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ABSTRACT: Although mean temperatures change annually and are highly correlated with elevation, the entire
thermal regime on the Snoqualmie River, Washington, USA does not simply shift with elevation or season. Partic-
ular facets of the thermal regime have unique spatial patterns on the river network and at particular times of the
year. We used a spatially and temporally dense temperature dataset to generate 13 temperature metrics repre-
senting popular summary measures (e.g., minimum, mean, or maximum temperature) and wavelet variances over
each of seven time windows. Spatial stream-network models which account for within-network dependence were
fit using three commonly used predictors of riverine thermal regime (elevation, mean annual discharge, and per-
cent commercial area) to each temperature metric in each time window. Predictors were strongly related
(r2 > 0.6) to common summaries of the thermal regime but were less effective at describing other facets of the
thermal regime. Relationships shifted with season and across facets. Summer mean temperatures decreased
strongly with increasing elevation but this relationship was weaker for winter mean temperatures and winter
minimum temperatures; it was reversed for mean daily range and there was no relationship between elevation
and wavelet variances. We provide examples of how enriched information about the spatial and temporal com-
plexities of natural thermal regimes can improve management and monitoring of aquatic resources.

(KEY TERMS: river network; time series analysis; spatial modeling; thermal regime; wavelet decomposition;
metric.)
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INTRODUCTION

Water temperatures fluctuate over time (Arismendi
et al., 2013) and along river networks (Fullerton
et al., 2015), playing critical roles as both drivers and
indicators of riverine health. Conceptualizing a

unique time series of water temperature data at
every point on a river network is a challenge; mea-
suring or modeling the full suite of spatially and tem-
porally variable data across a river network is
daunting. One year of river temperature data from a
single sensor measured every hour yields over 8,700
observations. Instead of directly analyzing a time
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series of this magnitude, it is common to aggregate
each series into one or more summary metrics such
as mean annual temperature, maximum summer
temperature, or mean daily range during a particular
period of interest. These metrics are theoretically cho-
sen because they represent facets of the thermal
regime that are known to have biological implica-
tions. For example, maximum temperatures induce
lethal effects in fishes and other organisms (Brett,
1952). However, there are many other facets of the
thermal regime that might also be ecologically impor-
tant, for example, sudden increases in temperature
that trigger juvenile outmigration from mainstems to
cooler tributaries or sublethal thresholds that limit
growth potential. We often make the implicit assump-
tions that we can infer (1) information about multiple
biologically relevant facets of the thermal regime
from one or two summary metrics; (2) details about
the thermal regime in one part of the network from
observations in another part of the network; and (3)
relationships about key drivers of temperature
observed in one time period or for one summary met-
ric from observations in another time period or from
models built on a different summary metric. Our goal
is to explore the validity of these assumptions and
the subsequent ramifications on management and
monitoring of riverine thermal regimes.

The distribution of thermal regimes on the river
network has clear biological relevance because organ-
isms live in specific thermal niches (Magnuson and
Destasio, 1996). Water temperature regulates the
physiological processes of metabolism and growth
that ultimately drive food webs, aquatic communities,
and population dynamics. For example, increased
water temperatures speed up metabolic rates of aqua-
tic organisms and, therefore, alter the timing of life-
history transitions (Beacham and Murray, 1990).
Many species also have lethal thermal thresholds
(Richter and Kolmes, 2005) which may vary over
their life cycle; thus, a specific spatiotemporal ther-
mal niche may be required to support some species.
For example, imperiled freshwater mussels have
upper thermal tolerance thresholds that limit, in par-
ticular, larval and juvenile life stages (Daraio and
Bales, 2014). It is not only facets involving magni-
tudes, such as means and maximums, which have
ecological relevance. A biological response to thermal
variability (e.g., diel variation and seasonality) might
be expected from first principles, but research is in
the early stages (Arismendi et al., 2013). Degree-day
accumulation has been shown to drive the phenology
of emergence and migration in many species, from
aquatic insects to fishes (Ward and Stanford, 1982;
McCullough et al., 2009) and there are indications
that thermal variance may impact the timing of life-
history transitions (Steel et al., 2012). Given the

spatiotemporal complexity of the thermal regime and
the potential of biological responses to a variety of
thermal cues, it is useful to understand the distribu-
tion of multiple facets of water temperature, for
example, means, quick fluctuations in water tempera-
ture, winter minimums, or seasonal daily range, on
river networks.

We distinguish here between facets, which describe
the conceptual elements of the thermal regime that
are of biological importance, and metrics, which are
an attempt to quantify a particular facet. The distinc-
tion is necessary for two reasons. First, it forces clar-
ity of thinking. For example, when we calculate mean
temperature, what biologically important facet of the
thermal regime are we trying to capture and is this
the best metric to capture that facet? Or, if we are
worried about juvenile Chinook salmon growth, what
are the facets most closely related to food sources and
growth? And second, we often do not know the exact
threshold or the exact time frame linking tempera-
ture and biological response and so multiple metrics
for a given facet are possible.

The natural and anthropogenic mechanisms
driving many facets of temperature regimes are well
understood and provide an explanation for how ther-
mal regimes might vary over time and space (Caissie,
2006; Webb et al., 2008). Climatic drivers, stream
morphology, groundwater influences, and riparian
canopy conditions, all affect stream thermal regimes
(Caissie, 2006; Webb et al., 2008). For example, smal-
ler channels with greater groundwater flow may have
similar springtime mean temperatures as compared
to channels with little or no groundwater flow, but
less daily variation (Arrigoni et al., 2008). Small
channels are also most sensitive to riparian shading,
which decreases direct radiation and, through cooler
air temperatures, reduces convective heat exchange
(Johnson, 2004; Jones et al., 2006). Larger channels
have greater thermal inertia, both through the larger
amount of water in the channel and through greater
mixing with the alluvial aquifer (Poole and Berman,
2001). Human impacts such as agriculture, timber
harvest, dams, urbanization, channelization, water
withdrawals, and climate change along with a variety
of natural disturbances threaten to alter not only
mean temperatures but also the thermal structure of
river networks (Sch€ar et al., 2004; Webb et al., 2008).
Dams may mute daily variation or shift seasonal pat-
terns (Steel and Lange, 2007; Olden and Naiman,
2010), fires can increase the sunlight a channel
receives and warm temperatures (Isaak et al., 2010),
and climate change is predicted to shift thermal
regimes unevenly across river networks (Isaak et al.,
2010; Arismendi et al., 2013). In fact, thermal distur-
bances rarely occur evenly across the river network
or over time.
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Mitigating anthropogenic and natural distur-
bances, managing aquatic species, and monitoring
changing conditions across whole watersheds requires
an improved understanding of thermal regimes on
river networks, including biologically important
facets of stream temperature such as variability dur-
ing egg incubation or extreme events during migra-
tion periods. Commonly used predictors of mean
annual temperatures and, occasionally, maximum
temperatures include landform, elevation, channel
slope, drainage area, mean annual flow, and annual
summaries of air temperature regimes, as well as
indications of human land use (Webb et al., 2008;
Mayer, 2012). These predictors often adequately
describe mean annual temperature or summer tem-
perature patterns (Isaak et al., 2010; Ruesch et al.,
2012). However, their usefulness for predicting other
facets of water temperature regimes has yet to be
fully evaluated.

Capturing fine-scale temporal variability in tem-
perature at discrete locations is possible using
instream sensors; however, capturing the spatial
variability in the full thermal regime at biologically
relevant spatial scales (1-100 km; Fausch et al., 2002)
is much more costly to collect in terms of time and
funding (e.g., Torgersen et al., 2001). Thus, models
are often fit to site-based measurements and used to
extrapolate particular metrics, for example, mean
summer temperature, to unsampled parts of the net-
work (Benyahya et al., 2007). The difficulty is that
temperature measurements within a watershed are
often spatially correlated. Sites may be longitudinally
connected by flow or their watersheds and riparian
areas may have similar climatic, topographic, land
use, or land cover characteristics (e.g., Peterson et al.,
2006; Isaak et al., 2010; Ruesch et al., 2012). When
data exhibit spatial autocorrelation, the assumption
of independence is violated and spatial statistical
methods must be used to make valid inferences and
predictions on the river network. Traditionally, these
methods were based on Euclidean distance (Cressie,
1993), which does not capture the unique branching
structure of the river network, longitudinal connectiv-
ity, or streamflow volume and directionality. More
recently, spatial stream-network models (SSNMs; Ver
Hoef and Peterson, 2010) that use hydrologic distance
(i.e., distance along the river network) have been
developed, which account for flow connectivity (i.e.,
water flows from one site to another) as well as dis-
continuities that often occur in tributaries just
upstream from river confluences (Cressie et al., 2006;
Ver Hoef et al., 2006). SSNMs have been applied to
single metrics of stream temperature in a handful of
studies and, in these cases, accounting for spatial cor-
relation in the data has substantially improved the
accuracy of predictions at unsampled locations

throughout the entire watershed (Isaak et al., 2010;
Ruesch et al., 2012). To the best of our knowledge, an
investigation of the similarities and differences in
spatial pattern for a suite of stream temperature met-
rics has not been undertaken.

