools, we

estimated the presence/absence of crayfish using a

single anode electrofishing gear, always operated by

the same person (MF), and following standard proce-

dures outlined in Ferreira et al. (2016). One additional

researcher with a net was always present to pick up

stunned crayfishes. After identification, all individuals

were eliminated following national regulations for

invasive species. The presence of crayfish in dry

stream stretches was not assessed, though they may be

able to persist therein by burrowing in soft sediments

(Guan 1994; Gherardi et al. 2011). Therefore, distri-

bution modelling focused on crayfish that are active in

the water during the dry summer season. Although this

could potentially underestimate the true crayfish

distribution, we believe this was not a serious issue,

Fig. 1 Map of the Sabor

watershed (NE Portugal)

and its location in the

Iberian Peninsula, showing

the spatial distribution of the

sites visited, the sites

sampled using

electrofishing, and the sites

where each crayfish species

was detected

A. F. Filipe et al.

123



because incidental observations throughout the year

suggest that crayfish are actually absent from head-

water streams drying out in summer (Mário Ferreira

and Lorenzo Quaglietta, Unpublished Data).

Environmental and spatial data

To model crayfish distribution, we used three poten-

tially influential environmental variables (Capinha and

Anastácio 2011, 2013; Moreira et al. 2015) that can be

easily extracted from topographic online maps, and

could thus be used to extrapolate the species distribution

models to the entire watershed. Strahler’s stream order

was used as a proxy for habitat size and heterogeneity

(Hughes et al. 2011; Ferreira et al. 2016), and it was

extracted fromCCM2 (Catchment Characterization and

Modelling database), which is based on a 100-m

resolution digital elevation model (DEM) (Vogt et al.

2007). Elevation and slope at each site were also

estimated from information available in CCM2.We did

not use climate variables, because they were often

highly correlated with the topographic variables, and

the range of conditions within the study area was well

within the much wider climate niches of both species

(Capinha andAnastácio 2011, 2013). All variables were

screened for potential outliers and influential points.

Spatial data necessary for geostatistical modelling

was obtained in a geographic information system

(GIS) using the Sabor watershed network extracted

from CCM2 and the layer of sampling locations.

Estimates included the Euclidean and hydrologic

distances (total and downstream hydrologic distances)

between every pair of sampling sites (Peterson and

Ver Hoef 2010). We also estimated the watershed area

draining to each site to be used in tail-up models (see

below). Estimates were made using the Spatial Tools

for the Analysis of River Systems (STARS) toolbox

version 2.0.0 (Peterson and Ver Hoef 2014) for

ArcGIS 10.2 (ESRI 2011).

Geostatistical modelling

To visualise spatial dependencies along the stream

network, we built empirical semivariograms depicting

how semivariance in species presence/absence

between pairs of sampling sites changed in relation

to the hydrologic distances separating them (Torge-

grams), considering either flow-connected or flow-

unconnected sites (Peterson et al. 2013). The

distribution (presence/absence) of each crayfish was

then modelled in relation to environmental variables

using a logistic function, with spatial autocorrelation

specified through a full covariance mixture-model in

the random component (Ver Hoef and Peterson 2010).

Therefore, the model incorporated spatial dependen-

cies represented by tail-up (TU), tail-down (TD) and

Euclidean (EUC) models. To deal with confluences in

tail-up models, the spatial weights to allocate the

moving-average function between upstream segments

were based on watershed areas (e.g. Ver Hoef et al.

2006; Ver Hoef and Peterson 2010).

For each species, model building followed a two-

step procedure (Peterson and Ver Hoef 2010). First,

we selected the environmental component while

maintaining constant the spatial component, which

included exponential tail-up, linear-with-sill tail-

down, and Gaussian Euclidean spatial covariance

functions. We tested all combinations of environmen-

tal variables and their interaction terms, and selected

in each case the model with the lowest root-mean-

squared-prediction error (RMSPE) estimated through

leave-one-out cross-validation (Ver Hoef et al. 2006;

