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Abstract
We provide a simple framework for diagnosing the impairment of stream water temperature for coldwater fishes

across broad spatial extents based on a weight-of-evidence approach that integrates biological criteria, species
distribution models, and geostatistical models of stream temperature. As a test case, we applied our approach to
identify stream reaches most likely to be thermally impaired for Lahontan Cutthroat Trout Oncorhynchus clarkii
henshawi in the upper Reese River, located in the northern Great Basin, Nevada. We first evaluated the capability
of stream thermal regime descriptors to explain variation across 170 sites, and we found that the 7-d moving
average of daily maximum stream temperatures (7DADM) provided minimal among-descriptor redundancy and,
based on an upper threshold of 20�C, was also a good indicator of acute and chronic thermal stress. Next, we
quantified the range of Lahontan Cutthroat Trout within our study area using a geographic distribution model.
Finally, we used a geostatistical model to assess spatial variation in 7DADM and predict potential thermal
impairment at the stream reach scale. We found that whereas 38% of reaches in our study area exceeded a 7DADM
of 20�C and 35% were significantly warmer than predicted, only 17% both exceeded the biological criterion and
were significantly warmer than predicted. This filtering allowed us to identify locations where physical and
biological impairment were most likely within the network and that would represent the highest management
priorities. Although our approach lacks the precision of more comprehensive approaches, it provides a broader
context for diagnosing impairment and is a useful means of identifying priorities for more detailed evaluations
across broad and heterogeneous stream networks.

The human-caused warming of temperature in stream eco-

systems is widespread and viewed as a major threat to cold-

water fishes (Poole and Berman 2001; Olden and Naiman

2010). The impairment of stream water quality owing to

excessive warming is often diagnosed by applying biological

temperature criteria, typically based on thresholds linked to

physiological stress or decreased survival associated with

increased temperature (e.g., Brungs and Jones 1977; Armour

1991). For example, when formerly cold streams warm to

exceed values specified by biological temperature criteria we

can expect a greater probability of physiological stress or mor-

tality for coldwater biota. Although this approach to diagnos-

ing water quality impairment appears sensible enough and is

relatively straightforward to apply, further examination has
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revealed several important shortcomings. First, a single bio-

logical criterion or limited set of criteria may not fully protect

the range of temperatures that fish require (McCullough et al.

2009). Compounding this issue is the diversity of conditions

represented by thermal regimes (Arismendi et al. 2013) and

the likelihood that the application of overly simplistic criteria

will misdiagnose water quality impairment (Poole et al.

2004). Finally, there is the problem of identifying locations

where species protected by biological temperature criteria

should be expected to be present, as this dictates where criteria

are applied.

Biological temperature criteria are difficult to specify for

stream fishes because most species require a variety of habitats

in which to spawn, rear, and take refuge from harsh environ-

mental conditions, including variable temperature (Schlosser

and Angermeier 1995; Falke and Fausch 2010). The effects of

temperature can be specified in terms of acute or chronic expo-

sure. Acute exposure to brief excursions of temperature out-

side of the species’ physiological range can lead to immediate

stress or death. Over longer time frames, chronic exposure to

temperature with sublethal effects on behavior, growth, dis-

ease resistance, or a variety of other responses (McCullough

et al. 2009) can be a concern. Therefore, it may be unreason-

able to expect that a single criterion or limited set of criteria

could successfully ensure that thermal requirements are met

across habitat types and life stages. Compounding this issue is

the vast number of ways in which thermal regimes can be

described, which include the magnitude, frequency, duration,

and timing of temperature across seasons and throughout the

year (Arismendi et al. 2013). Failure to consider such patterns

of thermal variability may have obvious biological consequen-

ces (Poole et al. 2004; Olden and Naiman 2010), but important

physical consequences are likely as well. For example, the

application of point estimate biological criteria alone could

(legally) allow cold streams to be warmed even if the criteria

are not exceeded or could misdiagnose streams that are not

naturally cold as impaired (Poole and Berman 2001; Poole

et al. 2004). Identifying where biological temperature criteria

should be applied is yet another challenge, but in many cases

reliable maps or models of species distributions are available

and can be useful in this regard. Given the considerations dis-

cussed here, it is clear that approaches that seek to address

more than just biological temperature criteria are more likely

to lead to satisfactory management outcomes (see also Poole

et al. 2004; McCullough 2010).

Our overall objective in this study was to develop a practi-

cal approach for diagnosing the impairment of stream water

temperature for coldwater fishes across broad spatial extents

by recognizing that multiple lines of evidence, not solely bio-

logical criteria, may be most useful. To do so, we considered

three lines of evidence. The first step in diagnosing impairment

is to consider the likelihood that the observed water tempera-

ture is causing physiological stress to the species of interest.