We analyzed a spatiotemporal dataset collected in
the Snoqualmie River, Washington, USA using
SSNMs. We quantified the degree to which particular
metrics could be explained by a constant set of land-
scape predictors, the relationships with those predic-
tors, and the degree of additional spatial pattern in
the metric. We explored the thermal regime within
this watershed through two unique lenses: (a) metrics
that describe biologically relevant facets of the ther-
mal signal, and (b) a set of temporal windows that
focus on both traditional seasons and also on salmo-
nid life stages. Our analysis aimed to answer three
questions:

1. Are there unique relationships between tradi-
tional predictors (elevation, mean annual dis-
charge, and land development) and particular
facets of the thermal regime?

2. How much of each facet of the water tempera-
ture regime can be explained by these traditional
predictors and how much can be explained by
spatial correlation with neighboring sites?

3. How do facets of the thermal regime vary during
the year? Are relationships between facets of the
thermal regime and traditional predictors consis-
tent across time windows?

We conclude by exploring how our results increase
our understanding of the structure and drivers of
riverine thermal regimes, and by describing implica-
tions for management and monitoring.

METHODS

Study Area

Three main forks of the Snoqualmie River drain a
2,400 km2 watershed on the west side of the Cascade
Range, Washington (Figure 1). The three forks run
through mostly forested public land owned by the
Department of Washington Natural Resources and
the United States Forest Service. Elevation decreases
rapidly until the forks converge at the Three Forks
Natural Area in Snoqualmie, Washington. Sno-
qualmie Falls, downstream on the mainstem, signals
a transition toward greater human development
including agricultural, residential, and commercial
land use. Much of the Snoqualmie River floodplain
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lies within one of King County’s agricultural protec-
tion districts. Development gradually increases until
the Snoqualmie River merges with the Snohomish
River near Monroe, Washington. The Snoqualmie
River is home to stocks of Chinook (Oncorhynchus
tshawytscha), chum (O. keta), coho (O. kisutch), pink
(O. gorbuscha), and winter steelhead (O. mykiss) sal-
mon. In 2002, both Chinook and winter steelhead
stocks in the Snoqualmie River were classified as “de-
pressed” (Washington Department of Fisheries,
1993). Presently, Puget Sound Chinook and Puget
Sound steelhead are listed as threatened under the
Endangered Species Act.

Thirty-four temperature-monitoring sites (Fig-
ure 1) were chosen within the watershed, including
multiple sites along the mainstem and in all major
tributaries. Practical limitations of accessibility
meant that sites had to be publicly accessible and
within 1 km of a road. We note that the Raging
River, a major tributary in the lower watershed, was
intentionally oversampled, with 10 of the 32 observa-
tion sites chosen along the river and its tributaries,
to enable analyses of the effects of scale on monitor-
ing designs in future studies.

Data

Tidbit loggers by Onset (Bourne, Massachusetts)
were installed in July 2011. Each logger was pro-
tected by a black PVC solar shield, anchored with
rocks so as to remain underwater at low flows and to
remain in the channel during high flows, and cabled
to a nearby rock or tree via steel cable. Water tem-
perature was recorded in degrees Celsius at each
location every 30 min with an accuracy of �0.2°C.

Data for this analysis were retrieved in September
2012 but the network remains intact. During the
2014 data recovery, the water temperature at each
site was also measured using an AquaTuff (Cooper-
Atkins, Middlefield, Connecticut) instantaneous tem-
perature sensor (�0.3°C) at the logger, along a 2 m
radius from the logger, and in deeper areas within
that 2 m radius.

Data were cleaned according to Sowder and Steel
(2012) and the full-year dataset was summarized as
thirteen metrics, describing several facets of the ther-
mal regime (Table 1). The first six metrics are com-
monly found in the literature and capture mean
temperatures, maximums, minimums, and variability.

10km 

FIGURE 1. The Snoqualmie River, Washington, USA and Monitoring Locations (black circles). Streamflow is from east to west with the outlet
into the Snohomish River in the northwest. River thickness is proportional to mean annual discharge, as estimated from drainage area.

TABLE 1. Stream Temperature Metrics Used in Our Analysis.
The wavelet variance metrics decompose the variability

of a time series into increasing temporal scales.

Metric
Name Description Facet

AWAT Average of all average
weekly temperatures

Mean

MWAT Maximum of all average
weekly temperatures

Maximum

MWMT Maximum of all weekly
maximum temperatures

Maximum

mWAT Minimum of all average
weekly temperatures

Minimum

VAR Empirical variance
of the time series

Across-day variance

AvgDelT Average daily temperature range Within-day variance
Wv1.5 h 1.5 h wavelet variance Within-day variance
Wv3 h 3 h wavelet variance Within-day variance
Wv6 h 6 h wavelet variance Within-day variance
Wv12 h 12 h wavelet variance Within-day variance
Wv1 day 1 day wavelet variance Across-day variance
Wv2 day 2 day wavelet variance Across-day variance
Wv4 day 4 day wavelet variance Across-day variance
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We retain the most commonly used terminology for
these metrics which reflects a history of first summa-
rizing data at the weekly scale. In our analysis, data
were first summarized within each day to provide a
daily average and range. The seven daily averages
within each week were then combined as the average
weekly average temperature (AWAT) and averaged
across the time window of interest. We note that this
is equivalent to the average of the raw values within
that time window except where there are missing
data. Within a time window, the maximum of all
weekly average temperatures (MWAT) and the mini-
mum of all weekly average temperatures (mWAT)
were retained as indications of high and low tempera-
ture patterns occurring over multiple days. Maximum
weekly maximum temperature (MWMT), where the
weekly maximum was calculated as the average of the
seven daily maximum temperatures, was kept as a
metric to describe extreme, possibly lethal, high tem-
peratures. All observations were used to calculate the
empirical variance (VAR) and the average of all daily
ranges within the time window of interest (AvgDelT)
was calculated as a second metric describing variabil-
ity in water temperature.

Wavelet analysis was also used to decompose the
temperature time series into the variability occurring
at each of several time scales independently. A dis-
crete wavelet transform is an orthonormal square
matrix of filters that is pre-multiplied by a time ser-
ies of data (Torrence and Compo, 1998; Percival and
Walden, 2000). Wavelet variance decomposition can
be thought of as describing the energy being put into
each time scale of the time series. In this case, higher
wavelet variances would be indicative of greater ther-
mal fluctuations at particular time scales. Wavelet
decomposition and a statistically similar procedure,
Fourier transformation, have been used successfully
in other studies to describe the complexities of river-
ine thermal regimes (Steel and Lange, 2007; Webb
et al., 2008; Maheur et al. 2015). We calculated the
wavelet variance of our temperature series at 1.5 h,
3 h, 6 h, 12 h, 1 day, 2 days, and 4 days using the
wmtsa package (Constantine and Percival, 2011) in R
statistical software (R Core Team, 2012).

Full-year temperature metrics describe the annual
thermal profile of sites on the river network, but
organisms are known to respond to biologically impor-
tant cues in different seasons. We examined seasonal
differences in the thermal regime by comparing ther-
mal patterns in summer, when most monitoring
occurs, to those found in winter. Biologically relevant
thermal cues may also occur at different times four dif-
ferent species; therefore, we subset the data for addi-
tional times to model temperature patterns during
particular salmonid life stages. Altogether, we consid-
ered seven time windows: the full-year, summer and

winter seasonal-time windows, and the spawning and
egg incubation time windows for winter steelhead and
for coho salmon (Table 2). Spawning seasons were esti-
mated based on expertise of local fisheries, biologists
and the most recent available published descriptions
(Washington Department of Fisheries 1993). The egg
incubation season began at the midpoint of the respec-
tive spawning season and extended until, on average
across all sites, 1,150 degree days (Steel et al., 2012)
had been accumulated. Given year-to-year variation in
migration timing and variability across the network,
these biological time windows (Table 2) are not
intended to predict exactly when spawning and egg
incubation are happening but, rather, to estimate a
general time frame in which particular biological
activities are likely to occur. For simplicity, we refer to
winter steelhead as steelhead when defining spawning
and egg incubation time windows.

Information describing connectivity, proximity, and
directionality of river temperature sensors was
needed to fit a SSNM. River network data from the
NHDPlus database (Horizon Systems Corporation,
2007) were prepared using the Spatial Tools for the
Analysis of River Systems (Peterson and Ver Hoef,
2014) and Functional Linkages of Water basins and
Streams (Theobald et al., 2005) custom toolsets for
ArcGIS v9.3.1 (ESRI, 2008). Data preparation
involved topologically correcting the river dataset and
ensuring that all segments were digitized in the
downstream direction. In addition, we “snapped” sam-
pling and prediction points to the correct river seg-
ment. This ensured that routing occurred correctly
along the network and that sampling sites coincided
with the geographic information system dataset used
to represent rivers. Landscape attributes for each
reach were also obtained from the NHDPlus database
(Horizon Systems Corporation, 2007) and assigned to
each sampling and prediction point. We considered
three traditional predictors of water temperature that

TABLE 2. Time Windows Considered in Our Study. Spawning
windows are from the Washington Department of Fish and Wildlife
Salmon Stock Inventory. Incubation windows were calculated from
the midpoint of the spawning window until approximately 1,150
degree days had been accumulated.

