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ABSTRACT

Geographically isolated wetlands (GIWs) are characterized as ‘isolated’ because they are embedded by uplands, though they
potentially exhibit a gradient of hydrologic, biological, or chemical connections to other surface waters. In fact, recent field
studies have begun to elucidate that GIWs exhibit varying degrees of hydrologic connectivity. In this study, we examine the
influence of GIWs on streamflow, a potential indicator of GIW hydrologic connectivity with surface waters. We assess annual
and seasonal spatially based statistical relationships between GIW characteristics (e.g. volume and extent) and streamflow across
a dense network of subbasins using a hybrid modeling approach. Our method involves the Spatial Stream Network (SSN) model,
which considers spatial autocorrelation of model covariates explicitly, and the Soil and Water Assessment Tool (SWAT), which
predicts streamflow across a network of 579 subbasins in the lower Neuse River Basin, North Carolina, USA. Our study results
suggest that GIWs, to some extent, influence streamflow. The further GIWs are from a stream, the greater their capacity to
increase streamflow due to the physiographic setting, hypothesized transit times, and sequencing of watershed hydrologic
connectivity in the study area. However, as the combined extent of GIWs and non-GIWs increases in subbasins, seasonal and
annual streamflow decreases. Results also suggest that other landscape indicators of watershed-scale hydrology can, in aggregate
with GIWs and non-GIWs, explain variations in seasonal and annual simulated streamflow. Our study findings begin to elucidate
the aggregate influence of GIWs on streamflow, providing insights for future decision-making on GIW protection and
management. Copyright © 2015 John Wiley & Sons, Ltd.
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INTRODUCTION

Wetlands provide important ecosystem functions and
services including flood regulation, fish and fiber produc-
tion, water supply sources, recreation, water purification,
and coastal protection (Millennium Ecosystem Assessment,
2005). Despite their potential benefits, the explicit consid-
eration of wetlands in watershed management and planning
processes is often secondary to other water bodies (e.g.
streams, river, and lakes). This limited focus on wetlands as
mediators and providers of a wide range of ecosystem
services coincides with the approximately 30–90% decline
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in the world’s wetland spatial coverage by activities such as
conversion of wetland areas for urban development and
agriculture (Junk et al., 2013).
Geographically isolated wetlands (GIWs) are distin-

guishable as depressional landscape features that are
entirely surrounded by uplands and include water body
types such as prairie potholes, playa lakes, vernal pools,
pocosins, Carolina bays, and cypress domes (Brinson,
1988; Tiner, 2003a). This nomenclature does not neces-
sarily imply functional isolation because these systems
may exhibit a gradient of hydrologic, biological, or
chemical connections to other surface waters (Mushet
et al., 2015). For example, in some situations and/or
settings, GIWs have shown clear hydrologic connectivity
with other surface water systems (e.g. Leibowitz and
Vining, 2003; Wilcox et al., 2011; Forbes et al., 2012).
However, our scientific understanding regarding the
hydrologic connectivity of GIWs and their effects on
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downstream hydrology is limited to case-specific studies
and key questions regarding their aggregate impacts on
ecological and watershed functions remain unexplored
(Leibowitz, 2003; Leibowitz et al., 2008).
Geographically isolated wetlands have been a primary

focus in regulatory efforts within the United States (US).
Two US Supreme Court cases, the 2001 Solid Waste Agency
of Northern Cook County (SWANCC) v. the United States
(US) Army Corps of Engineers, 531 U.S. 159, and Rapanos
v. United States 547 U.S.715 (2006), suggest that protection
can be afforded to GIWs under the US Clean Water Act in
situations where a significant nexus between GIWs and
traditional navigable waters can be identified. As a result of
these Supreme Court decisions, decision makers have been
handed a critical challenge to which science and engineers
must respond: To what extent are GIWs connected to or
demonstrate an effect on traditional navigable waters
(Leibowitz et al., 2008)? A first step toward addressing this
challenge is to quantify the potential hydrologic influence of
GIWs on downstream surface waters.
Abundant field-based studies provide important insights

on hydrologic connectivity within hillslopes and small
watersheds (e.g. James and Roulet, 2007; Hopp and
McDonnell, 2009; Jencso et al., 2009; McGuire and
McDonnell, 2010). Further, literature are available that
quantify linkages between non-GIWs and streamflow
(Johnston et al., 1990; Vining, 2002) and variations in
the hydrologic regime of individual GIWs (McLaughlin
and Cohen, 2013; 2014). However, studies that assess the
hydrologic effects of GIWs on surface waters at a range of
watershed scales are limited (e.g. Wilcox et al., 2011; Lang
et al., 2012), in part because elucidating these linkages is
particularly challenging. First, potential connectivity via
surface and groundwater is highly variable across space
and time, physiographic settings, and ecoregions (Winter
and LaBaugh, 2003). For example, variations in connec-
tivity can result from multiple factors relating to landscape
position such as the hydraulic gradient between the GIW
and the stream, the distance of the GIW to the stream, and
fill-spill dynamics between wetlands (e.g. wetland volumes
can increase (‘fill’) from runoff contributed by upgradient
wetlands and decrease in volume by contributing runoff (i.
e. wetlands ‘spill’) into downgradient wetlands (Leibowitz
and Vining, 2003)). Such variables can affect (1) the
potential impact of that wetland or wetland complex on the
hydrograph and (2) detection of that effect using empirical
or modeling methods. Second, hydrologic connectivity can
be expressed via multiple pathways including but not
limited to shallow subsurface flows (Sun et al., 1996;
Pyzoha et al., 2008), overland flow (Wilcox et al., 2011),
groundwater flow (Winter and LaBaugh, 2003), and
perched groundwater discharge (Rains et al., 2006) – all
of which may occur in any given GIW complex over the
course of a given year (e.g. Sun et al., 1995; Devito et al.,
Copyright © 2015 John Wiley & Sons, Ltd.
1997). Finally, limited data exist that elucidate these
hydrologic connections across seasonal or annual time
scales (e.g. Cook and Hauer, 2007; Wilcox et al., 2011).
Statistical models are important tools for identifying the

potential influences of GIWs on downstream hydrology at
the watershed scale and for providing improved parameter
estimates for dynamic simulation models that address
similar questions (Golden et al., 2014). The first step in
developing such models involves identifying watersheds
with extensive GIW coverage (Tiner, 2003b). Coastal Plain
systems (Omernik, 1987), for example, are areas where
depressional wetlands systems are common (Pyzoha, 2008)
and thus are prime study areas for testing and assessing the
effects of GIWs on downstream hydrology. A second step
involves identifying a time series of hydrologic data from
multiple subbasins within the larger watershed system to
evaluate these statistical linkages between GIWs and
downstream flow conditions. These flow conditions can
be obtained from mechanistic hydrologic models that
simulate watershed runoff and streamflow by using
mathematical formulations and structured calibration
methods (National Research Council, 2007).
The objective of this study is to examine the watershed-