Ver Hoef and Peterson 2010; Peterson and Ver Hoef

2010; Frieden et al. 2014). Interactions were only

specified when the main effects were also included in

the model. We then built the spatial component while

maintaining the best environmental model selected in

the previous step. We tested all combinations of

spatial components, using exponential, spherical,

Gaussian and Cauchy functions as alternatives for

the Euclidean model, and exponential, linear-with-sill,

spherical and Mariah functions as alternatives for the

tail-up and tail-down models (Ver Hoef and Peterson

2010). We selected the best function for each spatial

component based on the minimization of RMSPE

criterion, and kept the three components in the model

to allow estimates of the proportion of variation

explained by each one. Besides this full ‘‘spatial/

environmental model’’, we also built a pure ‘‘envi-

ronmental model’’ based on a simple logistic regres-

sion, and a pure ‘‘spatial model’’, including in each

case the variables and functions selected in model

building. The discrimination ability of each model was

estimated using the area under the receiver operating

characteristic curve (AUC) (e.g., Václavı́k and Meen-

temeyer 2009), and Cohen’s kappa using species

prevalence as the threshold for predicted presences

(Titus et al. 1984).

Geostatistical distribution modelling of two invasive crayfish
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We performed all analyses in the R version 3.1.2 (R

Core Team 2014) and the spatial stream networks

(SSN) packages (Ver Hoef et al. 2014), and used

ArcGIS 10.2 for mapping (ESRI 2011). AUC was

computed using the package pROC (Robin et al.

2011), and Cohen’s kappa was computed using the

package irr (Gramer et al. 2012).

Species distribution mapping

The Sabor stream network was divided in 1716

segments, which were used as a basis to predict the

distribution of each crayfish using the species distri-

bution models (Ferreira et al. 2016). For each segment,

we extracted the environmental variables, the area of

the watershed discharging into the segment, and the

in-stream and Euclidean distances to every other

segment. Prediction of the probability of each species

being present in each segment was then computed

using universal kriging (Cressie 1993). Maps of

species potential distribution across the watershed

were then produced, using the prevalence of each

species as the threshold for separating segments with

predicted presence or absence. Maps were built using

either the ‘‘spatial/environmental model’’ or the

‘‘environmental model’’, to assess whether consider-

ing the spatial network structure improved the species

distribution mapping.

Results

From the 167 visited sites, 87 had flowing water or

isolated pools and were thus sampled for crayfish

(Fig. 1). From these, we detected P. clarkii at 41

(46.1%) and P. leniusculus at 16 (18.0%) sites. Visual

analysis of Torgegrams indicated that there were

spatial dependencies in species occurrences along the

stream network, as suggested by the patterns of change

in semivariance between sites in relation to the

hydrologic distances separating them (Fig. 2). For P.

clarkii, there was a rapid and nearly linear increase in

semivariance with distance between flow-connected

sites, levelling off at about 30 km, while semivariance

between flow-unconnected sites was generally much

smaller and it increased slowly with distance between

sites. For P. leniusculus, the Torgegrams showed

much less marked patterns than for P. clarkii, though

semivariance was also smaller between flow-uncon-

nected than flow-connected sites.

Fig. 2 Torgegrams describing spatial dependencies in the

distribution (presence/absence) of Procambarus clarkii and

Pacifastacus leniusculus along the stream network of the Sabor

watershed (NE Portugal). The graphs show changes in

semivariance between sampling sites in relation to the

hydrologic distances separating them, considering either flow-

connected (black circles) or flow-unconnected (grey circles)

sites. The size of circles is proportional to the number of pairs of

sites used to estimate the semivariance
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In model building, the environmental component

with the lowest RMSPE for P. clarkii included only

the positive effect of stream order on the probability of

species occurrence (Table 1, Table S1). The environ-

mental component for P. leniusculus included stream

order, elevation, and their interaction term (Table 1,

Table S2), indicating that the probability of occur-

rence increased in higher order streams at higher

elevation (Table 1, Fig. 3). Regarding the spatial

component, the best covariance structure for P. clarkii

included a tail-up linear-with-sill function and a

Euclidean spherical function (Table 2, Table S3).