Type Time Window Date Range

Seasonal Full-year August 20, 2011-
August 19, 2012

Summer May 1, 2012-August 31, 2012
Winter November 1, 2011-

March 31, 2012
Biological Coho spawning November 1, 2011-

January 31, 2012
Steelhead spawning March 1, 2012-June 1, 2012
Coho egg incubation December 15, 2011-July 1, 2012
Steelhead egg
incubation

April 15, 2012-August 15,2012
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capture a range of information: elevation, which is
highly correlated with both mean air temperature
and precipitation in the Pacific Northwest; mean
annual discharge, which represents the size of the
stream and its ability to be influenced by solar radia-
tion or shading and which is highly correlated with
stream width and stream order; and percent commer-
cial land use in the catchment area draining to the
sample reach, which is associated with impermeable
surfaces that alter runoff pathways and is highly cor-
related with other aspects of human development.
We did not use air temperature directly which was
available only as modeled estimates across the full
spatial domain of our model.

Exploratory Data Analysis

We plotted each time series and visually inspected
natural thermal regimes in each part of the river
network for similarities and differences. We also
explored correlations between metrics across the
entire time series and within time windows of inter-
est in order to (1) understand how our metrics of
stream temperature were related to one another,
and (2) determine whether any metrics capture all
of the information about a thermal regime during a
particular time window. High correlations would
indicate that information is shared between metrics
and that they are therefore somewhat redundant.
Low correlations indicate that each metric contains
relatively independent information about a particu-
lar facet of the thermal regime and one metric can-
not be well estimated from the other. Correlations
were calculated as simple Pearson correlation coeffi-
cients, and visualized using the R package corrplot
(Wei, 2013).

Model

In traditional, nonspatial linear models the ran-
dom errors are assumed to be independent. In a spa-
tial statistical model, this assumption is relaxed and
a covariance model is used to account for spatial cor-
relation in the errors. Conventional covariance mod-
els represent the proximity between locations based
on Euclidean distance. Such models may be inappro-
priate for data collected on river networks because
they do not represent the branching structure of the
network, longitudinal connectivity, streamflow vol-
ume, or flow direction. As an alternative, tail-up
autocovariance models have been specifically designed
for modeling river network data (Ver Hoef et al.,
2006; Ver Hoef and Peterson, 2010) and account for
the unique characteristics of a river network.

The SSNM described in Ver Hoef and Peterson
(2010) extends the standard linear model as:

Y ¼ Xbþ zu þ e; ð1Þ

where Y is a vector of the response (i.e., temperature
metric), X is a matrix of predictors (for our models,
these included elevation, mean annual discharge, and
percent commercial area in the catchment), b is a
vector of estimated coefficients, e is a vector of inde-
pendent normally distributed random errors, and zu
is the tail-up covariance model. A tail-up model is
based on hydrologic rather than Euclidean distance,
where spatial correlation is restricted to flow-con-
nected locations (i.e., water flows from an upstream
location to a downstream location). These types of
models also include a spatial-weighting scheme to
represent the disproportionate influence that
upstream tributaries can have on downstream condi-
tions, as well as discontinuities upstream of conflu-
ences. In this study, the spatial-weighting scheme
was based on mean annual discharge provided in the
NHDPlus dataset.

While the SSNM is flexible enough to include a
mixture of covariances based on both hydrologic and
Euclidean distance (e.g., Peterson and Ver Hoef,
2010), additional parameters must be estimated, and
in this case it would require an additional two
degrees of freedom. Isaak et al. (2014) recommend
that at least 50 observation sites are needed to esti-
mate the parameters for a full covariance mixture.
We had a large number of measurements in our data-
set, but were limited to 34 sites; as such, we decided
to include only the tail-up covariance model, which
has been shown to describe spatial dependency in
other stream temperature studies (Ruesch et al.,
2012; Isaak et al., 2014). An introduction to the use
of spatial statistics and SSNMs for river management
can be found in Isaak et al. (2014); a more technical
description of the models can be found in Ver Hoef
and Peterson (2010) and in Peterson and Ver Hoef
(2010).

A SSNM was fit to each temperature metric and
temporal window for a total of 91 (13 temperature
metrics 9 7 time windows) independent models, each
of which contained the same three predictors: eleva-
tion, mean annual discharge, and percent commercial
area in the watershed draining to that reach. Again,
these three predictors were chosen because they are
commonly used in water temperature models and
their mechanistic effects on at least some facets of the
thermal regime are well understood. We used the
same set of predictor variables in each of the SSNMs
so that we could compare parameter estimates, model
fit, predictive accuracy, and percent variance
explained across metrics and time windows. Note that
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our goal was not to identify the best model for each of
the 91 temperature metrics. Instead, our intention
was to determine whether a traditional model, that
explains a large amount of variability in mean tem-
perature over the full-year and which is expected to
have a relatively strong predictive accuracy for mean
temperature, can also be used to predict other facets
of the thermal regime across multiple time windows
of interest. Parameter estimates, standard errors, and
variance components were estimated using restricted
maximum likelihood and recorded. Predictions were
generated at unsampled prediction sites to provide a
semi-continuous view of stream temperature over the
entire watershed and used for visualization purposes
only. Standardized mean squared prediction errors
and standardized bias were calculated using leave-
one-out cross-validation (LOOCV), where each obser-
vation is withheld, a model is fit to the remaining
data, and a prediction generated for the withheld
observation. This provides a way to evaluate the stan-
dardized bias (mean((obs � pred)/predSE)) of the pre-
dictions and the mean squared prediction error (mean
(((obs � pred)/predSE)2)). All models and visualiza-
tions of predicted values were generated using the
SSN package (Ver Hoef et al., 2014) in R statistical
software (R Core Team, 2012).

We compared parameter estimates to look for dif-
ferences in the relationships between water tempera-
ture and traditional predictors across temperature
metrics and across time windows. A 95% confidence
interval was estimated for each predictor parameter
and we explored whether or not these intervals over-
lapped in models of the same metric in different sea-
sons. Finally, we decomposed the variability in each
model into the percentage of variability explained by
the predictors, the tail-up spatial correlation struc-
ture, and the residual variance (i.e., remaining unex-
plained variability); a process analogous to ANOVA
in ordinary least squares regression.

RESULTS

Summarizing the Complexity of Natural Thermal
Regimes

Observations of water temperature at locations
near sensors indicated that the thermal regimes we
measured were representative of the local area. Mea-
surements taken 2 m upstream and downstream as
well as those taken up to 2 m toward the center of
the channel or at greater depths where possible never
differed more than the accuracy of the sensor.

The thermal regime across our study sites showed
strong seasonality; mean temperatures and daily
variability in temperature were both smaller in win-
ter than in the summer. Mean annual temperature
did not capture the complexity of the thermal
regimes observed on the network. For example, sites
on the Raging River and its nearby tributary Icy
Creek had similar annual mean temperatures at
8.4°C and 8.5°C, but summer temperatures on the
Raging River were consistently higher and more
variable than those observed for the aptly named Icy
Creek (Figure 2a). Many such subtle differences were
observed and no single metric, or pair of metrics cap-
tured all of the potentially biologically relevant com-
plexity. Some pairs of metrics were highly correlated
with one another; for example, there was a strong
relationship between MWAT and MWMT (r = 0.96 in
summer and 0.99 in winter) and the 6 and 12-h
wavelet variance (1.00 in summer and 0.99 in win-
ter). However, no one metric was so strongly corre-
lated (|>0.5|) with all of the other metrics that we
could assume it captured all of the information
encoded in the suite of metrics (Figures 2b and 2c).
In addition, the strength and direction of the correla-
tion between metrics was not necessarily consistent
across seasons. For example, VAR and AWAT were
negatively associated in the summer (�0.71;
Figure 2b) and positively associated in the winter
(0.44; Figure 2c). This was also the case for MWMT
and Wv1.5 h, which had a relatively strong correla-
tion in summer (0.50), but only a weak negative
correlation (�0.20) in winter.

Spatial Stream-Network Model Evaluation

We built 91 models (7 time windows 9 13 met-
rics) using the same set of three traditional predic-
tors of water temperature in order to compare
models across facets of the thermal regime and
across time windows; we evaluated models using
LOOCV to estimate prediction bias and accuracy of
the prediction standard errors. Standardized bias
was small for all models, ranging from �0.045 to
0.062 (results not shown). The largest bias was
observed for the variance metric (VAR), while the
smallest bias for the traditional metrics was
observed for AWAT and mWAT. All bias estimates
for the wavelet metrics were very small (�0.008,
0.12). Mean squared prediction errors were gener-
ally close to 1 for all metrics in all time windows
(0.79, 1.09) (Table 3). Mean squared prediction stan-
dard errors for VAR ranged from 0.98 to 1.05.
Again, AWAT performed particularly well in all sea-
sons as might be expected.
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We also note that our models assumed normality
of errors and applied a linear model to all tempera-
ture metrics. The models performed well despite this
limitation. The standardized bias in predictions was
low and the predictive standard errors were reason-
ably well estimated. There were no consistent depar-
tures from normality in the residuals of our models,
except in the models of within-day wavelet variance
where the largest residuals fell outside of what would
be expected, given a normal distribution.

