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Abstract Monitoring stream networks through time provides important ecological
information. The sampling design problem is to choose locations where measurements
are taken so as to maximise information gathered about physicochemical and biolog-
ical variables on the stream network. This paper uses a pseudo-Bayesian approach,
averaging a utility function over a prior distribution, in finding a design which maxi-
mizes the average utility. We use models for correlations of observations on the stream
network that are based on stream network distances and described by moving aver-
age error models. Utility functions used reflect the needs of the experimenter, such
as prediction of location values or estimation of parameters. We propose an algo-
rithmic approach to design with the mean utility of a design estimated using Monte
Carlo techniques and an exchange algorithm to search for optimal sampling designs.
In particular we focus on the problem of finding an optimal design from a set of fixed
designs and finding an optimal subset of a given set of sampling locations. As there
are many different variables to measure, such as chemical, physical and biological
measurements at each location, designs are derived from models based on different
types of response variables: continuous, counts and proportions. We apply the method-
ology to a synthetic example and the Lake Eacham stream network on the Atherton
Tablelands in Queensland, Australia. We show that the optimal designs depend very
much on the choice of utility function, varying from space filling to clustered designs
and mixtures of these, but given the utility function, designs are relatively robust to
the type of response variable.
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1 Introduction

Choosing sampling locations on stream networks is of critical importance to the effi-
cient estimation and prediction of important physicochemical and biological variables
on the network. The design problem is to choose sampling locations where measure-
ments are taken so as to maximise information gathered about variables observed on
the stream network to facilitate accurate predictions for the whole network and precise
estimates of model parameters. The moving average approach for spatial statistical
models of stream networks (Peterson and Ver Hoef 2010; Ver Hoef and Peterson
2010; Ver Hoef et al. 2006; Cressie et al. 2006) uses a spatial covariance based on the
shortest distance between two locations measured along the network (stream distance)
instead of the traditional Euclidean distance. The stream network models account for
the branching structure of the network, flow direction and network weighting (e.g.
volume of flowing water) to estimate covariances and predict variables of interest on
the network. We use these underlying models to compare and determine sampling
designs for stream networks.

A substantial review of stream network sampling approaches for monitoring, cate-
gorised into probability-based and model-based designs, is presented in Dobbie et al.
(2008). A summary of design for random fields is given in Müller (1998), and Casel-
ton and Zidek (1984) consider optimal design of a monitoring network as a decision
problem. We are specifically concerned here with the pseudo-Bayesian assessment of
model-based designs, comparing specific fixed designs and finding optimal designs
by approximating the average utility for a design using Monte Carlo integration. We
also consider the so-called retrospective design of finding an optimal subset of a given
set of sampling locations for which we may have data on a stream network. This type
of retrospective design is considered by Diggle and Lophaven (2006) and Diggle and
Ribeiro (2007) for geostatistical problems. For spatial modelling, optimal designs are
usually determined for accurate predictions or estimating covariance and other para-
meters, noting that the two approaches can lead to vastly different designs (Zimmerman
2006), the former typically yielding evenly spaced sampling locations (space filling
designs) and the latter involving some clustering. The work by Diggle and Lophaven
(2006) and Zhu and Stein (2006) proposes that spatial prediction is the ultimate aim
with accurate parameter estimation mainly a means to achieve this in a geostatistical
context. Both Li (2009) (for stream networks) and Zimmerman (2006) (in a geosta-
tistical context) consider three main classes of utility functions for optimal design:
prediction (with known covariance parameters), parameter estimation and empirical
prediction (covariance parameters unknown). These authors show that these utility
function classes tend to give space filling, clustered and a mix of both, respectively,
as optimal designs. This paper aims to extend these approaches to stream networks by
incorporating prior information on spatial covariance model parameters for simulation
based optimal design, the so-called pseudo-Bayesian approach to design. In pseudo-
Bayesian designs the utility function is generally a function of the parameter only. It
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is important to find pseudo-Bayesian sampling designs, as opposed to designs based
on point estimates of a single covariance function, to mitigate against deviations from
the assumed model and parameter values. We consider a variety of types of response
variable including continuous, proportions and count data with data being modelled
under the general linear and generalized linear mixed model (GLMM) framework.
This range of responses allows designs to be compared across different response vari-
able types providing wider scope for the applicability of our methodology and results
to real-world problems.