The model with the three spatial components included

also a tail-down linear-with-sill function, and it was

very close to the best considering the RMSPE criterion

(Table 2, Table S3). The range of the tail-up (31.8 km)

and Euclidean (188.2 km) components were similar in

both models, and much smaller than the range

estimated for the tail-down component (627.4 km).

For P. leniusculus, the best spatial model included a

tail-down exponential function, and a Euclidean

Gaussian function (Table 2). The full autocovariance

mixture model was also the second best, including a

tail-up linear-with-sill-function, a tail-down spherical

function, and a Euclidean Cauchy function (Table 2,

Table S4). The range estimate for the tail-up compo-

nent was very small (1.4 km), while those of the tail-

Table 1 Parameter estimates and summary statistics for the environmental component of crayfish distribution models in the Sabor

watershed (NE Portugal)

Models Variables Coef. SE t values P values AUC k

Procambarus clarkii

Environmental Intersect -6.712 0.88 -7.596 \0.001 0.861 0.447

Stream order 1.354 0.20 6.778 \0.001

Spatial Intersect -1.123 0.18 -6.226 \0.001 0.975 0.632

Spatial/environmental Intersect -5.520 1.11 -4.968 \0.001 0.963 0.836

Stream order 1.150 0.20 5.831 \0.001

Pacifastacus leniusculus

Environmental Intersect -0.968 2.61 -0.372 0.711 0.782 0.324

Stream order -0.761 0.52 -1.457 0.147

Elevation -0.013 0.00 -2.318 0.022

Stream order 9 Elevation 0.004 0.01 3.439 \0.001

Spatial Intersect -2.245 0.26 -8.512 \0.001 0.904 0.216

Spatial/environmental Intersect -0.138 1.25 -0.111 0.912 0.823 0.379

Stream order -0.531 0.26 -2.050 0.042

Elevation -0.008 0.01 -2.896 0.004

Stream order 9 Elevation 0.003 0.00 3.667 \0.001

For each species we present the parameter estimates for the pure environmental, the pure spatial, and the spatial/environmental

models. For each variable included in the best model, we provide the regression coefficient (Coef.), the standard error of the estimate

(SE), the corresponding t and P values. For each model, we also provide the area under the receiver operating characteristic curve

(AUC), and the Cohen’s kappa (k)

Fig. 3 Response curves estimated from a logistic mixed model

relating the probability of occurrence of Pacifastacus leniuscu-

lus to environmental variables, describing the interaction effect

between stream order and elevation
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down (634.8–645.93 km) and Euclidean (371.1 km)

components were very large.

For both crayfish species, the model combining

environmental and spatial components outperformed

both the pure environmental and the pure spatial model,

in terms of variance explained, AUC and Cohen’s

kappa (Tables 1, 3). In the spatial/environmental

model, the environmental component always explained

less variance than the spatial component (Table 3). The

full covariance mixture model for P. clarkii accounted

for about half the variance in species presence/absence,

of which about 41% corresponded to tail-up spatial

dependencies, another 25% to Euclidean spatial depen-

dencies, and 34% to environmental variables (Table 3).

The predictive accuracy of the model was very

satisfactory, as measured using either AUC or Cohen’s

kappa (Table 1). For P. leniusculus, the full mixture

model accounted for almost all variance, most of which

(64%) corresponding to the tail-up component, and the

rest by the Euclidean (25%) and environmental (11%)

components. However, the very small range estimated

for the tail-up component (1.4 km) indicates that

autocorrelation was essentially zero between all

sampling sites, so this component is acting like a

nugget effect. Predictive accuracywas reasonable when

measured through AUC, but low when measured using

Cohen’s kappa (Table 1).

The distribution models based solely on environ-

mental variables produced poor results for the poten-

tial distribution of both species, while improving

markedly when considering the spatial component

(Fig. 4). For P. clarkii, the environmental model

correctly predicted a continuous distribution along the

mid and lower reaches of the Sabor river, but it

produced many false absences along the main tribu-

taries. In contrast, the environmental/spatial model

predicted a distribution much closer to that observed,

highlighting a continuous occurrence in the main river

and large tributaries. The environmental model for P.

leniusculus also predicted a distribution much

restricted than that observed, while the environmen-

tal/spatial model produced a larger distribution that

was closer to that observed. However, this model

missed sections of river where the species was

detected, while predicting a far more continuous

distribution than that observed.