This involves the evaluation and application of biological

temperature criteria. With this template in place, our next step

was to define where a species could be found (i.e., geographic

range) and what temperatures should be expected to occur

within that area to support the species of interest. In our appli-

cation, this involved mapping the potential range of our focal

species. The final step was to provide a means of evaluating

the likelihood that stream temperature was warmer than

expected, relative to some baseline. Ideally, such an evaluation

would involve the use of a fully parameterized heat budget

model (e.g., Cox and Bolte 2007; Diabat et al. 2012), but this

approach is impractical when considering many sites across a

broad extent; statistical models of stream temperature may

prove more useful (Isaak et al. 2010; Falke et al. 2013; Jones

et al. 2014). Together, these lines of evidence were combined

to diagnose the impairment of stream temperature for aquatic

biota (Figure 1).

FIGURE 1. Illustration of the three lines of evidence used to diagnose

impairment of stream temperature. Biological criteria refer to thresholds based

on physiological responses of fish to temperature. These can be specified as

short-term or acute exposures (�1 d) or chronic (�7 d) exposures to tempera-

ture (e.g., minimum, maximum, mean, or other). Biological criteria can apply

to different seasons of the year to cover different uses or life stages of fish.

Stream temperature refers to spatial or temporal patterns of temperature as

related to factors that influence the heat budget of streams or statistical associa-

tions with factors linked to heat budgets (e.g., elevation). Species’ range refers

to the potential extent of a species distribution in the absence of thermal

impairment or other local constraints (e.g., movement barriers, nonnative

fishes). Intersections between two of the three lines of evidence indicate ques-

tions related to uncertainty about the third. For example, if biological criteria

are satisfied and observed and predicted temperatures are similar, then ques-

tions remain regarding whether a given location is actually within a species’

range. For sites within a species’ range, attainment of biological criteria leaves

questions about thermal potential, whereas attainment of thermal potential

leaves questions about meeting biological criteria. In concert, all three lines of

evidence provide the strongest inference for evaluating the likelihood of

impairment of stream temperature.
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We evaluated the case of Lahontan Cutthroat Trout Onco-

rhynchus clarkii henshawi in the northern Great Basin of the

western USA to provide an example of our proposed approach

for diagnosing patterns of stream temperature impairment

(Figure 1). This region represents a vast and remote landscape,

where the range of native salmonids is constrained by topo-

graphic and geographic gradients and associated in-stream

conditions (temperature and desiccation; Platts and Nelson

1989; Dunham et al. 1999; Warren et al. 2014). To address

these constraints, we first considered existing biological tem-

perature criteria developed specifically for Lahontan Cutthroat

Trout to evaluate thermal impairment. Next, we applied an

existing model (Warren et al. 2014) to identify streams that

occurred within the expected range of the species and modeled

spatial patterns of temperature within these streams using a

geostatistical model (Peterson et al. 2013; Isaak et al. 2014)

with elevation as the covariate to account for longitudinal pat-

terns of warming. This allowed us to track longitudinal

changes in temperature, with a positive difference between the

observed–predicted temperatures indicating potential instan-

ces of localized warming. Finally, we combined the three lines

of evidence resulting from these analyses to diagnose patterns

of potential impairment across a Great Basin riverscape in cen-

tral Nevada.

METHODS

Study area.—The Great Basin includes a large arid region

in the western USA comprised of several distinctive endorheic

basins (i.e., basins which have no current outlet to the sea;

Grayson 2011). To evaluate biological criteria for our study

species, we focused on streams in the eastern Lahontan portion

of the Great Basin (Hubbs and Miller 1948), which comprises

the native range of Lahontan Cutthroat Trout, with additional

sites in the nearby Jarbidge River basin (Figure 2). Lahontan

Cutthroat Trout is listed as a threatened species under the U.S.

Endangered Species Act (USFWS 2008).

The application development portion of our study was cen-

tered on the upper Reese River basin (Figure 2 inset), which

comprises the southern edge of the distribution of Lahontan

Cutthroat Trout in the eastern Lahontan basin. This network of

streams originates high in the federally protected Arc Dome

Wilderness (3,591 m in elevation), the largest natural area

within the state of Nevada (U.S. Forest Service, Humboldt

National Forest). From their headwaters, these streams flow

down into lower-elevation federal lands managed for multiple

uses (U.S. Forest Service and Bureau of Land Management)

and through parcels of land under tribal and private ownership.

Accordingly, this network represents a gradient of thermal

conditions and land management.

Within the upper Reese River basin, Lahontan Cutthroat

Trout have been extirpated from all but the upstream-most

reaches of a major tributary, Stewart Creek (USFWS 2008).