scale aggregate influence of GIWs on streamflow.
Specifically, we analyse the spatially based statistical
relationships between simulated streamflow, the response
variable, and GIW characteristics (e.g. volume, extent, and
type) across a dense network of subbasins using a hybrid-
modeling approach. This constitutes one of the first known
studies to investigate the role of watershed GIWs on the
downstream hydrograph. Our work focuses on an area of
approximately 6570 km2 within the lower Neuse River
Basin of North Carolina, USA, a Coastal Plain system with
a high density of mapped GIWs (Lane et al., 2012) and
simulated hydrologic time series data from 579 subbasins
ranging in area from 1.4 to 37.3 km2 (Price et al., 2013).
The hybrid statistical and mechanistic modeling approach
we employ incorporates a recently developed geostatistical
model (Peterson and Ver Hoef, 2010; Ver Hoef and
Peterson, 2010a, b) with an established hydrologic
modeling tool (Soil and Water Assessment Tool (SWAT);
Gassman et al., 2007) that simulates streamflow at each
subbasin outlet. We analyse streamflow as a response
variable using annual and seasonal geostatistical models
that represent the configuration, connectivity, and flow
direction of stream networks. Model predictor variables
include the volume, type, and extent of GIWs and non-
GIWs, in addition to a parsimonious array of landscape
indicators of watershed rainfall-runoff processes and
groundwater flow. We interpret the effects of GIWs on
streamflow via potential hydraulic gradients and hydrologic
connections; however, for the purposes of this paper, we
term all downgradient and downstream hydrograph
responses as ‘downstream’ effects. The results from this
Ecohydrol. (2015)
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study provide important insights on the hydrologic
connectivity of GIWs to surface waters and afford an
improved mechanistic understanding of the relationships
among GIWs and other surface waters in the hydrologic
landscape.
METHODS AND MATERIALS

Study area

The Neuse River Basin is located within the Middle
Atlantic Coastal Plain ecoregion in North Carolina, USA
(Omernik, 1987). Our study area covers approximately
6570 km2 in the lower Neuse River Basin within the
boundaries of the North Carolina Coastal Region
Evaluation of Wetland Significance Study (NC-CREWS;
Figure 1; Sutter, 1999). The Neuse River Basin covers
Figure 1. Study area and example distribution of wetlands in the 579

Copyright © 2015 John Wiley & Sons, Ltd.
two physiographic provinces: the Piedmont and the
Coastal Plain. However, our study area lies entirely within
the Coastal Plain portion of the basin. We chose this
particular region of the Neuse River Basin to utilize
locally derived wetland types from NC-CREWS for the
Coastal Plain of North Carolina (described in GIWs:
Identification and volume calculations).
The study watershed has undergone considerable

management attention in recent years due to rapid
human-influenced changes in hydrology and nutrient
loading (Paerl et al., 2006; Rothenberger et al., 2009).
Based on the 2006 National Land Cover Database obtained
from the Multi-Resolution Land Characteristics Consor-
tium (Fry et al., 2011), land cover is predominately
agricultural (41%), forested (20%), and covered by
wetlands (17%). However, portions of the study area are
developed (10%) or include grassland/herbaceous cover
study subbasins in the lower Neuse River Basin, North Carolina.

Ecohydrol. (2015)
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(5%), shrub/scrub (5%), and other land cover types (2%).
The NC-CREWS data suggest that the freshwater wetland
types with the most extensive coverage within the study
area are bottomland hardwoods wetlands, managed
pineland wetlands, and riverine swamp forests (Sutter,
1999). Dominant GIW wetland types include depressional
swamp forest wetlands, drained hardwood flats, drained
pine flats, nondrained hardwood flats, and managed
pineland wetlands.
The study area climate is humid temperate. Climate

normals (1981–2010) recorded at three of the primary
weather stations in the study area (Kinston, NC; Goldsboro
Seymour Johnson AFB, NC; and Clayton, NC) suggest that
the highest average precipitation occurs during the summer
months and the lowest during winter (NCDC, 2011).
However, high rainfall and streamflow periods can occur
throughout the year (Figure 2). Mean temperatures during
summer months (June through September) at these three
weather stations range from 25°C to 26°C. Summer
precipitation averages range from approximately 37 cm
to 42 cm. Late summer and early autumn tropical storm
events are often in high intensity and can collectively
influence regional streamflows (Keim et al., 2007).
Average winter temperatures (January through March)
range from 5°C to 7°C, and mean winter precipitation is
approximately 26 cm at all stations (NCDC, 2011).
The Coastal Plain portion of the Neuse is underlain by

clastic alluvial and marine sediments (Walker and
Coleman, 1987; Leigh, 2008). In a small portion in the
upper northwest of the study area, coarse, unconsolidated
materials promote high rates of infiltration and shallow
subsurface transport (Ator et al., 2005). However, in the
Figure 2. Monthly precipitation, SWAT-simulated streamflow at USGS 0209
observed streamflow a

Copyright © 2015 John Wiley & Sons, Ltd.
majority of our study area, sediment textures are mixed
and vary laterally and horizontally from coarse sands to
clays and silts. Wetlands in this area and in the uplands
throughout the Neuse River Basin are often underlain by
a clay confining layer, affording limited wetland-based
opportunities for groundwater recharge and contributions
to subsurface transport. Warm temperatures and abundant
vegetation result in annually high evapotranspiration (ET)
rates; approximately 51% of regional annual precipitation
is lost to evapotranspiration (Ator et al., 2005). Elevation
ranges across the study area from 0 m to 125 m above
mean sea level. Slopes within the study area’s subbasins
average 2.6% and range from 0.56% in the lower study
area to 8.3% in the upper portion of the study area.
There are no significant areas of karst within the Neuse
system.
Conceptualizedwetland hydrologic processes in the study area

Soils, surficial geology, and wetland hydrologic character-
istics can vary widely across small spatial extents and the
hydrologic and hydraulic processes resulting from these
variations can be quite complex. However, for the purposes
of this study and the large spatial extent it encompasses, we
developed a generalized conceptual model for wetland
hydrological processes across this watershed area and the
seasonal and annual time scales we examine in order to
proceed with the selection of model input variables and the
analysis of model results. The study area includes abundant
GIW and non-GIW wetlands and wetland complexes,
many of which are elliptical depressions oriented in a
northwest-southeastern direction (i.e. Carolina bays; Ross,
1814 Neuse River at Fort Barnwell gage (outlet of the study area), and the
t USGS 02091814.