Spatial Patterns of Thermal Regime across Time
Windows and Metrics

Our predictors are inherently spatial; therefore,
differences in predictor coefficient estimates across
time windows are indicative of variation in the spa-
tial patterns of the thermal regime across these same
time windows. We compared parameter estimates
describing the relationship between temperature
metrics and elevation, mean annual discharge, and
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FIGURE 2. Variation in Multiple Facets of Stream Temperature Regimes across Seasons. (a) Thermal regimes for two nearby sites, the
Raging Mainstem (black) and Icy Creek (red) that have similar full-year means, 8.4°C and 8.5°C, but different thermal profiles over the year.
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JAWRA JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION8

STEEL, SOWDER, AND PETERSON



commercial land use for models of the 13 metrics
across seven time windows. For most metrics (AWAT,
MWAT, MWMT, mWAT, VAR, Wv1.5 h, Wv6 h,
Wv1 day, and Wv2 day), the confidence intervals of
estimates for at least one of the parameters did not
overlap when we compared parameters for multiple
time windows. For traditional metrics, the elevation
parameter estimates showed the most dramatic
changes across time windows, while mean annual dis-
charge and commercial land use parameters were rel-
atively consistent (Table 4a). Models of the wavelet
metrics exhibited a somewhat reversed pattern
(Table 4b). For the wavelet metrics, elevation
(Table 4b) and commercial parameter estimates (re-
sults not shown) rarely differed across time windows
while confidence intervals for mean annual discharge
parameters estimated for data from different time
windows did not overlap in 9 of 21 possible compar-
isons for Wv1 day and 4 of the possible 21 compar-
isons for Wv2 day (results not shown).

We note that the model intercept exhibited the
greatest number of differences across time windows;
however, this parameter explains the thermal regime
as summarized over the river network and does not
describe the spatial trends in the thermal regime on
the river network. We would, of course, expect the
thermal regime over the whole river network to vary
with time as water temperatures are warmer overall
in summer than in winter. Instead, it is differences
in the coefficients of the spatial predictors between
time windows that describe shifts in the spatial dis-
tribution of the thermal regimes. For example,

seasonal differences in the elevation parameter esti-
mates describe a steeper temperature gradient from
the high-elevation headwaters to the lower-elevation
mouth of the river in summer than in winter. An
increase in 1,000 m of elevation was associated with
a decrease of �6.2° in the winter and �9.8° in the
summer (Table 4a).

The empirical variance (VAR) was the only metric
to exhibit differences across time windows in all three
parameters and this produced distinct spatial pat-
terns on the network. In the summer and the steel-
head egg incubation windows, VAR was positively
associated with mean annual discharge and with ele-
vation. In contrast, VAR was negatively associated
with these same predictors during winter, coho egg
incubation, coho spawning and steelhead spawning
windows. These differences produced clear shifts in
the spatial distribution of VAR at different time win-
dows (Figure 3). Empirical variance was high in the
large, mainstem and high elevation, headwater
streams in the summer (Figure 3a) and steelhead egg
incubation (Figure 3f) window. The opposite spatial
pattern was observed in the other time windows,
where VAR tended to be the highest in mid-size, mid-
elevation streams. Because predictions for the VAR
across the entire year smooth away these seasonal
differences, variability appears highest in low eleva-
tion streams (Figure 3c).

We also observed differences in spatial patterns
between predictions of different temperature metrics
over the network, but within the same time window.
To highlight these differences, we focus on one

TABLE 3. Standardized Mean Squared Prediction Errors for (a) Traditional Temperature Metrics,
and (b) Wavelet Variances Calculated Using Leave-One-Out Cross-Validation. When prediction standard errors

are well estimated for a given season and time window, the standardized mean squared prediction error will be close to 1.

(a) Traditional Metrics

MWMT MWAT AWAT mWAT AvgDelT VAR

Summer 0.99 0.95 0.94 1.06 1.03 1.01
Winter 1.09 1.08 0.99 0.98 1.01 1.03
Full 0.95 0.96 0.97 0.94 0.89 1.00
Coho Egg Incubation 0.94 0.93 0.99 0.99 0.96 1.05
Coho Spawning 1.03 1.04 0.99 0.98 1.04 1.01
Steelhead Egg Incubation 0.98 0.98 0.94 1.01 0.92 0.98
Steelhead Spawning 0.95 0.93 0.99 1.06 0.97 1.01

(b) Wavelet Variances

Wv1.5 h Wv3 h Wv6 h Wv12 h Wv1 day Wv2 day Wv4 day

Summer 0.99 1.04 1.04 1.04 1.02 0.99 1.03
Winter 0.96 0.96 0.99 0.97 0.94 1.03 0.98
Full 0.91 0.80 0.87 0.89 0.96 1.01 1.00
Coho Egg Incubation 0.98 0.88 0.94 0.94 1.01 1.06 1.03
Coho Spawning 0.96 0.97 0.96 0.99 0.90 0.97 0.96
Steelhead Egg Incubation 0.85 0.79 0.91 0.92 1.01 1.02 1.03
Steelhead Spawning 0.96 0.89 0.96 0.96 1.02 1.05 1.04
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biologically relevant time window, the steelhead egg
incubation window. Notice that each metric has a
slightly different spatial pattern (Figure 4). For exam-
ple, models of maximum and mean temperatures, as
well as of metrics representing variability at a day or
longer time step, did not produce distinct differences
in predictions on the mainstem vs. the tributaries (Fig-
ures 4a-4d). In contrast, predictions of temperature
metrics describing variance within a day (Figures 4f-
4j) on the high-flow mainstem exhibited lower variabil-
ity than surrounding tributaries. Interestingly, the
empirical variance (VAR, Figure 4) and average daily
range (AvgDelT, Figure 4f), which represent across-
and within-day variance showed a nearly inverse
pattern to one another on the mainstem.

Relative Influence of Predictors vs. Neighboring Sites
across Metrics and Temporal Windows

Decomposing the variation in each model into the
proportion explained by the predictors, the network

correlation structure, and the residual variation
allowed us to examine how each component con-
tributed to model fit and look for trends across met-
rics and seasons (Figure 5). The covariate model (i.e.,
predictor variables) captured a majority of the vari-
ability in AWAT and mWAT in all seasons (Fig-
ures 5a-5c). For AWAT, these percentages ranged
from 82% in the full-year to 69% in the summer. For
mWAT, these percentages ranged from 74% in sum-
mer to 67% over the full-year. However, the contribu-
tion of the predictors was inconsistent across seasons
for other traditional temperature metrics (MWAT
and MWMT). For example, the predictors explained a
greater percentage of variability in both MWAT and
MWMT during winter months (Figure 5c) than in
summer months (Figure 5b). Interestingly, we also
noticed within-season differences when we compared
wavelet models; the predictors explained a greater
proportion of variability in the across-day wavelet
variance than they did in the within-day wavelet
variances or the daily range, with the exception of
the winter Wv4 day model (Figures 5a-5c).

TABLE 4. The First Rows Describe the Number of Pair wise Instances in which the 95% Confidence Intervals for the Intercept, Eleva-
tion, Percent Commercial Area, and Mean Annual Discharge Parameters Differed from One Another for a Given Metric (out of 21
possible differences) across the Seven Time Windows for the (a) Traditional Temperature Metrics and (b) Wavelet Variances. To explore
observed differences in the elevation parameter, the following rows provide the estimated elevation parameter and standard error esti-
mates for each combination of time period and metric. Estimates are given in °C/km for AWAT, MWAT, MWMT, mWAT, and AvgDelT
and °C2/km for VAR and all wavelet variance metrics.

(a)

Covariate/Season AWAT MWAT MWMT mWAT VAR AvgDelT

Intercept 17 16 16 14 14 14
Elevation 5 8 5 12 13 0
Commercial 0 0 0 0 2 0
Discharge 0 0 0 0 12 0
Summer �9.81 (1.44) �4.23 (2.04) �6.35 (2.54) �10.27 (1.28) 17.84 (4.37) �1.09 (0.81)
Winter �6.16 (0.59) �5.04 (0.67) �5.55 (0.69) �4.3 (0.63) �0.9 (0.46) �0.49 (0.18)
Full �7.55 (0.79) �4.45 (2.07) �6.39 (2.63) �4.21 (0.67) �1.91 (5.28) �0.86 (0.45)
Coho eggs �8.33 (0.88) �11.57 (1.63) �12.69 (1.84) �4.15 (0.6) �14.5 (3.36) �0.76 (0.34)
Coho spawn �5.54 (0.63) �4.7 (0.68) �5.12 (0.71) �4.4 (0.63) �0.85 (0.54) �0.46 (0.17)
Steelhead eggs �10.74 (1.43) �5.17 (1.8) �6.53 (2.15) �10.17 (1.3) 11.3 (4.08) �1.04 (0.73)
Steelhead spawn �10.08 (1.13) �13.68 (2.06) �14.94 (2.12) �7.43 (0.62) �9.66 (2.55) �1.14 (0.48)

(b)