Despite native Lahontan Cutthroat Trout being mostly

extirpated, the basin represents a potential opportunity for spe-

cies recovery and currently supports nonnative Rainbow Trout

O. mykiss, Brook Trout Salvelinus fontinalis, and Brown Trout

Salmo trutta.

Biological criteria evaluation.—Our first step was to con-

sider the likelihood that observed water temperature might

cause physiological stress to Lahontan Cutthroat Trout. Our

evaluation of biological criteria focused on two key questions:

(1) which individual stream temperature descriptors account

for the most variation in summer water temperature? and

(2) can a single descriptor ensure that other criteria are not

exceeded? For the latter question, we compared descriptors

describing acute versus chronic and summer versus winter

thermal regimes.

Stream temperature data from across the northern Great

Basin and the Jarbidge River basin in Nevada were obtained

from the Nevada Division of Environmental Protection

(NDEP) for 1997–2012 and via our own sampling in the upper

Reese River basin in 2012 and the Oregon Lakes region in

2012–2013 (Figure 2). These data represented a broad range

of variability in climate, elevation, and watershed physiogra-

phy. Sites suspected to have dried or become intermittent were

removed from the analysis, resulting in a total of 219 sites

(119 for the NDEP, 51 in the upper Reese River basin, and 49

in the Oregon Lakes region) included in our biological criteria

evaluation. All analyses were based on data collected at hourly

intervals.

Within the upper Reese River basin, we collected continu-

ous stream temperature data during summer and early fall

2012 (June–October; Figure 2). Hourly temperature was

recorded using HOBO Water Temp Pro v2 loggers (Onset,

Bourne, Massachusetts). Water temperature loggers were

deployed at 51 sites: 28 in the upper Reese River, 21 in Stew-

art Creek, and 1 logger each was placed a short distance

upstream of the confluences of two small tributaries to the

upper Reese River, Big Sawmill Creek, and Little Sawmill

Creek. Year-round temperature data were collected from 49

sites in the Oregon Lakes region during 2009–2011. Calibra-

tion and field deployment of temperature loggers in the upper

Reese River basin and Oregon Lakes region datasets followed

guidelines outlined in Dunham et al. (2005).

Summer thermal regime variability.—Next, we evaluated

the capability of a variety of stream thermal regime descriptors

to explain variation. We identified descriptors commonly used

to characterize the thermal regimes of streams during summer

months that represent five aspects of a stream’s thermal

regime: magnitude, variation, frequency, duration, and timing

(Arismendi et al. 2013). Subsequently, summer water temper-

ature descriptors were calculated for the NDEP and upper

Reese River basin sites (Figure 2; n D 170) using a custom

script in Program R (R Core Team 2012). Based on an initial

examination of the data, the period of July 1 through August

30 was chosen as the period of analysis (hereafter referred to

as summer). See Supplementary Table S.1 in the online
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version of this article for a list of descriptor definitions and

how the descriptors were calculated.

Principal components analysis (PCA) was performed on the

correlation matrix of water temperature descriptors calculated

for each site to examine dominant patterns of intercorrelation

and describe the major sources of variation while minimizing

redundancy among the descriptors.

The correlation rather than the covariance matrix was used

for this study because the descriptors themselves, not the sites,

were the focus of the analysis, and this method ensured that all

descriptors contributed equally to the PCA and were scale-

independent (Legendre and Legendre 1998). The statistical

significance of PCA axes was evaluated using the broken-stick

method, for which observed eigenvalues are compared with

randomly generated values (Jackson 1993). Descriptors were

ranked by thermal regime aspect (see above) for each signifi-

cant axis. Descriptors with the highest loadings were consid-

ered to explain the dominant pattern of variation in thermal

regimes.

Descriptor exceedance likelihood.—Because specific tem-

perature criteria for Lahontan Cutthroat Trout do not currently

exist for Nevada, we used criteria developed by the state of

Oregon (State of Oregon 2015; Table S.2) to evaluate whether

a single biological temperature criterion could act to ensure

that other criteria were not exceeded. The Oregon criterion

specifies that temperature to support Lahontan Cutthroat Trout

shall not exceed 20�C at any time of the year, as indicated by

the 7-d moving average of daily maximum temperatures

FIGURE 2. Map of the locations of all the sites sampled for stream temperature in the northern Great Basin, with symbols indicating the sites used in the analy-

sis of summer (July–August) versus nonsummer 7-d moving average of daily maximum stream temperatures (October–May; circles) and of summer chronic and

acute criteria and among-descriptor redundancy (triangles). Sites in the upper Reese River and Stewart Creek that were included in the spatial stream network

model are shown in the inset.
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(7DADM). As used here, 7DADM refers to the warmest 7-d

average of daily maximum temperatures observed for a

defined span of time (e.g., a month, season, or year). This

quantity is calculated with slightly different methods in the

different states that use this descriptor. For example, in Idaho

the weekly mean of daily maximum temperatures is calculated

over a consecutive 7-d period ending on the day of calculation,

whereas in Washington the weekly mean of daily maximum

temperatures is calculated using 3 d preceding and 3 d follow-

ing the day of calculation included in the weekly summary

(Table S.2). We used the latter method here.