Ecohydrol. (2015)



Figure 3. Cumulative SWAT-simulated average annual and seasonal
streamflow across the 579 study subbasins.
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2003; Sharitz, 2003). Wetlands in this area of the Coastal
Plain, and within our study area in particular, typically
exhibit soils with sandy loams underlain by a low
permeability clay layer and can also have a sandy rim
and sandy soils in the adjacent uplands (Sharitz and
Gibbons, 1982). Deep groundwater connections from the
GIW upland areas to downgradient streams in the study are
limited because of the relatively low topographic gradients,
low soil permeability, and clayey confining layers
underneath the sandy loam soils (Heath, 1980), particularly
when undisturbed (e.g. nondrained) conditions exist
(Sharitz and Gibbons, 1982; Sharitz, 2003). Thus,
precipitation, evapotranspiration, and return, shallow
subsurface, and surface flows in and out of the wetlands
are the primary hydrologic processes governing these
wetland and wetland complexes. The magnitude of these
processes can vary across seasons and years based on
factors such as temperature, precipitation, and long-term
drought or wetness conditions. GIWs and other upland
wetlands in the study area may exhibit a fill-spill
mechanism similar to the Prairie Pothole Region (PPR)
of North America (Shaw et al., 2012) because while
climate, geology, and soils are vastly different between the
two regions, our study area and the PPR have similarly
abundant wetland distribution across the landscape, low
slope gradients, and limited deep groundwater exchanges.
Further, because localized shallow subsurface flow patterns
may exist where the study wetlands and wetland complexes
are located, potential mounding from the shallowwater table
may also occur because of the seasonally strong (e.g. spring
and summer) evapotranspiration rates in these systems
(Winter and LaBaugh, 2003).
SWAT watershed delineations and hydrologic simulations

We applied the Soil and Water Assessment Tool (SWAT)
2009 (Neitsch et al., 2011) to predict streamflow for each
of the study subbasins (Sharitz and Gibbons, 1982). We
summarized daily simulated streamflow for each of the
subbasins into mean seasonal and mean annual streamflow
(Figure 3), and these data were used as the response
variables for our geostatistical models. To develop the
study subbasins, we first generated the stream network
during SWAT preprocessing using a 30 m digital elevation
model (Price et al., 2013), a scale computationally
appropriate for the application of the SWAT model in a
drainage area of this size. We then divided the area into
579 topographically defined subbasins using SWAT, each
containing GIWs covering > or = 1% spatial extent
(Table I). The study subbasins average drainage area was
11.4 km2 (5.8 km2 standard deviation, SD) with ranges
from 1.4 km2 to 37.3 km2. We then split each subbasin into
hydrologic response units (HRUs) in which all pixels
sharing the same combined land cover, soils, and slope
Copyright © 2015 John Wiley & Sons, Ltd.
class are simulated with a uniform flow response. We
diagnosed potential nonspatial linear relationships of land
cover, soils, and slope with annual and seasonal streamflow
using Spearman rank correlation coefficients. Results
showed either no significant or weakly significant
(r< 0.24) nonspatial correlations between these factors
and streamflow.
We used meteorological data (daily precipitation,

maximum and minimum temperatures for the study period
(2001–2010) from the National Climate Data Center
(NCDC) or North Carolina CRONOS database (NCDC,
2011; State Climate Office of North Carolina, 2011) and
SWAT assigned daily values to each subbasin based on the
data station within closest proximity to the subbasin
centroid. We excluded stations missing greater than 10%
of daily observations; missing values were obtained from
the next closest station (Ngongondo et al., 2011). We
selected all default options for the SWAT simulations
except that the Hargreaves equation for evapotranspiration
was substituted for the default Penman–Monteith equation.
Hargreaves produced more accurate uncalibrated fits
between simulated and observed flows, particularly with
low flows, which have been observed in other studies
applying SWAT (Wang et al., 2006; Setegn et al., 2008).
We calibrated and validated SWAT using a split-

sample approach (Klemes, 1986; Price et al., 2012),
dividing the period of record (2002–2010) into a
calibration period (2002–2007) and a validation period
(2008–2010) from daily US Geological Survey (USGS)
stream gage time series data. Calibration was conducted at
the stream gage at the outlet of the study area (Figure 1).
Our calibration approach was to find the set of SWAT
parameters that resulted in the maximum Nash–Sutcliffe
Efficiency score:
Ecohydrol. (2015)
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NSE ¼ 1�∑ n
t¼1

∑ n
t¼1

Ot�; Stð Þ2
Ot � O¯ð Þ2

where Ot is the observed streamflow (L3 T�1), Ō is the
mean of the observed streamflow (L3 T�1), and St is the
simulated streamflow (L3 T�1). Calibration achieved a
maximum NSE score of 0.85 for monthly streamflow
(Figure 2). We performed validation using these NSE-
optimized parameter values by comparing simulated
flows for 2008–2010 with USGS-observed flows at the
main study area outlet, for which the monthly NSE
score was 0.87 (Figure 2). We also performed
validation by comparing observed and simulated flows
from nine gaging stations inside the study area
(Figure 1). Average monthly and annual R2 values at
these internal cross-check gages were 0.69 and 0.85
(p< 0.05), respectively, for upstream drainage areas
that averaged 2438 km2 (range = 150 to 6972 km2, the
largest of which extends approximately 402 km2 above
our study area).
Model predictor variables

Geographically isolated wetlands: identification and
volume calculations. We used the NC-CREWS dataset
for delineating potential GIWs in the study area and
identifying all other nonisolated wetlands. These data
represent the most recent National Wetlands Inventory
(NWI)-enhanced spatial data for wetlands in the study
area (Sutter, 1999). Further details regarding the
development and quality assurance procedures of the
NC-CREWS dataset, which involves a multiphase
combination of NWI, county soils, and land use/land
cover data, can be found from the North Carolina
Division of Coastal Management (DCM) (Sutter, 1999;
www . n c c o a s t a lm a n a g em e n t . n e t /We t l a n d s /
Wetlands_meta.htm, accessed 13 February 2014).

We delineated potential GIWs within the study
using a multiple step methodology described in Reif
et al. (2009) and Frohn et al. (2009) (Figure 1, bottom
left). Briefly, we first aggregated the NC-CREWS
wetland data so that nested polygons were treated as a
single wetland, though each wetland retained its
original area-weighted classification. This was neces-
sary to ensure that the entire wetland would be selected
if any portion of it was designated as nonisolated.
Next, we followed Reif et al. (2009) and Lane et al.
(2012) and created a 10 m buffer area around
1 : 24000-scale flowline, waterbody, and water area
datasets from the National Hydrography Dataset
(NHD; http://nhd.usgs.gov/index.html). While NHD
flowline connectors, paths, and unnamed artificial
paths were removed from the NHD flowline prior to
Ecohydrol. (2015)
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buffering, artificial paths with names (which tend to
represent larger creeks and rivers rather than pathways
through large lakes or ponds) were included in the
buffering process. We also included NHD canals and
ditches in the buffer analysis since they often represent
irrigated areas. Wetlands outside of the conservative 10
m buffered area were considered ‘geographically isolat-
ed’. We identified nonisolated wetlands by overlaying
the GIW layer on the NC-CREWS dataset for the study
area. We then estimated the percent of all GIW types per
subbasin and the percent dominant types of nonisolated
wetlands for each of the 579 subbasins and used in these
variables as predictor variables to the geostatistical
model (Table I). We note that our methodology may
classify wetlands as ‘isolated’ that are potentially
connected to other unmapped surface waters (e.g. via
ditching). Though we use the term ‘geographically
isolated’, we recognize that these wetlands are, in fact,
presumed GIWs based on tested spatial analytical
techniques (Lane et al. 2012).
We calculated wetland volumes following the method-