Selecting optimal designs via simulation is reviewed by Muller (1999), discussing
strategies including prior simulation, smoothing of Monte Carlo simulations, Markov
Chain Monte Carlo (MCMC) and simulated annealing to maximise expected utility
with respect to some design parameter. Recently, a greedy exchange algorithm (for
example, Evangelou and Zhu 2012), has been an approach used for optimal design.

This paper proposes a version of this exchange algorithm to search for optimal ret-
rospective designs on stream networks using Monte Carlo approximations of average
utility values. This involves swapping locations in and out of a subset of locations (from
a fixed set of locations) in order to find a subset (of fixed size) which optimizes the aver-
age utility. As there are different aims of stream network sampling, we consider four
utility functions for finding optimal designs: (1) prediction with known covariance,
(2) empirical parameter estimation, (3) a function of the Fisher information matrix
for parameter estimation and (4) a hybrid of prediction and estimation involving pre-
diction with unknown covariance parameters. To simplify computation we consider a
discrete set of possible locations on the network for sampling. As there are different
kinds of measurements taken, such as chemical, physical or biological measurements
at each location, designs are developed based on different spatial network GLMMs
(Zhang 2002).

The aim of the paper is to use a pseudo-Bayesian approach to provide algorithms to
approximate average utilities in order to compare designs and to find optimal subsets
for the retrospective design problem. Optimal designs across a range of utility functions
are found and robustness of designs to both choice of utility function and type of
response variable is investigated. We use both synthetic stream network data and data
from the Lake Eacham stream network to illustrate the methodology.

Our paper is structured as follows. Section 2 outlines the statistical models used,
Sect. 3 gives details of various utility functions and Sect. 4 develops the algorithms and
methods. The results are presented in Sects. 5 and 6. Firstly, in Sect. 5.1 the pseudo-
Bayesian approach for utility evaluation is applied to compare different fixed designs in
terms of the four different utility functions. We then utilize the proposed exchange algo-
rithm approach to find the optimal subset of locations for each utility function for a syn-
thetic example and the Lake Eacham case study in Sect. 5.2. Section 6 gives results for
designs for proportions and counts. The paper concludes with a discussion in Sect. 7.

2 Spatial statistical models for stream networks

Spatial statistical models for stream networks use moving averages and are summarised
by Ver Hoef and Peterson (2010). We provide limited details here relevant to our
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paper. Let y(si ) and y(s j ) denote the observations taken from a spatial domain S at
two locations si and s j on a network. Assume a Gaussian random field Z exists over
S and observations are conditionally independent given the value of the random field
with a distribution from the exponential family. We define Y|μ ∼ exponential family
with E(Y|μ) = μ = g−1(Xβ + zu + zd), terms defined below, and build models for
cov(y(si ), y(s j )) using covariance matrices for correlated random effects. Consider a
stream network design with data y with SN as the set of all possible sampling locations,
Sn is a subset of these sampling locations (Sn ∈ SN ) and Sp is the set of prediction
locations. In the case of evaluating fixed designs (Sect. 5.1), Sp is a general set of
prediction locations on the network. However, when considering retrospective design
(Sect. 5.2), we predict at locations not in the subset Sn , that is Sp = SN − Sn .

General linear models for stream networks are constructed using moving averages
(Ver Hoef and Peterson 2010). ‘Tail-up’ models are those where a moving average
starts at a location on the stream network and is non-zero upstream of the location. This
necessitates splitting of the moving average at stream junctions to maintain stationarity.
‘Tail-down’ models, alternatively, are those which are only non-zero downstream from
a location. Spatial covariance is based on stream distance which is the shortest distance
between two points along the stream network itself (Ver Hoef et al. 2014). We let h
denote the stream distance between two points si and s j on a stream network. The
tail-up exponential model is as follows:

Cu(si , s j |θu) =
{

πi, jσ
2
u exp(−3h/αu) if si and s j are flow-connected,

0 if si and s j are flow-unconnected,
(1)

where σ 2
u > 0 is an overall variance parameter (partial sill), αu is the range parameter,