Covariate/Season Wv1.5 h Wv3 h Wv6 h Wv12 h Wv1 day Wv2 day Wv4 day

Intercept 9 11 11 10 0 0 0
Elevation 4 0 0 0 0 0 0
Commercial 0 0 0 0 0 1 0
Discharge 0 0 1 0 9 4 0
Summer �0.005 (0.002) �0.039 (0.027) �0.29 (0.26) �0.3 (0.27) �0.07 (0.03) �0.2 (0.07) �0.22 (0.08)
Winter 0.001 (0.001) �0.002 (0.003) �0.03 (0.02) �0.04 (0.02) �0.05 (0.02) �0.21 (0.06) �0.2 (0.08)
Full �0.002 (0.001) �0.021 (0.015) �0.17 (0.13) �0.18 (0.12) �0.07 (0.02) �0.25 (0.05) �0.3 (0.08)
Coho eggs �0.001 (0.001) �0.011 (0.009) �0.13 (0.08) �0.15 (0.09) �0.06 (0.02) �0.34 (0.08) �0.32 (0.09)
Coho spawn 0.001 (0.001) �0.001 (0.002) �0.02 (0.01) �0.03 (0.02) �0.08 (0.03) �0.21 (0.06) �0.2 (0.09)
Steelhead eggs �0.004 (0.002) �0.024 (0.022) �0.22 (0.22) �0.24 (0.23) �0.09 (0.03) �0.27 (0.08) �0.38 (0.13)
Steelhead spawn �0.002 (0.001) �0.02 (0.014) �0.24 (0.13) �0.28 (0.14) �0.07 (0.02) �0.45 (0.11) �0.42 (0.1)
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After accounting for the variability explained by
the predictors, the percentage of remaining variabil-
ity explained by the network correlation structure
also differed between metric and season. The network
correlation structure is, essentially, the spatially
structured component of the residual error, which
can be described by the tail-up model after the pre-
dictors have been accounted for, e.g., the importance
of information at neighboring sites. Not surprisingly,
the network correlation structure accounted for little
of the variability in traditional temperature metrics
(AWAT, mWAT), which tended to have strong rela-
tionships with the predictors across all seasons. How-
ever, this was also true in the case of MWAT and
MWMT in the full-year and summer, which had
weaker relationships with the predictors (Figure 6).
In each of these cases, most of the remaining vari-
ability was apportioned to the residual variance, indi-
cating this variability could not be accounted for by
the predictors or by information from nearby, flow-
connected sites. The one exception in the traditional

metrics was VAR, where, after accounting for infor-
mation in the predictors, the network correlation
structure accounted for almost none of the variability
over the full-year and summer, but nearly 52% of the
remaining variability in winter (Figure 6).

The averages, maximums, and across-day wavelet
variances, all followed a consistent pattern with a
greater proportion of variability explained by the net-
work structure in the winter than in the full-year or
summer time windows. The network correlation struc-
ture rarely explained much, if any, of the across-day
wavelet variances or the empirical variance (Fig-
ure 6). Again, the within-day variance metrics, includ-
ing wavelet variances and daily range, followed a
different trend. These metrics had a relatively large
proportion of this variability explained by the network
correlation structure in the full-year and summer time
windows, with a smaller proportion in the winter time
window. We note there are cases in which proportion
of excess variability explained by the network spatial
correlation model for the full-year of data or for

a  Summer b  Winter c  Full−year

d  Coho Eggs Incubation e  Coho Spawning

f  Steelhead Eggs Incubation g  Steelhead Spawning

In−season Empirical Variance
High in−season Variance

Low in−season Variance

FIGURE 3. Relative Empirical Variance Predictions in the Snoqualmie River for Temporal Windows (a) Summer (May 1-August 31, 2012),
(b) Winter (November 1, 2011-March 31, 2012), (c) Full-Year (August 20, 2011-August 19, 2012), (d) Coho Eggs Incubation (December 15,
2011-July 1, 2012), (e) Coho Spawning (November 1, 2011-January 31, 2012), (f) Steelhead Eggs Incubation (April 15-August 15, 2012), and (g)
Steelhead Spawning (March 1-June 1, 2012).
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summertime temperatures was fairly small, as was
the case for MWAT and Wv1 day; yet, in the biologi-
cally relevant time windows such information about
upstream and downstream temperatures was extre-
mely useful for these same metrics. The importance
of network spatial correlation also varied within a

particular type of biologically relevant time window
(e.g., egg spawning periods) for the two different spe-
cies. The network correlation structure explained 81%
of the variance in mWAT during winter steelhead
spawning, but only 28% when coho salmon are likely
to be spawning (28%) (Figure 6).

FIGURE 4. Stream Temperature Metric Predictions during the Steelhead Eggs Incubation Window (April 15-August 15, 2012):
(a) AWAT, (b) MWAT, (c) MWMT, (d) mWAT, (e) VAR, (f) AvgDelT, (g) Wv1.5 h, (h) Wv3 h,

(i) Wv6 h, (j) Wv12 h, (k) Wv1 day, (l) Wv2 day, and (m) Wv4 day.
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DISCUSSION

There is a great deal of research on the distribution
and drivers of mean stream temperature on stream
networks, often in summertime. However, fishes and
other aquatic organisms do not experience mean tem-
peratures. Instead, they live in microclimates that are

highly variable and may be dramatically different
from those that are nearby in space or those that they
might experience with even a small phenological shift
in time (sensu Potter et al., 2013). We demonstrate
here that conclusions about the spatial distribution
and drivers of other facets of the thermal regime, such
as minimums or variability, cannot be extrapolated
from the spatial distribution and drivers of mean
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and Residual Variation by Stream Temperature Metric for (a) Full-Year, (b) Summer, and (c) Winter Time Windows.
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temperature. Additionally, the spatial distribution of
any facet of the thermal regime during one time per-
iod may be quite different from the spatial distribution
of that same facet during another time period. Ther-
mal patterns across the network, correlations among
temperature metrics, and relationships between tem-
perature metrics and common predictors of water tem-
perature cannot be extrapolated from, for example,
summertime data to other time windows such as
spawning seasons, migration windows, or egg incuba-
tion periods. Essentially, the thermal regime on the
Snoqualmie River is not simply warmer at low
elevations or warmer in summer. Much complexity of
thermal networks can then be understood as arrange-
ments of facets, each of which can be modeled
independently on the network and for time windows of
interest within the annual cycle.

Spatial Patterns of Thermal Regime across Time
Windows and Metrics

There were clear spatial patterns in all temperature
metrics (e.g., Figure 4) and, for most metrics, these
patterns were inconsistent across time windows (e.g.,
Figure 3). Thus, information about one facet of the
thermal regime (e.g., average temperature or across-
day variability) in one part of the network may not be
transferable to other parts of the network or other

time periods. Our findings are consistent with other
research indicating high variability in river and even
air temperature regimes over space and variation in
the pattern of that variability across seasons. In wes-
tern Oregon, for example, headwater streams dis-
played high spatial variability with greater spatial
variability during summer and during cold, dry winter
periods than in spring, fall, or warm, wet winter peri-
ods (Jason Leach, Department of Forest Ecology and
Management, Swedish University of Agricultural
Sciences, Umeå, Sweden). Within these same sites,
researchers observed considerable spatial heterogene-
ity at scales smaller than those provided by regional
stream temperature models; recognizing this variabil-
ity will be important when predicting future distribu-
tions of aquatic species. Minder et al. (2010) explored
the spatial variability in air temperature regimes,
often highly correlated with stream and river temper-
atures. They found surprisingly large local differences
in air temperature patterns across the Cascade Moun-
tain range. For example, air temperatures on leeward
sites had a stronger winter daily variability than those
on windward sites. They also found that particular
facets of the air temperature regime, maximums and
minimums, had different relationships to elevation
(lapse rates) from each other and across seasons so
that many details of air temperature patterns could
not simply be extrapolated from one location to
another.
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Spatial heterogeneity in thermal regimes across
river networks has important implications for aquatic
habitats and species. Winter steelhead, for example,
tend to spawn in the lower gradient reaches of the
watershed and may rear for up to two years in
nearby tributaries, upstream tributaries, or main-
stem habitats. Management of winter steelhead
therefore requires a clear understanding of the juxta-
position of thermal habitats. In the Snoqualmie
River, both maximum temperatures and minimum
temperatures are distributed quite differently when
winter steelhead are spawning vs. when winter steel-
head eggs are incubating (Figure 6). Considering just
the steelhead egg incubation window, there are also
fairly dramatic differences between the spatial distri-
bution of average (AWAT) temperatures vs. daily
range (AvgDelT)(Figure 4). A complete understanding
of winter steelhead thermal habitat, from holding to
egg incubation to juvenile rearing, cannot be gained
from temperature data summarized as just one met-
ric, collected only in the more accessible tributaries
or only in the downstream portions of the river net-
work, or from data collected within a single season.
In this case, for example, managing for multiple
facets of the thermal regime during each phase of
winter steelhead freshwater residence could lead to
alternative spatially explicit management recommen-
dations as compared to managing for any one facet or
any one life-history stage.