ology presented in Lane and D’Amico (2010) using 3 m
pixel size Light Detecting and Ranging (LiDAR) data
collected between January and March 2001, acquired by
direct transfer from the North Carolina Division of
Emergency Management Floodplain Mapping Program in
2011 (see Floodplain Mapping Program, North Carolina
Division of Emergency Management Neuse River LIDAR
metadata, available from http://floodmaps.nc.gov for addi-
tional information [accessed 30 January 2014]). We first
built a digital terrain from the bare earth LiDAR data using
ArcGIS10 (ESRI Corporation, Redlands CA) 3D Analyst
(Figure 1, lower right). We then calculated the average
perimeter elevation for all of the GIWs by converting the
boundary of the GIWs to vertices then running the Surface
Information Tool in ArcGIS 10 to gather the Z value
(elevation from the 3 m National Elevation Data (NED)
available for North Carolina from the USGS (http://ned.
usgs.gov/) for each of the vertices. By summarizing the
vertices for each and then dividing the value by the number
of vertices, we were able to calculate the average perimeter
elevation; more complex GIWs had more vertices (see
Lane and D’ (2010) for additional information). We used
this average perimeter elevation as the stage-height
elevation value in volume calculations. Using the Polygon
Volume model in ArcGIS 3D Analyst, we then calculated
volume for each of the GIWs, following the assumption
that the digital terrain used for calculating perimeter
elevations represents dry wetland conditions (to avoid the
underestimation of wetland volumes). Finally, we calcu-
lated the total GIW volume for each subbasin as an input
variable to the models (Table I). Factors that describe the
potential for water to flow from a GIW to the stream are
detailed in the Watershed-scale variables section.
Copyright © 2015 John Wiley & Sons, Ltd.
Watershed-scale variables. We incorporated indicators of
soil wetness, surface and shallow subsurface runoff, and
groundwater contributions that could affect streamflow,
along with average GIW and non-GIW volume, area,
distances, and percent dominant wetland types within both
categories, in our model development (Table I). Variables
were derived for each of the 579 subbasins. All GIS
analyses for estimating these watershed-scale variables
were conducted using ArcGIS10, and a summary of data
sources for each derived predictor variable used in this
study is listed in the supporting information.
We calculated two variables to estimate the influence of

distance and slope on runoff from GIWs to surface waters:
(1) average distance from GIWs to the stream along
estimated flow paths and (2) average slope of the subbasin.
We generated both using the 10 m National Elevation
Dataset (http://ned.usgs.gov/) rather than the 3 m LiDAR
DEM to stay consistent with the application of publically
available national datasets for the derivation of watershed
metrics and to minimize computational time for the former
metric. We estimated average distance from a given GIW
to a stream for each watershed using cost path distance
analysis, which involved estimating the hydrologic flow
path from the GIW centroids to the closest stream. We also
included a metric that estimated the percent of the each
subbasin that drains into GIWs. GIWs from NCCREWS
and flow direction were combined to identify the upland
portions of the watershed that flow through isolated
wetlands. We then summed the total area of each subbasin
that flowed through GIWs. We calculated stream density
per subbasin using the 1 : 24000 NHD Flowlines by
summing the total stream length in a basin then dividing
by the basin area.
We derived land cover types for each subbasin from the

30 m resolution 2006 National Land Cover Dataset
(NLCD) from the Multi-Resolution Land Cover (MRLC)
Consortium (Table I; Fry et al., 2011). We calculated the
percent of each Hydrologic Soils Group (HSG), as an
indicator of soil infiltration, subsurface transmissivity, and
runoff potential, for each subbasin using the SSURGO
soils database (USDA-NRCS, 2013). Hydrologic Soils
Groups are classified into four categories (A, B, C, and D)
along a gradient of permeability and runoff potential. We
selected the two extremes of the HSGs for analysis: HSG A
represents soils with the highest infiltration capacity and
lowest runoff potential, and HSG D approximates the
inverse. All soils classified as A/D (portions of these soils
are classified as ‘A’ if drained but ‘D’ if not drained) were
reclassified as HSG D for our analyses. These soils
averaged <2% of HSGs for the study subbasins.
We averaged the base flow index (BFI), a dataset

obtained from Wolock (2003), for each subbasin. The BFI
is calculated as the average proportion of annual
streamflow that can be attributed to groundwater discharge
Ecohydrol. (2015)
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(expressed as a percentage). The index served as an
indicator of subsurface contributions to streamflow in
this study.
Geostatistical modeling

We analysed the relationships between GIWs and other
watershed-scale indicators of hydrologic processes on
streamflow both annually and seasonally. To do this, we
diagnosed potential (nonspatial) multicollinearity of the
study’s predictor variables on streamflow using the
variance inflation factor (VIF) in an ordinary least squares
regression analysis (Belsey et al., 2004). We then assessed
variables with a high variance inflation factor (VIF> 4)
using partial correlation analysis. Variables with partial
correlations ≥0.40 were removed from the analysis. All
analyses were conducted using R statistical software,
version 2.14.3 (R Development Core Team, 2012).

We developed seasonal analysis according to the
calendar year with the following classifications: winter
(January to March), spring (April to June), summer (July to
September), and autumn (October to December). Estimat-
ing the relationships between GIWs and other explanatory
variables with streamflow using ordinary least squares
(OLS) regression is problematic given the inherent
connectivity of stream networks, which leads to spatial
autocorrelation and violates assumptions of independence
Figure 4. Spatial distribution of average annual SWAT-simulated streamflow

Copyright © 2015 John Wiley & Sons, Ltd.
and makes such statistical models inappropriate. Explor-
atory data analysis in our study area suggested that average
annual simulated streamflow at subbasin outlets is similar
in headwaters and in areas along streamflow networks due
to nested subbasins (Figure 4). Therefore, spatial autocor-
relation was certain to confound OLS analysis. We
therefore used a geostatistical modeling methodology
designed to account for the spatial dependence often found
in stream networks due to their spatial connectivity, flow
direction, and flow volume (Peterson and Ver Hoef, 2010;
Ver Hoef and Peterson, 2010a, b). This methodology
operates based on a moving average (MA) construction
that allows for the production of autocovariances that
identify the presence of spatial autocorrelation based on
hydrologic relationships. Random variables are generated
by combining MA constructions with white noise signals.
When MA constructions for one random variable overlap
those of another, spatial autocorrelation occurs (Ver Hoef
and Peterson, 2010a) with larger overlaps indicating
greater autocorrelation.
Moving average functions may operate using different

network structures. Locations along the network may be
considered flow-connected (e.g. when water flows from
upstream to downstream locations) or flow-unconnected
(e.g. when two points occur in separate tributaries that
flow to a common point but are not themselves connected
by flow). Covariances may be based on Euclidean
across the watershed; shown for the outlets of the 579 study subbasins.