We next evaluated whether a single descriptor could ensure

that other criteria were not exceeded through an assessment of

chronic versus acute criteria applied during the summer

(defined herein as July–August) and during the reproductive

season (October–May; Todd et al. 2008). We used logistic

regression to predict the probability during summer of exceed-

ing an acute thermal stress descriptor, the daily maximum tem-

perature (DM), conditional on the 7DADM, to evaluate if the

7DADM prevents unacceptable exceedance of DM tempera-

tures of 20, 22, 24, and 26�C. This analysis was conducted on

the NDEP and upper Reese River basin datasets (total n D 170

sites).

We also used logistic regression to model the probability of

exceeding a 7DADM of 12, 13, 14, or 15�C from October–

May as a function of the maximum 7DADM in the same water

year (October–September) to evaluate if the summer (July–

August) 7DADM is protective of the water temperature

required during the reproductive season for salmonids. These

thresholds cover the range of criteria considered by some

states to be protective of salmonid spawning (Table S.2). This

analysis was based on the Oregon Lakes region (n D 49 sites)

dataset.

Species range.—The next step in our prioritization pro-

cess was to determine the range of Lahontan Cutthroat

Trout within our study area. We applied a geographic dis-

tribution model of species’ range developed by Warren

et al. (2014) to evaluate the potential range of salmonids

within the Reese River basin. This model predicts the

lower elevation of salmonid distributions in stream net-

works based on latitude and longitude. The model was

parameterized using empirical, georeferenced surveys of

fishes conducted over several decades (1953–2010), reflect-

ing a broad spectrum of spatial and temporal hydroclimatic

conditions in the northern Great Basin. Predictions from

this model represent downstream elevations above which

95% of salmonid presence would occur in warmer months

(July 1 to September 30; Warren et al. 2014). For the pur-

pose of this study, we applied the distribution model corre-

sponding to Lahontan Cutthroat Trout.

Stream temperature.—We assessed spatial variation in

the upper Reese River basin dataset to evaluate the likeli-

hood that stream temperature is warmer than expected, rel-

ative to some baseline, using a spatial stream network

model (SSN; Ver Hoef et al. 2006; Peterson and Ver Hoef

2010; Ver Hoef and Peterson 2010). This spatial linear-

mixed model allows for relaxation of the assumption of

independence among observations (i.e., spatial dependency)

and spatial autocorrelation in the errors. Thus local (i.e., at

a site) deviations in the response from the overall mean

are modeled using the covariance between nearby sites,

based on the stream distance (i.e., hydrologic distance

along the stream) separating them. This approach ensures

that parameter estimates reflect the appropriate amount of

uncertainty and, by incorporating spatial relationships (i.e.,

autocorrelation), allows for improved local predictions and

uncertainty estimates at unsampled locations (Cressie

1993; Peterson et al. 2013; Isaak et al. 2014). An SSN

model of 7DADM (July 1 to August 30, as above) as the

response variable and elevation (m) as a fixed-effect covar-

iate was fit using data from the 51 sites sampled within the

upper Reese River. Elevation for each site was taken from

a 10-m digital elevation model for the region (Dollison

2010).

Hydrologic distances (km) were estimated based on a digi-

tal stream network created using the Functional Linkage of

Waterbasins and Streams (FLoWS) toolbox (Theobald et al.

2006) for ArcGIS version 9.3 (ESRI 2009) based on the

1:100,000 scale National Hydrography Dataset (NHDPlus)

digital hydrography (McKay et al. 2012). Spatial weights

were based on upstream watershed areas (km2) for each stream

reach in the network taken from the NHDPlus and incorpo-

rated into the SSN object using the Spatial Tools for the Anal-

ysis of River Systems (STARS) version 9.3.1 geoprocessing

toolbox. Preliminary analysis based on Akaike information

criterion model selection (Akaike 1973; Burnham and Ander-

son 2002) indicated that a two-tailed (i.e., tail-up and tail-

down) linear-with-sill moving-average autocovariance func-

tion best fit the data (see Ver Hoef and Peterson 2010 for

examples). The SSN model was fit using the SSN package

(Ver Hoef and Peterson 2013) in Program R (R Core Team

2012). The FLoWS, STARS, and SSN packages are freely

available (USFS 2015).