Table 2 Comparison of

mixture models relating the

probability of occurrence of

two crayfish species to

environmental and spatial

components

The models shown

represent the best model fit

for each mixture type based

on the root mean square

prediction error (RMSPE).

Models are Euclidean

(EUC), tail-up (TU) and

tail-down (TD), and they

were tested using

exponential, spherical,

Gaussian and Cauchy

functions as alternatives for

EUC, and exponential,

linear-with-sill, spherical

and Mariah functions as

alternatives for TU and TD

Mixture Model 1 Model 2 Model 3 RMSPE

Procambarus clarkii

Nonspatial 3.0813

Spatial

TU Linear-sill 3.0039

TD Linear-sill 2.7982

EUC Cauchy 2.3776

TU/TD Linear-sill Linear-sill 2.3559

TU/EUC Linear-sill Spherical 2.2351

TD/EUC Mariah Spherical 2.3360

TU/TD/EUC Linear-sill Linear-sill Spherical 2.2371

Pacifastacus leniusculus

Nonspatial 3.0054

Spatial

TU Mariah 3.0785

TD Mariah 2.3243

EUC Exponential 1.6234

TU/TD Mariah Linear-sill 1.8258

TU/EUC Mariah Gaussian 1.5947

TD/EUC Exponential Gaussian 1.4116

TU/TD/EUC Linear-sill Spherical Cauchy 1.4238
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Discussion

Our study found that the occurrence of P. clarkii and

P. leniusculus in a Mediterranean stream network was

strongly related to environmental variables such as

stream order and elevation, but also that species

distributions appeared strongly shaped by spatial

processes. Actually, we found that spatial dependen-

cies accounted for a larger proportion of variation in

species occurrences than environmental variables, and

that disregarding spatial effects seemed to strongly

underestimate potential species distributions. These

general patterns were observed for both species,

though model performance was much lower for the

species with a more restricted and patchy distribution

(P. leniusculus), than for the species with a larger a

more continuous distribution (P. clarkii). Overall, our

results point out the importance of considering both

environmental and spatial effects when modelling the

distribution of invasive aquatic organisms, and stress

the need to specify spatial dependencies representing

the dendritic network structure of stream ecosystems.

Environmental effects

The only variable included in the environmental

model for P. clarkii was stream order, indicating that

probability of occurrence increased from the

headwaters to the large streams and the main river.

This is in line with previous studies suggesting that

this species often occurs in lowland rivers, with lower

slopes, larger width, slower flowing waters, abundant

aquatic vegetation and finer sediments (e.g., Cruz and

Rebelo 2007; Anastácio et al. 2015; Moreira et al.

2015), which often are associated with high-order

streams (Allan and Castillo 2007). On the other hand,

absence from low order streams (i.e., small tributaries)

was probably a consequence of these drying out in

summer (Ferreira et al. 2016), and so they were not

occupied by active crayfish at the time of sampling.

The pure environmental model correctly predicted the

extent of species distribution in the main Sabor river,

but it underestimated considerably the extent of

occurrence in its main tributaries. This could be a

consequence of this study using only a limited set of

environmental variables, thereby failing to fully

identify the habitat conditions required by the species.

It is also possible, however, that the distribution in the

tributaries was strongly influenced by spatial pro-

cesses associated with expansion from the core

distribution in the main river (Bernardo et al. 2011),

thereby confounding the operation of environmental

drivers (see below).

In the case of P. leniusculus, the environmental

model included the interactive effects of stream order

and elevation, suggesting that the species prefers high-

Table 3 Percentage of variance accounted for by models relating the probability of two crayfish species to environmental and spatial

components

Environmental Spatial Nugget

TU TD EUC

Procambarus clarkii

Nonspatial 21.8 – – – 78.2

Best model 17.1 20.8 – 13.0 49.2

Full covariance mixture 17.1 20.8 &0.0 12.8 49.3

Pacifastacus leniusculus

Nonspatial 16.2 – – – 83.8

Best model 10.8 – &0.0 26.0 63.2

Full covariance mixture 11.0 63.0a 0.2 24.5 1.3

For each species we present the values for the model including only environmental variables (nonspatial), for the spatial/

