Introduction to Spatial Stream-Network Models

Erin E Peterson & Jay Ver Hoef 23 May 2015

CSIRO www.csiro.au

Conceptualization of Stream Systems

- Dendritic ecological networks (DENs)
 - Highly connected, directed dendritic networks (Grant et al. 2007)
- Seminal papers: Schlosser & Angermeier 1995; Fisher 1997; Ward 1997,1998; Fausch et al. 2002; Power & Dietrich 2002; Wiens 1999, 2002; Allan 2004; Benda et al. 2004; Fisher et al. 2004

- Key physicochemical & biological processes operate at the 'network scale' (1-100 km)
 - e.g. Metapopulation dynamics and disturbance regimes
- Goal: Investigate relationships between a set of locations, rather than treating discrete locations independently

Schlosser's dynamic landscape model of stream fish life history (Figure 2 from Schlosser and Angermeier 1995).

Challenges of Modelling Streams Data

Dendritic network structure

- Form semi-restricted corridors
- In-stream dispersal & species interactions
- Position within the network affects food web composition & structure

Dual spatial representation

Networks are embedded in the terrestrial environment

Connectivity

- Lateral: Catchment-Floodplain-Channel
- Longitudinal: Flow & in-stream processes

Directional flow

- Flowing water influences processes
- Passive versus active movement

Spatio-temporal variability of habitat and flow

• Evolutionary or ecological niche

What is a spatial statistical model?

- Traditional statistical models (non-spatial)
 - Residual error (ε) is assumed to be uncorrelated
 - $-\epsilon = unexplained$ variability in the data

$$Y = X\beta + \varepsilon$$

- Spatial statistical models
 - Residual errors are correlated through space
 - Spatial patterns in residual error resulting from unidentified process(es)
 - Model spatial structure in the residual error
 - Explain additional variability in the data
 - Generate predictions at unobserved sites with estimates of uncertainty

$$Y = X\beta + \delta + \varepsilon$$

 Spatial patterns in the residual error are traditionally described using Euclidean distance

What is a Spatial Statistical Model?

Fit an autocovariance function to data

• Describes relationship between observations based on separation distance

Distances and spatial relationships

• Represented differently depending on the distance measure

Spatial Relationships in Streams

Euclidean

• As the crow flies

Flow-unconnected

• As the fish swims

Flow-connected

• As the water flows

Autocovariance Models for Streams

Tail-up	Tail-down
Hydrologic distance	Hydrologic distance
Flow-connected relationships	Flow-connected & Flow-unconnected relationships
Spatial weights used to split function	Spatial weights not necessary

Mixture Models

Variance component approach

- Single model fit using a mixture of covariances based on different spatial relationships
- Sum of positive-definite covariance matrices
 - Models: Tail-up, Tail-down, Euclidean

Flexible Modelling Approach

- Measured and unmeasured variables at multiple scales
- Spatial-weighting schemes for Tail-up models

$$\boldsymbol{\Sigma} = \boldsymbol{\sigma}_{Euc}^2 \mathbf{R}_{Euc} + \boldsymbol{\sigma}_{down}^2 \mathbf{R}_{down} + \boldsymbol{\sigma}_{up}^2 \mathbf{R}_{up} + \boldsymbol{\sigma}_{nug}^2 \mathbf{I}$$

where

$$R_{Euc}, R_{down}, R_{up}$$

 $\sigma_{Euc}^2, \sigma_{down}^2, \sigma_{up}^2, \sigma_{nug}^2$

matrices of autocovariance values for Euclidean (*Euc*), tail-down (*down*), and tail-up (*up*) models.

are the variance components.

Spatial Autocorrelation and Parameter Estimates

Model	Covariate	Estimate (SE)	p-value	р	AIC	r²	RMSPE (°C)
Non-spatial	Intercept	31.2 (0.918)	p < 0.01	6	3912	0.46	2.99
	Elevation (100 m)	-0.754 (0.0512)	p < 0.01				
	Glacial valley (%)	-3.04 (0.574)	p < 0.01				
	Valley bottom (%)	3.06 (0.631)	p < 0.01				
	Stream slope (%)	-6.62 (2.92)	p = 0.02				
	Contributing area (100 km ²)	0.124 (0.0048)	p = 0.01				
Spatial	Intercept	30.5 (1.69)	p < 0.01	13	3161	0.85	1.58
	Elevation (100 m)	-0.767 (0.0881)	p < 0.01				
	Glacial valley (%)	-1.51 (0.797)	p = 0.06				
	Valley bottom (%)	2.95 (0.645)	p < 0.01				
	Stream slope (%)	-0.0929 (3.57)	p = 0.98				
	Contributing area (100 km ²)	0.0495 (0.0864)	p = 0.57				

Table 2 from Isaak et al. (2014), WIRES Water

Survey Design on Streams

Prediction or fixed effects estimation, with an unknown covariance structure

- Good spatial coverage
- Clusters
 - Headwater segments
 - Outlet Segment
- Singles
 - Headwater segments
 - Trend

Summarizing Over Area: Block Kriging

Disjunct to Spatially Explicit Management

Provides a semi-continuous view of conditions, with estimates of uncertainty, across relatively broad spatial scales

Making Methods Accessible

Tools:

- STARS: Spatial tools for the Analysis of River Systems
 - Custom toolset for ArcGIS versions 9.3, 10.1, and 10.2
- SSN: R package for spatial statistical stream-network modeling
 - Data structure: modification of the spatial data structures used in sp package

Learning materials:

• Tutorials, vignettes, example datasets, papers

Example datasets for statisticians

• Promote the development of new methods for stream networks

Spatio-temporal Visualization

- In-situ sensors produce massive spacetime datasets
- Spatio-temporal patterns are difficult to visualize
- R package STSN
 - Provides data structure to promote methods development

Spatial Animation

Temporal Animation

Where to from here...

Spatial statistical stream-network models

Engage with statisticians to develop/adapt spatial statistical methods for streams

- Occupancy models
- Models for extremes
- Big data
- Spatio-temporal models
- Multivariate data
- Nonstationarity
- Visualization tools