Diagnosis of potential impairment.—We evaluated the

potential impairment of stream temperature in the Reese

River–Stewart Creek network (upper Reese River basin)

based on the framework proposed herein (Figure 1). First,

we evaluated the potential for sites to support salmonids

based on species distribution models (Dunham et al. 2002;

Warren et al. 2014). Sites within the potential range of sal-

monids were evaluated with respect to (1) their expected

and observed temperatures, based on predictions of the

SSN model, and (2) conformance to biological temperature

criteria (�20�C 7DADM; see Results). Stream temperature

at each observed site was evaluated using a leave-one-out

cross validation (LOOCV), whereby a single site was

excluded from the dataset and the SSN model was fit with

the remaining data (Wenger and Olden 2012). Predictions
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from this resulting model were applied to the excluded site

and the resulting difference between the predicted and

observed temperature was calculated. If the observed tem-

perature was warmer than predicted, we interpreted this as

a potential case of excessive warming or impairment that

would require further investigation (e.g., an evaluation of

site conditions that could contribute to warming). We

defined a site as significantly warmer than predicted if the

difference between the predicted and observed 7DADM

exceeded the range of associated prediction error (defined

by root mean square prediction error). Similarly, sites with

temperatures exceeding the thresholds specified by biologi-

cal temperature criteria were considered as potentially

impaired. Finally, we used the SSN model to predict

7DADM every 0.5 km throughout the upper Reese River

and Stewart Creek study area. We then broke the network

into reaches that corresponded with the range parameter

(i.e., length of stream for which estimates are spatially

redundant) estimated by the SSN model and classified each

of these reaches with respect to evidence indicating poten-

tial impairment (Figure 1).

RESULTS

Summer Thermal Regime Variability

Four principal component axes were statistically significant

and explained 81.0% of the variation in summer water temper-

ature descriptors (Table 1). The strength of the PCA is the

ability to identify individual descriptors that explain nonredun-

dant variation in summer thermal regimes. The first axis (PC I;

51% of variation explained) represented a gradient in maxi-

mum or high temperature descriptors, whereas PC II (13%)

represented a gradient in minimum temperature descriptors. In

terms of overall variation explained, summer temperature

descriptors describing minima, variability in minimum tem-

peratures, frequency of moderate temperatures, and timing of

maximum temperatures were ranked highest. The 7DADM

descriptor used for this study ranked highly among descriptors

describing the magnitude component of a thermal regime.

This result indicates that among the descriptors we considered

that described the magnitude of thermal variation at a site,

7DADM provides the least among-descriptor redundancy.

Descriptor Exceedance Likelihood

For 170 sites across the Great Basin and Jarbidge River

basin, our descriptor representing acute stress during summer

(DM) ranged from 16.61�C to 38.17�C (mean D 23.74�C,
SD D 4.17) and our descriptor representing chronic stress

(7DADM) ranged from 15.71�C to 33.86�C (mean D 22.51�C,
SDD 3.83). The summer 7DADMwas a nearly perfect predic-

tor of DM during the same time period (simple linear regres-

sion, F D 11,670.00, P < 0.001, r2 D 0.985), and the slope

and intercept of this relationship were not significantly differ-

ent than 1 or 0, respectively (t D 0.6, P D 0.41; t D ¡1.78,

P D 0.09). All four logistic regressions were highly significant

(all P < 0.002) indicating that for the range of DM thresholds

TABLE 1. Top three stream temperature descriptors with the largest absolute loadings for each significant principal component (PC I – PC IV) by category.

Descriptors with the largest absolute loadings across all four principal components are also presented (Overall column). The eigenvalues and percentage of vari-

ance are shown for each significant principal component and the total. See Table S.1 for the definitions of descriptor abbreviations.

Category PC I PC II PC III PC IV Overall

Magnitude WMT95 OVER_MIN MMAX OVER_MIN MMIN

MWMT MMIN WMT5 WMT5 OVER_MIN

7DADM WMT5 MMIN WMT25 7DADM

Variation RNG CV_MIN CV_MN CV_MIN SIGMA_MIN

DELTA_MAX CV_MN SIGMA_MN SIGMA_MIN SIGMA_MN

SIGMA_MIN CV_MAX CV_MAX CV_MN DELTA_MAX

Frequency SUM_18 SUM_14 WEEK_18 SUM_14 SUM_14

SUM_22 SUM_22 SUM_22 WEEK_18 SUM_22

WEEK22 WEEK22 WEEK_14 SUM_22 WEEK_18

Duration PG15 PG10 DMAX10 DMOV15 DMAX15

DMAX20 PG5 DMOV10 DMAX15 DMOV15

PG20 PG15 DMOV20 DMAX10 PG10

Timing MDMT_DATE MDMT_DATE MIN_DATE MDMT_DATE MDMT_DATE

MDMT_ ROLL MDMT_ ROLL MIN_ ROLL MDMT_ ROLL MDMT_ ROLL

MIN_DATE MIN_DATE MDMT_DATE MIN_DATE MIN_DATE

Eigenvalue 23.15 6.07 4.53 2.68

Percent variance 51.44 13.48 10.07 5.96 81.0
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that we analyzed (20–26�C), if 7DADM exceeds that value,

the DM will almost certainly as well (Figure 3; Table 2).