environmental model minimising the root mean square prediction error (Best model), and for the full mixture spatial/environmental

model (Full covariance mixture). Separate percentages are provided for the Euclidean (EUC), tail-up (TU) and tail-down (TD)

components of the spatial model. The nugget is the variation unexplained in models
a Given the very small range estimated (1.4 km), this component was acting like a nugget effect
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order streams at higher elevation, while being absent

from lowland high-order streams. This is in line with

previous studies suggesting that the species is highly

adapted to mountain rivers, where it prefers riffle

habitats with abundant riparian vegetation (Rallo and

Garcı́a-Arberas 2002; Anastácio et al. 2015). How-

ever, the species was absent from the small, lower

order streams, possibly because the headwaters of the

Sabor watershed generally dry out in summer (Ferreira

et al. 2016). The pure environmental model provided a

relatively crude picture of the species distribution,

producing both false absences and false presences.

This may be a consequence, at least partly, of the

relatively small number of presences detected in our

study (16), which can cause problems in logistic

models (Vittinghoff and McCulloch 2007). In alter-

native, this may be a consequence of the species being

still in rapid expansion from several points of intro-

duction (Bernardo et al. 2011; Amilcar Teixeira,

personal communication), and thus remaining out of

equilibrium with the environmental conditions. What-

ever the mechanisms, these results suggest that the

distribution of both species in stream networks may be

poorly predicted by purely environmental models.

Spatial effects

The models of both species greatly improved when

autocovariance functions accounting for spatial pro-

cesses were considered. For P. clarkii, there was a

Fig. 4 Maps of potential

distribution of Procambarus

clarkii and Pacifastacus

leniusculus in the river

Sabor watershed (NE

Portugal), predicted from

either simple environmental

models (left panels), or

models including both

environmental and spatial

components (right panels).

The threshold for predicted

presences was set equal to

the observed prevalence of

each species
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particularly strong tail-up component, suggesting that

although presences were spatially autocorrelated

along streams, the prevalence of the species can vary

widely between stream branches just above a conflu-

ence. This result, in combination with the spatial

distribution pattern inferred from the environmental/

spatial model, is compatible with the idea that the

species expands in an invasion front that moves

upstream from the lowland sections of the main river.

However, expansion may advance primarily through

some stream branches, possibly corresponding to

higher order streams, as underlined by the environ-

mental model, while colonization may be slower or do

not occur in other branches, possibly the smaller

tributaries. Previous studies in the Sabor watershed

have indeed shown a progressive upstream expansion

(Bernardo et al. 2011), and radiotracking revealed that

individual crayfish have the ability to move consider-

ably in the upstream direction (up to 250 m in half

day; Anastácio et al. 2015). In contrast to our results,

previous studies found that P. clarkii occurrences were

spatially autocorrelated only up to about 2–2.5 km

(Cruz and Rebelo 2007; Siesa et al. 2011), which is

much smaller than the&30 km range estimated in our

study. This may be due to differences in habitat

characteristics, with previous studies largely focusing

on naturally disconnected waterbodies such as ponds

and small lakes, where dispersal may be more difficult

than in a continuous stream network such as that of our

study area.

The model for P. clarkii also included a significant

Euclidean component, but the underlying mechanism

was unclear. However, the large range estimated

(&190 km) suggests that spatial autocorrelation was

mainly due to broad scale distribution trends, rather

than small scale processes. This may be a consequence

of the topology of the watershed, as the species was

consistently absent in zones occupied by headwater

streams, while it was present in three waterlines that

run parallel and at short distance to each other. These

circumstances probably determined a positive relation

between occupancy status and straight-line distances

between sites, albeit with no ecological meaning. It

could not be ruled out, however, that the Euclidean

pattern was at least partly due to the effect of an

unmeasured, spatially-structured environmental vari-

able, though it is uncertain what this variable might be

as all the area is within the climate niche of the species

(Capinha et al. 2013). It is also unlikely that the

Euclidean component reflected colonisations occur-

ring by individuals moving through terrestrial habitats.