Ecohydrol. (2015)
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distances that utilize two-dimensional coordinates or on
other distances that consider network connectivity. ‘Tail-
up’ covariances are based on stream network distances
with spatial autocorrelation of streamflow directed down-
stream from site to site. In this case, spatial weights are
included to represent the relative effects of tributaries of
differing sizes on downstream locations. Covariances may
also be ‘tail-down,’ allowing spatial autocorrelation
between sites moving upstream. Tail-up and tail-down
covrariances can be flow-connected or flow-disconnected.
More practically, tail-up, tail-down, and Euclidean models
can be combined in different ways, generating a variety of
mixed models. For example, a mixed model that combines
all the above models may be written as

Y ¼ Xβ þ Zu þ Zd þ Ze þWkγk þ⋯þWpγp þ ε

where X is a designed matrix of fixed effects, β are
parameters, Zu is a random variable with a tail-up
autocovariance, Zd is a random variable with a tail-
down autocovariance, Ze is a random variable with a
Euclidean autocovariance, Wk is a designed matrix for
random effects γk, k=1,…, p, and ε is a measure of error
(Ver Hoef et al., 2014).
We used the Spatial Stream Network (SSN) package (Ver

Hoef et al., 2014) to fit these geostatistical network models
using R statistical software, version 2.14.3 (R Development
Core Team, 2012). Because this package requires feature
geometry, attribute data, and topological information for
stream networks to be stored in a specific manner, we first
reprocessed our GIS dataset using an ArcGIS 9.3 toolset,
Functional Linkage of Watersheds and Streams (FLoWS,
Theobald and Norman, 2005). FLoWS creates aquatic
indicators that capture the functional relationship between
terrestrial watersheds and streams, building a landscape
network (LSN), a graph that stores the topology and
geometry of nodes (points where segments intersect), edges
(stream segments), and reach catchment areas (RCAs)
within the watershed, as well as additional geographic
information about the stream system. Using FLoWs, one
defines nodes as topologic breaks, including confluences,
stream sources, outlet points, and edges as flow paths from
node to node in a stream network according to the
branching patterns of a stream. In addition, a watershed is
defined as the entire land area that contributes water flow to
a single stream outlet. Watersheds are composed of a
constellation of nonoverlapping but tightly adjacent RCAs
that represent the aerial extent that contributes overland
flow to a given edge. Matching each edge to its associated
RCA allows us to examine the one-to-one functional
relationship between them.
We used an additional ArcGIS 9.3 toolset, Spatial Tools

for the Analysis of River Systems (STARS; Peterson and
Copyright © 2015 John Wiley & Sons, Ltd.
Ver Hoef, 2014), to generate data for producing spatial
weights. The STARS toolset is used to perform two
functions. The first reprocesses the LSN to create a Spatial
Stream Network (SSN) object that stores feature geometry,
attribute data, and topological information in a way that is
effective for fitting spatial models of steam networks in R
statistical software (Ver Hoef et al., 2014). The second
function creates pre-processing data for calculating spatial
weights, including segment proportional influence (PI) and
additive function values (AFV). In STARS, stream distance
is defined as the shortest distance between two nodes
measured along edges. Watershed area is defined as
accumulated RCAs downstream from an edge to the outlet
node and is computed as the area Aj for an edge. When two
edges, denoted by j and j ′, are connected by a node, the PI
for the edge, denoted by ωj, is the following (Peterson and
Ver Hoef, 2014):

ωj ¼ Aj

Aj þ Aj′

AFV is equal to the product of PI of edges that constitute
the downstream path from the jth node to the stream outlet
(Peterson and Ver Hoef, 2014):

AFVj ¼ ∏
k∈Dj

ωk

We imported values of PI and AFV as well as stream
distance into the SSN package to calculate weights for each
tributary, denoted as πi,j, where i refers to a point
downstream from point j (Ver Hoef and Peterson, 2013):

πi;j ¼
ffiffiffiffiffiffiffiffiffiffiffi
AFVi

AFVj

s

For this study, we used the 1 : 24000 stream network for
the study area derived from the NHD to define an LSN in
FLoWS. Because SWAT subbasins delineation and RCA
development using STARS are two separate, nonlinked
processes, the centroid of the RCAs were matched to
SWAT subbasins and RCAS were then associated with
specific subbasins based upon >50% spatial overlap. We
then assigned each RCA the watershed-scale variables
delineated above for the subbasin to which it corresponded
and used this LSN to calculate spatial weights and to fit
subsequent SSN models.
We estimated five different geospatial network models to

identify relationships between stream flow and the
watershed-scale variables in each time-period using SSN,
including tail-up, tail-down, Euclidean, and tail-up and tail-
Ecohydrol. (2015)
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GEOGRAPHICALLY ISOLATED WETLANDS AND STREAMFLOW
down models as well as a mixed tail-up, tail-down, and
Euclidean model. This resulted in a total of 25 separate
models. We compared the fitted models based on their
Akaike Information Criteria (AIC) and several cross
validation statistics, including negative two log likelihood
(a statistic to compare two models, one of which is nested
in another), standard bias, root-mean-square prediction
error, root average variance, and confidence interval
coverage to select the model for each time period with
the best fit.
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RESULTS AND DISCUSSION

We analysed the statistical relationships of GIWs and other
watershed-scale indicators of hydrologic processes on
streamflow, both annually and seasonally. We used a
geostatistical modeling method to quantify these relation-
ships and account for spatial dependence due to spatial
connectivity, flow volume, and flow direction along stream
networks. Employing this methodology was particularly
important because exploratory data analysis revealed clear
spatial patterns in our streamflow data (Figure 4). Com-
parisons among the geostatistical model structures suggest
that that stream network-based models outperformed the
Euclidean model as indicated by lower RMSPE and AIC
values (Table II). Of these network models, the mixed
model with tail-up and tail-down covariance structures
produced the best fit for at least two of the three model
objection functions (i.e. the selection criteria; Table II).
Thus, we selected this model structure each season and
annually to remain consistent across our five final models.
Estimates and statistics for the statistically significant
variables in these models are summarized in Table III and
discussed in the following sections. A table of results for all
variables in each model is located in the supporting
information.

Geographically isolated wetlands, non–geographically
isolated wetlands, and streamflow

Results indicate that two variables related to GIWs are
significantly related to streamflow. The first of these,
average distance from GIWs in a subbasin, is significantly
and positively related to streamflow annually and across all
seasons (p<0.01 annually, autumn, winter; p< 0.05 spring
and summer; Table III). This effect was highest in winter, a
dryer period (Table I) with lower potential evapotranspira-
tion rates compared to other seasons. Therefore, winter
water storage potential in depressions may be greater than
other seasons resulting in a potentially stronger contribution
to streamflow (Acreman and Holden, 2013). Effects were
similar in spring and autumn and lowest in summer. Results
therefore suggest that GIWs distant from streams have
greater potential to contribute to streamflow across long time
Copyright © 2015 John Wiley & Sons, Ltd. Ecohydrol. (2015
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Table III. Parameter coefficients (Coeff.), standard errors (SE), and t-values (t) for the statistically significant variables in the final
SSN models.