θu = (σ 2
u , αu)T and flow-connected sites are those connected by flowing water. To

calculate the weights πi, j for tail-up models Shreve’s stream order (Shreve 1967) is
used which allocates a weight of 1 to each of the uppermost segments of the network
(i.e. those stream segments with no segments upstream). These values are summed
in the downstream direction, so that the weight for a segment downstream from a
confluence (junction) is the sum of the two segments joining at the confluence. This is
used to create the additive function for stream segments associated with volume, or a
proxy thereof. An additive function is formed when moving downstream and the value
of the additive function for a point x is Ω(x), which is equal to the additive function
value of the stream segment it lies on. For two flow-connected points, si downstream
of s j , the tail-up model weights are:

πi, j =
√

Ω(s j )

Ω(si )
. (2)

The tail-down exponential model for flow-connected and flow-unconnected sites is as
follows:

Cd(si , s j |θd) = σ 2
d exp(−3h/αd), (3)

where σ 2
d > 0, αd > 0 and θd = (σ 2

d , αd)T are defined similarly to those parameters
of the tail-up model.
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The stream network general linear model considered is of the form

Y = Xβ + zu + zd + ε, (4)

where X is a design matrix of fixed effects, β is the vector of model parameters,
zu contains spatially-autocorrelated random variables with tail-up autocovariance,
var(zu) = σ 2

u R(αu), R(αu) is a correlation matrix that depends on the range para-
meter αu , zd is similarly defined containing spatially-autocorrelated random vari-
ables with tail-down autocovariance and ε contains independent random errors with
var(ε) = σ 2

0 I. The general covariance matrix is

cov(Y) = Σ = σ 2
u R(αu) + σ 2

d R(αd) + σ 2
0 I. (5)

Restricted maximum likelihood (REML) can be used to estimate β and the covari-
ance parameter θ = (θT

u , θT
d , σ 2

0 ). REML is equivalent to estimation of the variance
parameters by the posterior mode, having marginalised over fixed effects with an
uninformative prior (Harville 1974).

In order to find regression and covariance parameter estimates, pseudo-data are
generated for parameter estimates of spatial stream network GLMMs (Wolfinger
and O’Connell 1993). When considering designs for GLMMs on spatial stream
networks we follow Evangelou and Zhu (2012) who, in a geostatistical context,
present an approximation of the prediction uncertainty for GLMMs. We use ele-
ments of the spatial stream network models to compute utility functions for eval-
uating stream network designs. Details of these utility functions for general lin-
ear models and GLMMs on spatial stream networks are provided in the following
section.

3 Utility functions

Bayesian optimal design is concerned with maximising the expected utility, U (d) =
E[u(d, θ, y)], with respect to a given design d, for an experiment yielding data y, mod-
elled by the likelihood function p(y|θ) and prior p(θ) with p(θ, y) = p(y|θ)p(θ).
An optimal design d∗ can therefore be expressed as

d∗ = arg max
d∈D

U (d), where U (d) =
∫

y

∫
θ

u(d, θ, y) p(θ, y) dθdy,

such that U (d) is the expected utility for design d. The above integrals can be
approximated using Monte Carlo integration with independent draws (θ(m), y(m))

from p(θ, y), that is,

Û (d) = 1

M

M∑
m=1

u
(

d, θ(m), y(m)
)

.

For pseudo-Bayesian designs we typically have utility u(d, θ) independent of y
but dependent on p(y|θ), the sampling model. To derive sampling designs, speci-
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fication of a utility function to quantify the usefulness of a design is required. The
utility functions relevant to stream network sampling may be based on prediction,
either with known covariance parameters or estimated parameters. Additionally, the
utility function can be based on Fisher information which quantifies parameter infor-
mation conveyed by a design, or empirical parameter estimation where parameters are
unknown.

A utility for determining pseudo-Bayesian designs for prediction is given by

upred(d, θ) =
⎛
⎝ ∑

s j ∈Sp

var(ŷ(s j ))

⎞
⎠

−1

,

where ŷ(s j ) is the prediction at location s j , var(ŷ(s j )) is the kriging variance
for universal kriging (Cressie 1993) with covariances rather than variograms, d ∈
D is the set of possible designs and θ represents the spatial covariance model
parameters. When the utility is calculated with known θ it can be considered a
prediction utility. Empirical prediction describes the utility when θ is unknown
and calculated using estimated spatial covariance parameters, θ̂ , which we denote
by uEpred(d, θ) (Zhu and Stein 2006). Empirical prediction is a hybrid approach
in that the utility encompasses both accurate predictions and precise parameter
estimation.