Therefore, for the range of thermal regimes we analyzed, the

7DADM descriptor is a good indicator of both chronic and

acute thermal stress.

The observed summer 7DADM in streams across the Ore-

gon Lakes basins dataset ranged from 11.78�C to 26.38�C
(mean D 19.54�C, SD D 3.73), whereas for winter the descrip-

tor ranged from 7.60�C to 16.85�C (mean D 11.55�C, SD D
2.09). Summer (July–August) 7DADM was a significant

(all P < 0.05) predictor of winter (October–May) 7DADM

thresholds set at 12, 13, 14, and 15�C (Figure 4; Table 3).

Based upon Oregon’s summer criteria for Lahontan Cutthroat

Trout (7DADM D 20�C), the likelihoods of exceeding winter

7DADMs of 14�C and 15�C were low (<0.2, including the

upper 95% confidence limit; Figure 4), but increased for 12�C
and 13�C, with a maximum probability of 0.46 (upper 95%

confidence limit) to exceed 12�C. Thus for the dataset we ana-
lyzed, the ability of a summer chronic water temperature

descriptor to predict winter conditions was dependent on the

FIGURE 3. Summer (July 1 to August 30) 7-d moving average of daily maximum stream temperatures (7DADM;�C) in relation to the probability of exceeding
a summer daily maximum stream temperature (DM) of 20, 22, 24, and 26 �C at 170 sites sampled across the Great Basin and Jarbidge River basin (Figure 2).

See the text for the calculation of the 7DADM and DM descriptorKHs. The gray shading represents the 95% confidence interval.
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selected winter threshold. In other words, attaining a suitably

cold 7DADM in summer does not guarantee sufficiently cold

temperatures in the nonsummer reproductive seasons. For

example, under the natural thermal regimes we studied it may

be difficult to meet the lowest winter standard (12�C) with a

summer 7DADM of 20�C.

Stream Temperature and Species Range

Based on model predictions from Warren et al. (2014),

all 51 sites we sampled in the upper Reese River and

Stewart Creek were located within a designated habitat

patch for Lahontan Cutthroat Trout (Figure 5), indicating

that thermal and/or flow conditions in these streams should

be expected to potentially support this species. However,

based on our observed data and the criterion we applied

(7DADM < 20�C), we found that temperatures were

exceeded at 29 of the 51 sites (57%); these sites would be

classified as impaired if only biological criteria were con-

sidered. None of these sites were in Stewart Creek. The

SSN model predicted 7DADM as a function of elevation

(t D ¡2.012, P D 0.037; Table 4). Diagnostics from the

LOOCV indicated results of the SSN model had near-zero

bias (the mean of observed–predicted values was ¡0.07,

with a 1:1 relationship; Figure 6). Prediction error was esti-

mated to be less than 0.5�C (root mean square prediction

error D 0.44). As expected, error in the predictions

increased with distance from the observed sites (Figure 5).

Implementation of Prioritization Tool

In the context of our framework for diagnosing potential

impairment of stream temperature, 29 of the 51 sampled sites

located predominantly in the upper Reese River would be clas-

sified as impaired based solely on biological criteria. Of these,

25 were substantially warmer (>2�C) than our selected maxi-

mum criterion (7DADM < 20�C). Based on LOOCV, 8 of the

51 sites (16%) were significantly (>0.44�C) warmer than pre-

dicted. Combining evidence from both of these lines (since all

sites were within the expected range of Lahontan Cutthroat

Trout; Figure 5) we found that 3 of the 51 (6%) sites exceeded

the biological criteria of 20�C and were warmer than pre-

dicted, thus providing the strongest evidence for thermal

impairment.

We further refined our classification of impairment by

applying interpolated 7DADM values from the SSN model.

Based on the range parameter estimate from the SSN model,

which indicated that 7DADM estimates were redundant to

within about 1.5 km of a given site (Table 4), we broke up the

stream network into 20 reaches of approximately 1.5 km and

categorized each by evidence for impairment, calculating the

total length of stream in each of the potential impairment cate-

gories (Figure 5). Within the 29.15 km comprising the upper

Reese River and Stewart Creek study area, 11.20 km (38%)

exceeded the biological criteria of 20�C, and 10.06 km (35%)

were significantly warmer than predicted. Overall, 4.90 km

(17%) exceeded the biological criteria and were significantly

warmer than predicted.