Although this process has been described for P. clarkii

inhabiting lowland habitats (Cruz and Rebelo 2007;

Ramalho and Anastácio 2015), it is unlikely that it

contributed much to species expansion in a dry and

mountainous area such as ours, where dispersal

overland would imply long movements across very

dry habitats and steep slopes.

The spatial models developed for P. leniusculus

differed considerably and were generally poorer than

those of P. clarkii. Furthermore, there appeared to be

some model instability, as shown by the full covari-

ance mixture model, where the tail-up component

acted like a nugget effect, with a range estimate

(1.4 km) that was smaller than the typical distance

between nearest sites (&5 km). Nevertheless, it is

noteworthy that there were spatial dependencies

described by the Euclidean component, which

explained over twice the variation in P. leniusculus

distribution as the environmental component. As for

P. clarkii, the large range estimated for the Euclidean

component (&370 km) suggests that it described

primarily broad scale trends in species distribution,

rather than small scale processes. Including the spatial

component improved the performance of the pure

environmental model, but even so the predictive

ability of the best environmental/spatial model was

low, with a large number of false presences and

absences. These patterns are probably a consequence

of the low number of presences detected for this

species, as noted for the environmental component,

but they may also result from its patchy distribution,

which was possibly caused by multiple introductions

followed by progressive expansions that are still far

from complete. This likely affected both environmen-

tal and spatial relationships, because the species was

likely absent from sites with adequate environmental

conditions, while the spatial dependencies were

inconsistent, possibly due to the spatial scattering of

the introductions. As this species is still rapidly

spreading in the study area (Bernardo et al. 2011;

Anastácio et al. 2015; Amilcar Teixeira, personal

communication), we expect that the spatial distribu-

tion will keep changing for some more time, eventu-

ally reaching a stable pattern corresponding to the

equilibrium with environmental conditions. In the

meantime, we predict that sites that were identified in

our study as false absences will soon be occupied, and
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that the species will progressively occupy most, if not

all larger streams at higher elevation.

Distribution modelling of invasive species

across stream networks

Our study adds to recent research showing the

importance of explicitly accounting for dendritic

spatial structures when modelling the distribution of

physical and ecological processes across stream

networks, and the value of geostatistical tools to

undertake such modelling (Peterson et al. 2013;

McGuire et al. 2014). Also, our study provides novel

insights on the application of this approach to invasive

species, whose distribution modelling is affected by a

specific set of challenging processes such as non-

equilibrium with environmental conditions and highly

dynamic distribution patterns (de Marco et al. 2008;

Václavı́k and Meentemeyer 2012). First, our results

reinforce the idea that that both environmental and

spatial processes need to be incorporated to predict the

distribution of invasive species (de Marco et al. 2008;

Siesa et al. 2011; Václavı́k et al. 2012). Second, we

confirmed that Euclidean distances are insufficient to

incorporate spatial structure in distribution models for

invasive stream organisms, as they may fail to account

for their strongly constrained dispersal along waterli-

nes and may produce biased and biologically mean-

ingless results (Filipe et al. 2010; Altermatt 2013;

Peterson et al. 2013). Third, considering the tail-up

autocovariance function may be generally recom-

mended when testing for spatial dependencies, as it

accounts for biological meaningful ecological pro-

cesses such as connectivity along flow-connected

waterlines (Carrara et al. 2012). Finally, geospatial

models such as those applied here may improve

inferences on the invasion processes of aquatic

organisms from distribution data (e.g., Siesa et al.

2011; Václavı́k et al. 2012), by accounting for

biologically more meaningful spatial dependencies

along waterlines, though careful interpretation of

results is required. Care should particularly be taken

when dealing with species at the early stages of

invasion, as it was the case of P. leniusculus in our

study, where a small number of occurrences and a very

fragmented distribution may produce models that are

difficult to interpret. Overall, we suggest that geosta-

tistical modelling across stream networks provides an

important addition to the toolbox of researchers

interested in biological invasions of aquatic organ-

isms, which may contribute to address this global

environmental problem by helping to understand

driving mechanisms and to predict future distributions

(Strayer 2010).
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