Relative Influence of the Predictors and the Spatial
Correlation Structure across Metrics and Temporal
Windows

Much research has focused on the complex and
diverse set of forces that drive stream temperature
throughout a watershed. Many of these relationships
are well understood (Caissie, 2006; Webb et al.,
2008). For example, streamflow, either mean annual
discharge or estimates of baseflow, is an indicator of
the amount of thermal storage capacity a reach has,
as well as the speed with which thermal energy is
transmitted downstream (Poole et al., 2004; Caissie,
2006). Percent commercial land use, related to the
amount of impervious area and human development,
affects the interaction between the reach and alluvial
aquifer (Brown and Vivas, 2005; Caissie, 2006; Som-
ers et al., 2013). Elevation is often used as a proxy
for both air temperature and the amount of precipita-
tion in mountainous regions (Eder et al., 2005; Hong
et al., 2005), both of which have been shown to be
strongly related to stream temperature metrics
(Mayer, 2012). We found that these same drivers,
while highly correlated with mean temperatures in
the Snoqualmie River are not particularly useful for

predicting or understanding some other facets of the
thermal regime. These findings open up the possibil-
ity that other mechanisms may be controlling other
facets and initiates a better understanding of the pro-
cesses creating complexity in thermal regimes. Identi-
fication of which land management activities are
associated with shifts in particular facets of the ther-
mal regime builds a foundation for a more nuanced
understanding of how development and climate
change may affect particular species across life
stages.

Quantifying correlations between particular facets
of the thermal regime and landscape conditions
allows us to predict biologically relevant metrics at
unobserved locations (Ruesch et al., 2012; Isaak
et al., 2014) and to explore the degree to which
aquatic communities are structured by complex
thermal cues. Understanding amphibian distribu-
tions, for example, may require an understanding of
maximum temperatures. Previous work indicates
that the probability of both larval and adult tailed
frog, Ascaphus truei, presence is strongly related to
maximum temperatures (Dunham et al., 2007)
which have a much weaker relationship to elevation
in summer than in the earlier parts of the year
(Table 4a). Exploring the effects of wildfire might
also require a consideration, in particular of maxi-
mums (Dunham et al., 2007). Correlations between
landscape condition and particular facets of the
thermal regime allow us to make predictions of
these facets of water temperature across large spa-
tial extents and within particular time windows.
Such predictions can help us refine estimates of
how river thermal regimes are likely to respond to
future climatic conditions. For example, Arismendi
et al. (2013) observed that daily minimum tempera-
tures in winter and spring were particularly respon-
sive to regional climatic conditions.

We found that relationships with elevation, consid-
ered a very good predictor of air and water tempera-
ture, can vary substantially by metric and time
window. Mean winter temperatures (AWAT) are not
only colder in general, but vary less by elevation than
mean summer temperatures (Table 4a). The seasonal
influence of elevation or the potential effects of cli-
mate change across a range of elevations may be
more involved than a simple uniform shift. A particu-
larly important finding of our work is that the
assumption of a uniform shift in stream temperatures
with elevation, across facets of the thermal regime or
seasons, is a poor one. Similar results have been
found for air temperature regimes (Minder et al.,
2010).

Although our predictor model could explain spatial
patterns of mean temperature across the river net-
work, it could not explain spatial pattern in all facets
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of the thermal regime (Figure 5). Our predictor
model, for example, could not explain within-day
variability, as captured by any of the four within-day
wavelet variance metrics, in any of the time windows;
however by using SSNMs we identified a strong spa-
tial pattern in these same metrics. We conclude that
there are spatially structured processes driving
within-day variability which are not well represented
by the predictors traditionally used to model mean
temperature. Although we can identify spatial struc-
ture in residuals of the within-day variability models,
we do not know what the specific process driving that
spatial structure might be. The process could be
related to direct solar radiation or riparian shading
(Johnson, 2004; Jones et al., 2006) but more work is
needed to better explain and understand spatial pat-
terns of within-day variance.

While the amount of spatial autocorrelation in the
metrics varied by metric and time window, additional
variability was accounted for by the SSNMs for every
facet of the thermal regime in at least one time win-
dow (Figure 6). Our results are similar to other stud-
ies which have found that SSNMs substantially
increase the accuracy of mean and maximum temper-
ature predictions when compared to more traditional
models that do not account for the spatial structure
in the data (Peterson et al., 2006; Ruesch et al., 2012;
Isaak et al., 2014).

Building a Better Understanding of Riverine Thermal
Regimes

Riverine thermal regimes, like many complex sig-
nals, can be classified by the frequency, variability,
duration, magnitude, and timing of particular events.
Maheu et al. (2015), for example, were able to classify
135 long-term records of stream temperature regimes
across the conterminous USA into six distinct types
based on only magnitude, amplitude, and timing
characteristics using Fourier transformations. We
have shown that, even within one basin, water tem-
perature patterns at particular locations can differ
from one another with respect to magnitude (aver-
ages, minimums, and maximums) and also with
respect to variability (variance, daily range, wavelet
variances at multiple time scales). Consideration of
fluctuations and variability, though less common
than studies of magnitude, also yields important eco-
logical insights (Gaines and Denny, 1993). By com-
bining results of all our models, each describing a
facet of water temperature, we begin to build a pic-
ture of riverine thermal regimes over space and time.

In our study watershed, summer is generally more
variable than winter, with spatial trends that are
easier to detect and strong elevational gradients in

water temperature. Common predictors of water tem-
perature (i.e., elevation, mean annual discharge, and
land use) can be excellent predictors of mean temper-
atures and even medium-scale variability in stream
temperature; however, they may not be strongly cor-
related with fine-scale, within-day thermal fluctua-
tions. Interestingly, metrics representing fine-scale
temporal fluctuations are spatially correlated with
each other on the network and somewhat muted
along the mainstem. Our best predictions of those
fine-scale fluctuations are therefore based on nearby
observations, found either up or downstream, rather
than external predictors. Minimum temperatures
exhibit much more spatial structure in summer than
average temperatures, and much less spatial struc-
ture than average temperatures in winter. By
enabling an understanding of, say, where in the
watershed minimum temperatures might be increas-
ing or decreasing with land management and climate
change, we provide one of the necessary pieces of
information for estimating future phenology of, say,
aquatic insect emergence timing. Eventually, this
type of understanding can enable predictions about,
for example, which suites of areas might support par-
ticular emergence timing opportunities.

Management of any species requires spatial predic-
tions of suitable habitat. For fishes and most aquatic
organisms, such spatial predictions must be built on
the particular facets of the stream thermal regime
that limit the species of concern as well as its com-
petitors and on a clear understanding of the local and
landscape drivers of those facets of the thermal
regime. Isaak et al. (2015), for example, developed a
framework for identifying future refugia of native fish
based on predictions of August mean temperature. In
order to be able to use metrics that represent particu-
lar facets of biological interest, some understanding
of their correlation with common drivers of thermal
regime such as elevation, drainage area, and land
development as well as an understanding of how they
shift on river networks and between different time
windows is necessary. Our results have demonstrated
that we cannot assume that our models of the local
and landscape drivers of, say, mean or of maximum
temperatures, will be sufficient to understand and
predict other facets of the thermal regime. Within-
day fluctuations, for example, are a part of the
microclimate experienced by individual organisms,
potentially related to phenology of life-history timing
or other sublethal effects. The models that worked
well to predict mean temperature in this watershed
did not work well to predict these within-day fluctua-
tions. Conceptual frameworks that allow this more
nuanced definition of thermal habitat will provide a
better platform for understanding and managing
thermally sensitive organisms.
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Limitations

As in any study, our ability to generalize results
and make inferences about other watersheds is limited
by our sampling design, dataset, and the models con-
sidered. Because the predictive ability of SSNMs
depends on spatial autocorrelation in the dataset, the
sampling design is expected to have a strong impact on
that predictive ability. River temperature tends to
have strong patterns of spatial correlation (Ruesch
et al., 2012; Isaak et al., 2014) and we believe that our
survey design adequately captured the branching
structure of our network. Som et al. (2014) found that
a spatially balanced survey design, similar to the one
used here, provides reasonably accurate parameter
estimates for the predictors and the tail-up covariance
structure. Our leave-one-out cross-validation analysis
also indicates reasonable model fits and predictive
abilities (Table 3). Nevertheless, we only focused on
one river network over a period of one year. As we con-
tinue to collect temperature data, it will be possible to
compare these results to those of subsequent years in
the Snoqualmie as well as other watersheds.

Monitoring Implications

Managers need a way to measure, describe, and
conceptualize the complexity in riverine thermal
regimes that occurs across space and time. Managing
or monitoring for one or two metrics is likely to be
insufficient (Poole et al., 2004). Looking at a variety
of descriptors provides a window into the biologically
relevant complexity of water temperature patterns
(Arismendi et al., 2013). By combining both tradi-
tional and nontraditional metrics, over particular
time windows of interest, a manager can target the
facets of a thermal regime that are of the most biolog-
ical significance. For example, it may be important to
understand the distribution of temperatures above a
threshold during a particular insect life-stage or the
distribution of thermal minima with warming air
temperatures.

In fact, by using a suite of temperature metrics on
the whole network over several time windows, our
analyses provide an efficient and holistic view of ther-
mal regimes; allowing managers to explore multiple
facets of the thermal regime using scarce monitoring
resources. Using SSNMs, we can also predict and
visualize many facets of that complex, spatiotemporal
thermal regime simultaneously (e.g., Figures 3 and
4). Such predictions and visualizations are useful for
siting restoration actions, public access points, con-
servation areas, and monitoring stations.