DISCUSSION

Although the prioritization tool we propose here is simple

in concept, we found it provides a rapid and relatively low-

cost assessment of the potential for the impairment of stream

temperature across a stream network. Such approaches are a

practical necessity given the vast and remote expanse of the

Great Basin and the limited resources available to sample fish

or stream temperature. We suspect that the case of the Great

Basin is not unique and that there are many areas facing simi-

lar challenges with respect to assessing stream temperature.

Each of the three lines of evidence we evaluated is limited

when considered independently, but applied together each can

act as a filter to identify or prioritize the most important sites

needing further evaluation for evidence of impairment. Below

we discuss the advantages and limitations of the approach we

applied here with respect to each of the three lines of evidence.

In our case study, the first line of evidence, the distribu-

tion of Lahontan Cutthroat Trout, was not by itself useful as

TABLE 2. Parameters from the logistic regression models used to predict the probability of exceeding a daily maximum stream temperature of 20, 22, 24, or

26 �C from July 1 to August 31 as a function of the 7-d moving average of daily maximum temperatures (7DADM; see text for calculation) in the same time

period (July–August). Data were from 170 sites sampled across the Great Basin and Jarbidge River basin (Figure 2).

July–August 7DADM (�C) Coefficient Estimate SE z P-value

20 Intercept ¡63.096 18.172 ¡3.472 <0.001

7DADM 3.361 0.966 3.479 <0.001

22 Intercept ¡73.279 19.745 ¡3.711 <0.001

7DADM 3.508 0.943 3.720 <0.001

24 Intercept ¡88.735 23.031 ¡3.853 <0.001

7DADM 3.895 1.011 3.852 <0.001

26 Intercept ¡114.491 37.645 ¡3.041 0.002

7DADM 4.657 1.538 3.029 0.002
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a means of prioritization because all the sites that we sam-

pled were located within the species’ range. More generally

this would not be the case as the range of salmonids in the

Great Basin in general is limited to colder portions of stream

networks (Warren et al. 2014). Accordingly, if our method

was applied more broadly across the Great Basin, or in other

locations, we would expect the species’ range to serve as a

useful means of prioritizing sites for diagnosis of

impairment. This is important because the most recently

updated summary of water quality impairment in the United

States provided by the U.S. Environmental Protection

Agency (USEPA 2013) indicates over 3,100 instances of

thermal impairment of streams, with a total of over 1,400 km

of streams listed as impaired for temperature in the state of

Nevada alone (NDEP 2014).

Our second line of evidence, biological criteria, indicated

that 38% of the stream network that we studied was potentially

impaired with respect to the thermal tolerance of Lahontan

FIGURE 4. Summer (July 1 to August 30) 7-d moving average of daily maximum stream temperatures (7DADM;�C) in relation to the probability of exceeding
a nonsummer (October 1 to May 31) 7DADM of 12, 13, 14, and 15�C at 49 sites sampled in the northern Great Basin (Figure 2). The gray shading represents the

95% confidence interval.
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Cutthroat Trout. Although biological criteria can diagnose nat-

urally warm reaches of streams as impaired for coldwater use

(Poole et al. 2004), applying our criterion to the network of

streams we considered herein provided a useful means of pri-

oritizing sites for further consideration. Our third and final line

of evidence, a statistical model of stream temperature, indi-

cated that 35% of the stream network that we considered was

warmer than predicted, but only 17% of the network was too

warm for Lahontan Cutthroat Trout and warmer than pre-

dicted. This filtering allowed us to identify locations where

physical and biological impairment were most likely within

the network that we studied. These locations likely represent

the highest priorities from a management perspective, but it is

important to note that warming in streams that do not exceed

biological criteria is also a concern and a limitation of relying

too strongly on biological criteria alone as a means of diagnos-

ing impairment (Poole et al. 2004). In our example, the

reaches with the strongest evidence of impairment were

located downstream of protected areas (i.e., designated wilder-

ness) or associated with natural features that can heat streams

(e.g., beaver ponds; Kemp et al. 2012; Figure 3).

Given that we relied heavily on a simple geostatistical

model in our example, it is worth discussing the advantages

and limitations of this specific approach in more detail. Our

model predicted 7DADM only as a function of elevation,

which for this situation was statistically precise. This approach

is useful for the system we studied because higher elevations

are located in a designated wilderness area with relatively min-

imal human impacts. Similar models in other systems where

human impacts are more prevalent could be improved by

including additional temporal (e.g., streamflow or climatic

conditions) and spatial (e.g., shade, riparian or instream habitat

condition) covariates in the SSN model (Isaak et al. 2010) or

by adopting a more causal modeling approach (Irvine et al.