Response variable: streamflow (m3/s) Spring Summer

Predictor variable Coeff. SE t Coeff. SE t

(Intercept) �557.25 112.73 �4.94 *** �49.47 76.57 �0.65

Wetlands
All wetland types per subbasin area (NCCREWS) (%) �2160.78 1759.35 �1.23 �2582.20 1216.04 �2.12 *
Depressional swamp forest (GIW; NCCREWS) (%) 63 830.69 23 084.54 2.77 * 18 700.81 15 448.74 1.21
Managed pineland (non-GIW; NCCREWS) (%) 10 672.51 4345.99 2.46 * 7464.60 2964.81 2.52 *
Emergent herbaceous wetlands (from NLCD 2006) (%) 24 872.30 6534.13 3.81 ** 19 633.23 4523.98 4.34 ***
Average distance from GIW to stream (m) 0.17 0.08 2.08 * 0.15 0.06 2.62 *

Moisture inputs
Precipitation for time period (mm) 5.12 4.05 1.26 3.32 1.15 2.89 *

Runoff indicators
Hydrologic soil group D (%) �32.81 11.45 �2.86 * �20.59 7.85 �2.62 *
Barren land (rock/sand/clay) (%) 18 564.66 4598.73 4.04 *** 13 357.21 3412.41 3.91 ***
Developed, open space (%) 1298.49 3329.48 0.39 �5029.69 2338.42 �2.15 *
Mixed forest (%) 608.26 4625.21 0.13 �8099.54 3181.59 �2.55 *
Shrub/scrub (%) �3600.84 3410.25 �1.06 �5698.03 2374.27 �2.40 *
Cultivated crops (%) �2208.21 2278.32 �0.97 �3813.68 1609.01 �2.37 *
Pasture/hay (%) �5298.64 2698.20 �1.96 * �5687.67 1835.04 �3.10 **
Open water (%) 3046.05 4186.10 0.73 4343.18 2865.06 1.52

*p< 0.05.
**p< 0.01.
***p< 0.001.

Figure 5. Relationship between cumulative average annual subbasin
streamflow and GIW distance to stream and the power law curve showing
how subbasin average annual streamflow changes with GIW distance to

the stream. Streamflow converted to L/T for comparative purposes.

H. E. GOLDEN et al.
scales (i.e. seasonally and annually) compared to those
GIWs located in closer proximity to streams.
The positive relationship between GIW distance to the

stream and streamflow is consistent with studies that suggest
water storage areas in the landscape with less persistent
watershed-scale connections to a stream (e.g. headwater
ponds and wetlands (Daniel, 1981)) – compared to those
features more frequently connected (e.g. riparian wetlands,
Phillips et al., 2011) – are associated with a greater runoff
response following high rainfall periods. A recent meta-
analysis further supports this finding, suggesting that
wetlands surrounded by uplands can be flood-generating,
rather than flood-buffering, areas of the landscape (Acreman
and Holden, 2013). We attribute this particular model
outcome to two potential processes. First, water transport
from distant GIWs to the stream might involve infrequent
connections and long transit times for water issuing from
GIWs to reach the stream. For example, we found that
cumulative average annual streamflow increases concomi-
tantly with the average distance of GIWs to the stream up to
an approximately 1000 m distance, after which cumulative
streamflow increases at a more rapid rate (Figure 5). Results
also suggest that average annual streamflow (noncumula-
tive) increases with average GIW distance to the stream by a
power law function (R2 = 0.745, p< 0.001). Further, Spear-
Copyright © 2015 John Wiley & Sons, Ltd.
man correlations suggest higher average storage volumes of
GIWs with distance from the stream subbasin (a significant,
though weak, positive correlation of average subbasin GIW
volume with distance of GIW to the stream, r=0.15,
p=0.0001) and an increasing density of GIWs with distance
to the stream (r=0.19, p< 0.0001).
Ecohydrol. (2015)



Table III.

Autumn Winter Annual

Coeff. SE t Coeff. SE t Coeff. SE t

�61.02 92.50 �0.66 �123.26 122.45 �1.01 �263.73 405.49 �0.65

�3189.02 1468.16 �2.17 * �3672.53 1914.26 �1.92 �13 715.37 6428.46 �2.13 *
26 523.35 18 606.14 1.43 34 270.58 24 309.99 1.41 111 695.10 81 421.74 1.37
9777.20 3591.55 2.72 *** 9868.11 4636.81 2.13 * 39 373.40 15 653.55 2.52 *

21 801.41 5494.70 3.97 ** 35 970.53 7198.40 5.00 *** 100 278.80 24 026.09 4.17 **
0.17 0.07 2.61 ** 0.27 0.09 3.11 ** 0.79 0.29 2.69 **

8.62 2.97 2.90 ** �10.06 7.15 �1.41 7.36 3.11 2.37 *

�26.96 9.44 �2.86 ** �38.74 12.36 �3.13 ** �115.83 41.48 �2.79 **
15 349.45 4141.28 3.71 *** 25 719.01 5622.32 4.57 *** 68 811.43 18 142.57 3.79 ***
�7144.59 2928.06 �2.44 * �2763.66 3845.88 �0.72 �27 099.53 12 560.67 �2.16 *
�9445.75 3765.96 �2.51 * �8234.23 4955.37 �1.66 �41 974.72 16 710.27 �2.51 *
�7214.26 2923.20 �2.47 * �1410.96 3701.90 �0.38 �28 998.49 12 810.36 �2.26 *
�5474.07 2098.77 �2.61 ** �174.95 2900.87 �0.06 �20 774.77 8936.19 �2.32 *
�7865.32 2353.53 �3.34 *** �2748.34 3488.39 �0.79 �32 067.42 10 255.09 �3.13 **
4300.96 3585.74 1.20 13 008.10 4621.51 2.81 ** 22 611.20 15 382.16 1.47

GEOGRAPHICALLY ISOLATED WETLANDS AND STREAMFLOW
Second, we hypothesize a sequencing of watershed-
scale hydrologic connectivity and runoff behavior of
water storage and transport features in the landscape,
including GIWs, based on our conceptual modeling of
connectivity in this watershed. Specifically, following
high precipitation periods that occur across all seasons in
this watershed (Figure 2), patches of wet areas in the
landscape (e.g. variable source areas (Hewlett and Hibbert,
1967) and wetlands) likely begin to hydrologically connect
until all parts of the landscape are contributors to streamflow
(McDonnell, 2013). By deduction, all parts of the landscape
necessarily include GIWs and GIW complexes. In the study
of watershed’s wetland complexes (Tiner, 2003a), ground-
water connections from the wetland to the stream are
generally limited because of clayey confining layers
underneath sandy loam soils, particularly under historic,
nondrained conditions (Sharitz and Gibbons, 1982; Sharitz,
2003). Thus, for GIWs to contribute to streamflow following
wet conditions, overflow (i.e. ‘spilling’) from the wetland
and surface and shallow subsurface transport may be
important transport processes. However, when the water-
shed is fully connected hydrologically, depressions that
contain substantive volumes of water, such as GIWs, may
exhibit a strong contribution to streamflow compared to the
surrounding landscape (Ator et al., 2005) and exhibit an
effect on the hydrograph. If, however, the mapped GIWs in
our study area have been drained for other (e.g. agricultural)
purposes (Sharitz, 2003), drainage channels may provide a
Copyright © 2015 John Wiley & Sons, Ltd.
more direct, rapid route of these water storage areas to the
stream following wet events (Acreman and Holden, 2013).
Therefore, under wet climatic conditions – that, again, occur
across all seasons in the study area – when watershed
connectivity, potential connections via drainage channels,
and streamflow are high, these distant connections of GIWs
could be strong contributors to and result in a positive
relationship with streamflow.
The percentage of a subbasin composed of depressional