In general, our results argue for full-year monitor-
ing of riverine thermal regimes (Poole et al., 2004;

Arismendi et al., 2013). Often only one metric is used
to evaluate the temperature regime of a river. For
example, the Environmental Protection Agency
Region 10, which includes Washington State and the
Washington State Department of Ecology, set recom-
mendations for upper limits on stream temperatures
for salmonids based on MWMT (Washington State
Department of Ecology, 2002; U.S. Environmental
Protection Agency, 2003). While high MWMT corre-
sponds to lethal and sub-lethal effects in salmonids
(Richter and Kolmes, 2005), evidence also suggests
that variance plays a role in determining lethal and
sub-lethal events, stress, and the phenology of key
life-history transitions (Steel et al., 2012). We found
that in the Snoqualmie River, there is little correla-
tion between MWMT and the suite of temperature
metrics used to describe variability (Figure 2).
Instead of focusing on maximum temperatures, multi-
ple metrics may be required to design water quality
standards that maintain biologically and ecologically
relevant facets of the thermal signal (Poole et al.,
2004) as well as monitoring programs for facets of
the thermal regime that are likely to be most sensi-
tive to changes in future climate (Arismendi et al.,
2013).

CONCLUSIONS

Water temperature regimes on a river network are
an important ecological resource (Magnuson et al.,
1979), controlled by a variety of seasonally shifting
factors across the entire watershed. By modeling mul-
tiple temperature metrics in both traditional time
windows and during key periods in the life cycles of
river biota, we provide a framework for describing
and predicting some of the richness of river tempera-
ture regimes. Our results for the Snoqualmie River
demonstrate that (1) we cannot assume a uniform
shift in stream temperature with elevation or season;
(2) spatial pattern in one facet of the thermal regime
may differ substantially from spatial pattern in
another facet of the thermal regime; (3) some facets
of the thermal regime have more spatial structure
than other facets of the thermal regime; and (4) the
amount of spatial structure in any facet may shift
over time. Using models, such as the ones presented
here, that target particular facets of the thermal
regime and that account for the spatial structure of
river networks, restoration and mitigation efforts can
more precisely focus management objectives on a spe-
cies, on a facet of the thermal regime, or on the nat-
ural thermal complexity of river systems. As policy
makers seek to mitigate the effects of natural and
anthropogenic disturbances on stream temperatures
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now and into the future, such tools will enable
improved understanding of how unique facets of the
thermal regime and species-specific microclimates
may respond to mitigation efforts, restoration actions,
and future climates.

ACKNOWLEDGMENTS

This project was supported by the USDA Forest Service, Pacific
Northwest Research Station. This research was conducted as part
of a Spatial Statistics for Streams working group supported by the
National Center for Ecological Analysis and Synthesis (Project
12637), a Center funded by the National Science Foundation
(Grant #EF-0553768), the University of California, Santa Barbara,
and the State of California. We thank Aimee Fullerton of NOAA’s
Northwest Fisheries Science Center for helping to design and
implement our monitoring system. We are also grateful for the field
assistance of Sara Anzalone, Conamara Burke, Dongzi Liu, Harry
Podschwit, and Spus Wilder.

LITERATURE CITED

Arismendi, I., S.L. Johnson, J.B. Dunham, and R. Haggerty, 2013.
Descriptors of Natural Thermal Regimes in Streams and Their
Responsiveness to Change in the Pacific Northwest of North
America. Freshwater Biology 58:880-894.

Arrigoni, A.S., G.C. Poole, L.A.K. Mertes, S.J. O’Daniel, W.W.
Woessner, and S.A. Thomas, 2008. Buffered, Lagged, or Cooled?
Disentangling Hyporheic Influences on Temperature Cycles in
Stream Channels. Water Resources Research 44, W09418. DOI:
10.1029/2007WR006480.

Beacham, T.D. and C.B. Murray, 1990. Temperature, Egg Size, and
Development of Embryos and Alevins of Five Species of Pacific
Salmon: A Comparative Analysis. Transactions of the American
Fisheries Society 19:927-945.

Benyahya, L., D. Caissie, A. St-Hilaire, T.B.M.J. Ouarda, and B.
Bernard, 2007. A Review of Statistical Water Temperature Mod-
els. Canadian Water Resources Journal 32:179-192.

Brett, J.R., 1952. Temperature Tolerance in Young Pacific Salmon
Genus Oncorhynchus. Journal of the Fisheries Research Board
of Canada 9:265-323.

Brown, M.T. and M.B. Vivas, 2005. Landscape Development Inten-
sity Index. Environmental Monitoring and Assessment 101:289-
309.

Caissie, D., 2006. The Thermal Regime of Rivers: A Review. Fresh-
water Biology 51:1389-1406.

Constantine, W. and D. Percival, 2011. Wmtsa: Wavelet Methods
for Time Series Analysis. R Package Version 1.1-1. http://
CRAN.R-project.org/package=wmtsa, accessed July 2013.

Cressie, N., J. Frey, B. Harch, and M. Smith, 2006. Spatial Predic-
tion on a River Network. Journal of Agricultural, Biological,
and Environmental Statistics 11:127-150.

Cressie, N.A.C., 1993. Statistics for Spatial Data. Wiley Series in
Probability and Mathematical Statistics, John Wiley and Sons,
New York City, New York.

Daraio, J.A. and J.D. Bales, 2014. Effects of Land Use and Climate
Change on Stream Temperatures I: Daily Flow and Stream
Temperature Projections. Journal of the American Water
Resources Association 50:1155-1176.

Dunham, J.B., A.E. Rosenberger, C.H. Luce, and B.E. Reiman,
2007. Influences of Wildfire and Channel Reorganization on
Spatial and Temporal Variation in Stream Temperature and the

Distribution of Fish and Amphibians. Ecosystems 10:335-346,
DOI: 10.1007/s10021-007-9029-8.

Eder, G., H.-P. Nachtnebel, and M. Sivapalan, 2005. Water Balance
Modeling with Fuzzy Parameterizations: Application to an
Alpine Catchment. In: Climate and Hydrology in Mountain
Areas, C. De Jong, D. Collins, and R. Ranzi (Editors). John
Wiley & Sons Ltd, Chichester, UK, pp. 125-146.

ESRI, 2008. ArcGIS Desktop: Release 9.3. Environmental Systems
Research Institute, Redlands, California.

Fausch, K.D., C.E. Torgersen, C.V. Baxter, and H.W. Li, 2002.
Landscapes to Riverscapes: Bridging the Gap Between Research
and Conservation of Stream Fishes a Continuous View of the
River Is Needed to Understand How Processes Interacting
Among Scales Set the Context for Stream Fishes and Their
Habitat. BioScience 52:483-498.

Fullerton, A.H., C.E. Torgersen, J.J. Lawler, R.N. Faux, E.A. Steel,
T.J. Beechie, J.L. Ebersole, and S.G. Leibowitz, 2015. Rethink-
ing the Longitudinal Stream Temperature Paradigm: Region-
Wide Comparison of Thermal Infrared Imagery Reveals Unex-
pected Complexity of River Temperatures. Hydrological Pro-
cesses 29:4719-4737.

Gaines, S.D. and M.W. Denny, 1993. The Largest, Smallest, High-
est, Lowest, Longest, and Shortest: Extremes in Ecology. Ecol-
ogy 74:1677-1692.

Hong, Y., H.A. Nix, M.F. Hutchinson, and T.H. Booth, 2005. Spa-
tial Interpolation of Monthly Mean Climate Data for China.
International Journal of Climatology 25:1369-1379.

Horizon Systems Corporation, 2007. National Hydrography Dataset
Plus: Documentation. http://www.horizon-systems.com/NHDPlus/
NHDPlusV2_ documentation.php, accessedOctober 2012.

Isaak, D.J., C.H. Luce, B.E. Rieman, D.E. Nagel, E.E. Peterson,
D.L. Horan, S. Parkes, and G.L. Chandler, 2010. Effects of Cli-
mate Change and Wildfire on Stream Temperatures and Sal-
monid Thermal Habitat in a Mountain River Network.
Ecological Applications 20:1350-1371.

Isaak, D.J., E.E. Peterson, J.M. Ver Hoef, S.-J. Wenger, J.A. Falke,
C.E. Torgersen, C. Sowder, E.A. Steel, M.J. Fortin, C.E. Jordan,
A.S. Ruesch, N. Som, and P. Monestiez, 2014. Applications of
Spatial Statistical Network Models to Stream Data. WIREs-
Water 1:277-294. DOI: 10.1002/wat2.1023.

Isaak, D.J., M.K. Young, D.E. Nagel, D.L. Horan, and M.C. Groce,
2015. The Cold-Water Climate Shield: Delineating Refugia for
Preserving Salmonid Fishes through the 21st Century. Global
Climate Change Biology 21:2540-2553.

Johnson, S.L., 2004. Factors Influencing Stream Temperatures
in Small Streams: Substrate Effects and a Shading
Experiment. Canadian Journal of Fisheries and Aquatic
Sciences 61:913-923.

Jones, K.L., G.C. Poole, J.L. Meyer, W. Bumback, and E.A. Kra-
mer, 2006. Quantifying Expected Ecological Response to Natu-
ral Resource Legislation: A Case Study of Riparian Buffers,
Aquatic Habitat, and Trout Populations. Ecology and Society
11:15. http://www.ecologyandsociety.org/vol11/iss2/art15/,
accessed November 2015.