2015). Any selected covariates should be carefully considered

with respect to how reliably they represent the processes driv-

ing natural or human-caused changes in stream temperature

(Poole and Berman 2001; Irvine et al. 2015). In cases where

greater resolution is needed, the application of more mechanis-

tic models of heat budgets (Cox and Bolte 2007; Diabat et al.

2012) may be warranted, but these approaches are more inten-

sive and costly than our approach and thus unlikely to be feasi-

ble across broad extents, such as we have considered herein. In

this regard, the application of the SSN model also highlighted

its value in cases where temperature records are missing. The

site at Little Sawmill Creek that dried (not included in the

SSN model) had an observed 7DADM of 33.9�C (a measure

of local air temperature since this site had dried). Using the

SSN model to predict this missing observation resulted in a

predicted 7DADM of 16.7�C (SE, 2.9), which is closer to

what would be expected if the site on this small tributary had

not dried and highlights that interpolation can be made quite

accurately using these methods.

Finally, it is worth considering the climatic context in

which our case study occurred. The widespread pattern of

warm (>20�C) temperature in our network of streams could

be attributed in part to the fact that the year we sampled

(2012) was above-average warm and dry. For example, the

Palmer drought severity index, which incorporates air temper-

ature, precipitation, and soil moisture into an index represent-

ing wet or dry conditions, indicated that for the Reese River

basin, conditions ranged from moderately to extremely dry

throughout 2012 (NOAA 2014). However, in many cases

water temperature was well above (e.g., 7DADM > 20�C) our
criteria, suggesting that even in a typical climate year tempera-

tures would be relatively warm in the system. Clearly, consid-

eration of the spatial and temporal context within which a

system is set should be taken into consideration with respect to

management decisions. Flexible prioritization tools such as

the one we have developed should be useful in this situation.

Management Implications

In conclusion, by considering biological criteria in the con-

text of other lines of evidence, we were able to more effi-

ciently diagnose the reaches of streams most likely to be

TABLE 3. Parameters from the logistic regression models used to predict the probability of exceeding the 7-d moving average of daily maximum temperatures

(7DADM; see text for calculation) of 12, 13, 14, or 15 �C from October–May as a function of the maximum 7DADM in the same water year (October–Septem-

ber). Data were from 49 sites in the Oregon Lakes region (Figure 2).

October–May

7DADM (�C) Coefficient Estimate SE z P-value

12 Intercept ¡3.9279 2.0311 ¡2.321 0.020

7DADM 0.17276 0.0952 1.815 0.008

13 Intercept ¡6.5564 2.8803 ¡2.276 0.023

7DADM 0.2524 0.1341 2.651 0.041

14 Intercept ¡7.3724 3.2059 ¡2.300 0.022

7DADM 0.2830 0.1476 2.199 0.028

15 Intercept ¡9.1030 3.6430 ¡2.252 0.024

7DADM 0.3071 0.1687 2.023 0.041
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FIGURE 5. Predictions of 7-d moving average of daily maximum stream temperatures (7DADM) for 51 sites in the upper Reese River–Stewart Creek network

in Nevada (see Figure 2 inset) from a spatial stream network model. The map shows (A) values for observed sites and (B) predictions made every 0.5 km along

each stream. The size of each point reflects the standard error of the estimate. Reaches were categorized (C) based on exceedance of biological temperature crite-

ria (7DADM > 20�C) or (D) by both biological temperature criteria and observed versus expected temperatures following the methods suggested in the text and

Figure 1. Unsampled reaches (gray lines) were not categorized.
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thermally impaired. Many approaches to evaluating thermal

impairment for coldwater fishes rely heavily on specifying

biological criteria, which can become a very involved process

(e.g., Todd et al. 2008; McCullough 2010) and risk the misdi-

agnosis of streams that are not naturally cold as impaired

(Poole et al. 2004). The approach we applied here considers

biological criteria but also provides a more integrated

approach to diagnosing impairment and a useful means of

identifying priorities for more detailed evaluations across a

broad network of stream reaches. Moreover, previous methods

used to diagnose thermal impairment in streams are limited

because they require the availability of data in a particular

stream reach. As we have shown here, improved statistical

methods for modeling and mapping species distributions and

stream temperature, and perhaps as important the uncertainty

surrounding those predictions (see also Isaak et al. 2010;

Ruesch et al. 2012; Falke et al. 2013), provide the capability

for accurate diagnosis of thermal conditions and potential ther-

mal impairment throughout stream networks. Such capabilities

promise to extend our view beyond local instances of

impairment to stream network and regional extents that are

more broadly relevant for considering the future of coldwater

fishes in the context of changing land use and climate.
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