swamp forest GIWs exhibited a positive statistical
relationship with streamflow in the spring season only
(p< 0.01). This GIW type is comprised of nonriverine
systems with predominately deciduous species but may
also support scrub/shrub communities. These depressional
swamp forests typically comprise less than 5% of each
subbasin’s spatial extent, are evenly distributed across the
landscape (data not shown), and have a smaller average
areal extent than all wetland types (average area =0.9 ha
and 1.1 ha, respectively). The soils in this wetland type,
however, are very poorly drained and exhibit low saturated
hydraulic conductivity as well as groundwater exchange
and transport from the GIW to the stream (Sharitz, 2003).
Water inputs and outputs from these wetlands primarily
occur via precipitation and evapotranspiration (Sharitz and
Gibbons, 1982), and potentially shallow lateral subsurface
flow downgradient toward the stream (Pyzoha et al., 2008).
Thus, it is possible that during the spring months, when
rainfall is relatively high compared to other periods
Ecohydrol. (2015)
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(Table I), these poorly drained systems respond rapidly to
high precipitation events. This may potentially occur via a
fill-spill dynamic similar to that of the bedrock-soil
interface (Tromp-van Meerveld and McDonnell, 2006),
which thereby creates extensive watershed-scale connec-
tivity. Because of the minimal groundwater transport from
these wetlands, water issuing from depressional swamp
forests likely occurs via surface and shallow subsurface
runoff to other surface waters (McDonnell, 2013). While
this hypothesis is grounded in previous work on these
systems (Sharitz and Gibbons, 1982; Pyzoha et al., 2008)
and potentially generalizable hydrologic processes
(McDonnell, 2013), it should be noted that soils surround-
ing these poorly drained wetlands are often highly
permeable sands, and hydrologic and hydraulic connec-
tions to downstream surface waters are not well-
characterized with currently existing empirical data
(Sharitz, 2003).
The percentage of a subbasin that is composed of all

wetland (non-GIW and GIW) types was significantly and
negatively related to flows during the summer, autumn, and
annually (p<0.05), indicating that the cumulative effect of
wetlands in a subbasin, including those in floodplain and
riparian areas, corresponds to reduced flood flows
(Acreman and Holden, 2013) and baseflows during these
periods. The results are consistent with studies that indicate
the overall attenuating effect of wetlands on flood regimes
and baseflow conditions, particularly floodplain and
riparian wetlands – those included in our study’s ‘percent
wetlands’ predictor variable – that frequently connect and
disconnect with stream systems (Sun et al., 2002; Quinton
et al., 2003). These findings also align with our study results
for other vegetated land covers with high evapotranspiration
rates during these seasons (see the following subsection).
Summer is a period with high precipitation (Table I) and
evapotranspiration (precipitation ~ evapotranspiration) in
the Neuse River Basin (Billingsley et al., 1957). Therefore,
wetlands in the watershed can retain and store increased
quantities of water compared to other seasons because (1)
evapotranspiration rates are high thereby affording a
consistent capacity for storage as water levels drop because
of losses to the atmosphere and (2) there is a steady supply
of water to the wetlands from precipitation (Sharitz and
Gibbons, 1982) and potential inputs from shallow water
table mounding that reflects these high evapotranspiration
conditions (Winter and LaBaugh, 2003). This potentially
creates a net effect of wetlands as water storage areas in the
landscape, which thereby reduces streamflow. In autumn,
rainfall is substantially lower compared to summer in the
Neuse River Basin (Table I) as is evapotranspiration, as a
result of lower temperatures and movement toward the
dormant season. Therefore, we posit that the precipitation-
evapotranspiration balance of wetlands across the basin
during this period also creates the net effect of overall
Copyright © 2015 John Wiley & Sons, Ltd.
wetland storage and consequent flood attenuation during
this period. The annual relationship between streamflows
and watershed wetlands is similar but warrants further study
for additional insights on these results.
The percentage of a subbasin composed of one non-GIW

type derived from the NC-CREWS dataset (managed
pineland) dominated this significant, positive impact on
streamflow across all seasons (p< 0.05; autumn, p<0.01).
This relationship decreased from winter to autumn, then
summer, and was lowest in spring. Managed pineland in this
area is typically bedded, disked, and elevated such that
furrows and gullies transport precipitation away quickly
following rainfall events (Anderson, 2004). Thus, consistent
with our results, these wetlands do not store water and
mitigate flooding but rather and more likely contribute to
high runoff events. Further, based on NLDC 2006 data, the
percent of emergent herbaceous wetlands in the subbasins
exhibited a significant and positive relationship with
streamflow for each season and annually. These herbaceous
wetlands are located close to streams in our study area
(100% within a 200 m buffer) and potentially exhibit lower
evapotranspiration rates compared to the surrounding
landscape and other subbasin wetlands with a higher density
of deciduous forests (Sharitz and Gibbons, 1982) – at least
during the growing season (late spring, summer, and early
autumn in the study area). Combined, the proximity to the
stream and comparatively limited evapotranspiration may
result in consistent contributions of herbaceous wetland
types to streamflow across all seasons.
Watershed hydrologic indicators and streamflow

While this study aims to primarily understand the role of
GIWs and other wetlands systems on streamflow, these
relationships must be considered in the context of other
landscape scale flow-generating or storage mechanisms.
Across our study subbasins, precipitation, soil drainage
patterns, and specific land cover types were also important
factors that explained the variations in streamflow across
different seasons and annually. For example, precipitation
was significantly and positively related to streamflow in the
summer (p< 0.01) and autumn (p<0.01) as well as
annually (p< 0.05) with the strongest influence occurring
in the autumn (β =8.62), suggesting a positive rainfall-
runoff relationship across these periods in the study basin
(Table III). Because precipitation and evapotranspiration are
approximately equal during the summer and autumn in the
study area, this finding may reflect the rapid appearance
of convective storm systems in the summer and early
autumn in the North Carolina Coastal Plain whereby
runoff occurs quickly from wet and ponded areas.
Further, precipitation across both seasons is not statisti-
cally correlated with average baseflow index (percent of
streamflow as baseflow), suggesting that rainfall and
Ecohydrol. (2015)
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runoff events are highly influential on streamflow during
these seasons.