Magnuson, J.J., L.B. Crowder, and P.A. Medvick, 1979. Tempera-
ture as an Ecological Resource. American Zoologist 19:331-343.

Magnuson, J.J. and B.T. Destasio, 1996. Thermal Niche of Fishes
and Global Warming. In: Society for Experimental Biology Sem-
inar Series 61: Global Warming: Implications for Freshwater
and Marine Fish, C.M. Wood and D.G. McDonald (Editors).
Cambridge University Press, Melbourne, Australia, pp. 377-408.

Maheu, A., N.L. Poff, and A. St-Hilaire, 2015. A Classification of
Stream Water Temperature Regimes in the Conterminous USA.
River Research and Applications, DOI: 10.1002/rra.2906,
accessed April 2015.

Mayer, T.D., 2012. Controls of Summer Stream Temperature in the
Pacific Northwest. Journal of Hydrology 475:323-335.

JAWRA JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION18

STEEL, SOWDER, AND PETERSON

http://dx.doi.org/10.1029/2007WR006480
http://CRAN.R-project.org/package=wmtsa
http://CRAN.R-project.org/package=wmtsa
http://dx.doi.org/10.1007/s10021-007-9029-8
http://www.horizon-systems.com/NHDPlus/NHDPlusV2_ documentation.php
http://www.horizon-systems.com/NHDPlus/NHDPlusV2_ documentation.php
http://dx.doi.org/10.1002/wat2.1023
http://www.ecologyandsociety.org/vol11/iss2/art15/
http://dx.doi.org/10.1002/rra.2906


McCullough, D.A., J.M. Bartholow, H.I. Jager, R.L. Beschta, E.F.
Chelsek, M.L. Deas, J.L. Ebersole, J.S. Foott, S.L. Johnson,
K.R. Marine, M.G. Mesa, J.H. Petersen, Y. Souchon, K.F. Tif-
fan, and W.A. Wurtsbaugh, 2009. Research in Thermal Biology:
Burning Questions for Coldwater Stream Fishes. Reviews in
Fisheries Science 17:90-115.

Minder, J.R., P.W. Mote, and J.D. Lundquist, 2010. Surface Tem-
perature Laps Rates over Complex Terrain: Lessons from the
Cascade Mountains. Journal of Geophysical Research 115:
D14122.

Olden, J.D. and R.J. Naiman, 2010. Incorporating Thermal Regimes
into Environmental Flows Assessments: Modifying Dam
Operations to Restore Freshwater Ecosystem Integrity. Freshwa-
ter Biology 55:86-107.

Percival, D. and T. Walden, 2000. Wavelet Methods for Time Series
Analysis. Cambridge University Press, New York City, New
York.

Peterson, E.E., A. Merton, D. Theobald, and N. Urquhart, 2006.
Patterns of Spatial Autocorrelation in Stream Water Chemistry.
Environmental Monitoring and Assessment 121:569-594.

Peterson, E.E. and J.M. Ver Hoef, 2010. A Mixed-Model Moving-
Average Approach to Geostatistical Modeling in Stream Net-
works. Ecology 91:644-651.

Peterson, E.E. and J.M. Ver Hoef, 2014. STARS: An ArcGIS Toolset
Used to Calculate the Spatial Data Needed to Fit Spatial Statis-
tical Models to Stream Network Data. Journal of Statistical
Software 56:1-17.

Poole, G.C. and C.H. Berman, 2001. An Ecological Perspective on
In-Stream Temperature: Natural Heat Dynamics and Mecha-
nisms of Human-Caused Thermal Degradation. Environmental
Management 27:787-802.

Poole, G.C., J.B. Dunham, D.M. Keenan, S.T. Sauter, D.A. McCul-
lough, C. Mebane, J.C. Lockwood, D.A. Essig, M.P. Hicks, D.J.
Sturdevant, E.J. Materna, S.A. Spalding, J. Risley, and M.
Deppman, 2004. The Case for Regime-Based Water Quality
Standards. BioScience 54:155-161.

Potter, K.A., H.A. Woods, and S. Pincebourde, 2013. Microclimatic
Challenges in Global Change Biology. Global Change Biology
19:2932-2939.

R Core Team, 2012. R: A Language Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna,
Austria. http://www.R-project.org/, accessed July 2013.

Richter, A. and S.A. Kolmes, 2005. Maximum Temperature Limits
for Chinook, Coho, and Chum Salmon, and Steelhead Trout in
the Pacific Northwest. Reviews in Fisheries Science 13:23-49.

Ruesch, A.S., C.E. Torgersen, J.J. Lawler, E.E. Peterson, C.J. Volk,
and D.J. Lawrence, 2012. Projected Climate-Induced Habitat
Loss for Salmonids in the John Day River Network, Oregon,
USA. Conservation Biology 26:873-882.

Sch€ar, C., P.L. Vidale, D. L€uthi, C. Frei, C. H€aberli, M.A. Liniger,
and C. Appenzeller, 2004. The Role of Increasing Temperature
Variability in European Summer Heatwaves. Nature 427:332-
336.

Som, N.A., P. Monestiez, J.M. Ver Hoef, D. Zimmerman, and E.E.
Peterson, 2014. Spatial Sampling on Streams: Principles for
Inference on Aquatic Networks. Environmetrics 25:306-323.

Somers, K.A., E.S. Bernhardt, J.B. Grace, B.A. Hassett, E.B. Sud-
duth, S. Wang, and D.L. Urban, 2013. Streams in the Urban
Heat Island: Spatial and Temporal Variability in Temperature.
Freshwater Science 32:309-326.

Sowder, C. and E.A. Steel, 2012. A Note on the Collection and
Cleaning of Water Temperature Data. Water 4:597-606.

Steel, E.A. and I.A. Lange, 2007. Using Wavelet Analysis to Detect
Changes in Water Temperature Regimes at Multiple Scales:
Effects of Multi-Purpose Dams in the Willamette River Basin.
River Research and Applications 23:351-359.

Steel, E.A., A. Tillotson, D.A. Larsen, A.H. Fullerton, K.P. Denton,
and B.R. Beckman, 2012. Beyond the Mean: The Role of Vari-
ability in Predicting Ecological Effects of Stream Temperature
on Salmon. Ecosphere 3(11).

Theobald, D.M., J. Norman, E. Peterson, and S. Ferraz, 2005.
Functional Linkage of Watersheds and Streams (FLoWs): Net-
work-Based ArcGIS Tools to Analyze Freshwater Ecosystems.
Proceedings of the ESRI User Conference.

Torgersen, C.E., R.N. Faux, B.A. McIntosh, N.J. Poage, and D.J.
Norton, 2001. Airborne Thermal Remote Sensing for Water
Temperature Assessment in Rivers and Streams. Remote Sens-
ing of Environment. 76:386-398.

Torrence, C. and G.P. Compo, 1998. A Practical Guide to Wavelet
Analysis. Bulletin of the American Meteorological Society 79:61-
78.

U.S. Environmental Protection Agency, 2003. EPA Region 10 Guid-
ance for Pacific Northwest State and Tribal Temperature Water
Quality Standards. EPA 910-B-03-002, Region 10 Office of
Water, Seattle, Washington.

Ver Hoef, J.M. and E.E. Peterson, 2010. A Moving Average
Approach for Spatial Statistical Models of Stream Networks
(with Discussion). Journal of the American Statistical Associa-
tion 105:6-18.

Ver Hoef, J.M., E.E. Peterson, D. Clifford, and R. Shah, 2014. SSN:
An R Package for Spatial Statistical Modeling on Stream Net-
works. Journal of Statistical Software 56:1-43.

Ver Hoef, J.M., E.E. Peterson, and D. Theobald, 2006. Spatial Sta-
tistical Models That Use Flow and Stream Distance. Environ-
mental and Ecological Statistics 13:449-464.

Ward, J.V. and J.A. Stanford, 1982. Thermal Responses in the Evo-
lutionary Ecology of Aquatic Insects. Annual Reviews in Ento-
mology 27:97-117.

Washington Department of Fisheries, 1993. 1992 Washington State
Salmon and Steelhead Stock Inventory. Olympia, Washington.
http://wdfw.wa.gov/publications/00194/wdfw00194.pdf, accessed
October 2013.

Washington State Department of Ecology, 2002. Evaluating Stan-
dards for Protecting Aquatic Life in Washington’s Surface Water
Quality Standards: Temperature Criteria. Draft Discussion
Paper and Literature Summary. Publication Number 00-10-070,
189 pp.

Webb, B.W., D.M. Hannah, R.D. Moore, L.E. Brown, and F. Nobi-
lis, 2008. Recent Advances in Stream and River Temperature
Research. Hydrological Processes 22:902-918.

Wei, T., 2013. Corrplot: Visualization of a Correlation Matrix. R
package version 0.73, http://CRAN.R-project.org/package=corr-
plot, accessed December 2013.

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION JAWRA19

SPATIAL AND TEMPORAL VARIATION OF WATER TEMPERATURE REGIMES ON THE SNOQUALMIE RIVER NETWORK

http://www.R-project.org/
http://wdfw.wa.gov/publications/00194/wdfw00194.pdf
http://CRAN.R-project.org/package=corrplot
http://CRAN.R-project.org/package=corrplot