The percentage of soils of Hydrologic Soils Group D in a
basin was significantly and negatively related to streamflow
during all months and annually (p<0.01). While this
finding does not correspond to the low infiltration capacity,
high runoff potential of this soil category, HSG D soils in
this Coastal Plain region could largely reside in small
depressional areas with perched water tables that are capable
of storing varying volumes of water (Ross, 2003). For
example, while variance inflation factors did not reach the
>4 threshold when tested, HSG D soils and the percentage
of NC CREWS-identified wetlands are significantly corre-
lated (r=0.62, p< 0.0001). Thus, these soils can potentially
be associated with depressional systems that store water and
attenuate streamflow.

The percent land cover composition of a subbasin is
significantly related to streamflow for eight of the fourteen
land cover types considered in this analysis (for at least one
season; Table III). This finding is consistent with numerous
studies that have found direct correlations between various
land cover types and streamflow (e.g. Endreny, 2005;
Schilling et al., 2008; Tu, 2009; Price et al., 2011). Land
cover is also one of three primary factors – including soil
type and slopes – that governs daily soil water retention in
the SWATmodel, a parameter in the curve number equation
used to estimate daily surface runoff from different
combinations of land cover, soil types, and slopes. However,
because land cover is only one factor that influences the
water balance and runoff in SWAT, any relationship
between land cover and simulated runoff is a nonspatial
one (i.e. land cover across the watershed is ‘lumped’ for
water balance calculations). Further, our statistical diagnos-
tic tests detected limited correlation among these variables
and streamflow; therefore, additional mechanistic explana-
tions for these land cover-streamflow relationships may
exist. For example, the percentage of a subbasin composed
of barren land significantly and positive influenced
streamflow across all months (p< 0.001). Barren lands
consist largely of bare rock, outcrops, or similar substrates
that lack vegetation and soil structure. Moreover, although
barren land on average comprises a small portion of the
subbasins’ land cover (mean=0.28%; maximum=16%),
these areas are positively correlated with the average
subbasin slope (r=0.28, p<0.001). Therefore, these parcels
of land are likely to exhibit minimal storage and rapidly
transport water off steep areas of the landscape following
rainfall, similar to responses of bedrock outcrops (Burns
et al., 2001). Thus, all water on these surfaces, whether
entering as runoff or precipitation, will typically result in
increased streamflow.

The percentage of a subbasin composed of four land
cover types was significantly and negatively related to
streamflow in the summer and autumn seasons and
Copyright © 2015 John Wiley & Sons, Ltd.
annually (p<0.05), with the greatest effect in autumn.
These included developed open space land cover (which
consists largely of vegetation in the form of lawns with less
than 20% impervious surfaces), mixed forests, shrub/scrub,
and cultivated crops. Similarly, the percentage of pasture
and hay in a subbasin had a significant, negative
relationship to streamflow in the spring (p<0.05), summer
(p< 0.01), autumn (p<0.001), and annually (p<0.01)
with the greatest impact in the autumn. Results from the
spring and summer potentially exhibit growing season
dynamics, whereby higher evapotranspiration in these
landscapes with various vegetation types may result a
negative relationship to streamflow. Autumn and annual
results may reflect an interaction between precipitation and
evapotranspiration dynamics during these periods that
warrants further investigation. The significant and positive
relationship of the open water land cover type (i.e. open
water with less than 25% vegetation or soil cover) on
streamflow during the winter season (p< 0.01) may reflect
a rapid fill-spill response of these systems during the
dormant season.
Model assumptions and sources of uncertainty

This study provides a first step toward understanding the
relative contributions of GIWs in the landscape to
streamflow; however, some limitations and uncertainties
exist. To conduct a geostatistical study across an area this
large and within a dense network of subbasins, streamflow
estimates are needed. We used the SWAT hydrologic model
that predicts streamflowwith relatively high accuracy across
the subbasins, as suggested by the validation cross-checks at
the internal basin gages (see SWAT watershed delineations
and hydrologic simulations). Drainage areas above the
gaged sites are, however, larger than that of this study’s
subbasins because of the nature of the placement of USGS
stream monitoring sites on permanent (nonephemeral,
nonintermittent) streams. While this might suggest that
streamflow validation is biased toward drainage areas that
average two orders of magnitude larger than the largest study
subbasin, volumetric streamflow and drainage area in our
study area scale linearly (e.g. R2 = 0.92, p< 0.001 for
average annual streamflow). Therefore, we considered it a
reasonable assumption that validation extends to the
simulated annual and seasonal streamflows for our study
subbasins. Another source of uncertainty is the estimate of
GIW distribution and volumetric storage across the study
area. While our methods based on previous approaches
outlined in the literature (Frohn et al., 2009; Reif et al.,
2009); Lane and D’Amico, 2010) and are considered ‘best’
estimates of the spatial distribution of GIWs, there are
currently no existing regional or national maps of GIWs.
Also, wetlands in the Carolina bay region, which covers a
large portion of the study area, are regularly ditched for
Ecohydrol. (2015)
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agricultural lands uses (Sharitz, 2003; Munoz et al., 2009).
This is a metric not available for incorporation into the
model but which likely influences connectivity of GIWs to
downstream waters. Finally, while the spatial data used in
the models are derived from sources with strict quality
assurance/quality control measures, a degree of error in
spatial databases is to be expected, particularly as all involve
aggregating data to a particular grid scale resolution (e.g. 30
m land cover data).
SUMMARY AND CONCLUSIONS

In this paper, we evaluated the significance of GIW
characteristics and other landscape indicators of
watershed-scale hydrologic processes on simulated
streamflow across a dense network of subbasins. We applied
a hybrid modeling approach using the SSN geostatistical
package in R, which explicitly incorporates spatial covari-
ance in predictor variables with respect to stream networks
and connectivity, and the SWAT model, which simulates
daily streamflows that are integrated to seasonal and annual
time scales.
Our results indicate that GIWs, to some extent, influence

streamflow. The farther the GIW from a stream, the greater
its capacity to increase streamflow in this study area.
Depressional swamp forest GIWs, in particular, were
important contributors to streamflow but only in the spring.
However, wetlands as a whole in the study area exhibited a
flow attenuation capacity across seasons and annually. This
is particularly important, as few studies have clearly
elucidated this effect. Our study also determined that
landscape-scale hydrologic indicators (i.e. watershed
characteristics specifically relating to land cover, precipita-
tion, and soil moisture) can, in aggregate with GIWs and
non-GIWs, explain variations in seasonal and annual
simulated streamflow across a large Coastal Plain watershed.
However, while our hypotheses regarding why these
relationships may occur are grounded in the literature, the
mechanisms of how specific watershed characteristics affect
streamflow require further study.
The work described herein substantially advances the

science of understanding the watershed-scale effects of
GIWs on the downstream hydrograph, particularly in areas –
such as this composite of subbasins – with an extensive
spatial distribution of GIWs. The approaches we developed
and applied are transferrable to other systems, which is
particularly important for the future management of GIWs
across a variety of physiographic and ecoregions.
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