The utility function for parameter estimation can be based on Fisher information.
The i j th element of the information matrix associated with restricted maximum like-
lihood (REML) estimation, IREML(d, θ), is given by

1

2
tr

(
P

∂Σ

∂θi
P

∂Σ

∂θ j

)
,

where P = Σ−1 − Σ−1 X (X T Σ−1 X)−1 X T Σ−1, Σ is the covariance matrix of the
response y and θ is the vector of covariance parameters. Optimal designs seek to
maximize

uFIM(d, θ) = det (IREML(d, θ)) .

Alternatively, a utility function can also be defined for empirical parameter estimation,
such as

uEparm(d, θ) = det
(

ˆvar(θ̂ |d)−1
)

,

where θ̂ represents the estimator of the parameters based on design d and ˆvar the
estimated variance. For the retrospective design using the Lake Eacham case study,
the true value of θ is assumed to be that found using all the sampling locations, denoted
by θN .
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The proposed objective when designing for GLMMs on spatial stream networks is
to predict the Gaussian random field Z over the spatial domain S for data y at locations
Sp. At a location on the network, Z is defined by (zu + zd). We use the approximation
of prediction uncertainty for GLMMs (Evangelou and Zhu 2012) and seek designs
that maximise its inverse, which we denote uGLMM(d, θ).

4 Methods

In this section we firstly introduce the algorithms for utility function estimation and
determining retrospective designs. The algorithms and methods are then developed
for their application to the examples.

4.1 Algorithms

The first algorithm is a pseudo-Bayesian approach to estimate the utility function
for sampling designs on stream networks. For a given design, the algorithm firstly
draws from a prior distribution on covariance parameters. If required, the data are
simulated, a stream network model fitted and predictions generated. A utility is then
calculated (Sect. 3) and the process is repeated. The estimated utility is found as the
average of the utility from the Monte Carlo simulations. The algorithm is outlined
below.

Algorithm 1 Utility function estimation for sampling designs
1: for d = 1 : D ##sample designs## do
2: for m = 1 : M ##Monte Carlo simulations## do
3: Draw θ(m) ∼ p(θ), where p(θ) is a prior on parameters
4: Simulate y(m) ∼ p(y|θ(m)) at design locations Sn (if required)
5: Fit spatial stream network model to estimate parameters θ̂ (m) (if required)
6: Generate ŷ(m) at prediction sites Sp (if required)
7: Calculate utility u(m) = u(d, θ(m)) from Section 3, as required.
8: end for
9: Estimated utility Û (d) = 1

M
∑M

m=1 u(m)

10: end for

A greedy exchange algorithm is also proposed to determine a subset of sampling
locations Sn from possible locations in SN , which is known as a retrospective design
(Diggle and Lophaven 2006). The greedy exchange algorithm begins with a random
sample to form the initial subset, Sn , then seeks to swap sites from SN so as to maximise
the utility function, estimated via Algorithm 1, until there is no improvement. Exchange
algorithms for design problems are reviewed by Royle (2002) and it is acknowledged
that the algorithm does not necessarily find the optimal design but finds a reasonable
design quickly (Evangelou and Zhu 2012).

Let di j denote the design where the i th location in Sn is swapped for the j th location
in SN − Sn . The search is repeated K times in the hope of avoiding local optima and
is presented in Algorithm 2.
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Algorithm 2 Greedy exchange algorithm
1: for k = 1 : K ##number of reps.## do
2: Set d as a random configuration of n sampling locations
3: Evaluate Û (d) as per Algorithm 1
4: Initialise Û (di j ) = Û (d)

5: while max(Û (di j )) ≥ Û (d) do
6: for i = 1 : n do
7: for j = 1 : (N − n) do
8: Evaluate Û (di j ) as per Algorithm 1
9: end for
10: end for
11: Find locations which maximise utility, (Û (di j )), and swap
12: if max(Û (di j )) > Û (d) then
13: max(Û (di j )) → Û (d)

14: di j → d
15: end if
16: end while
17: end for

4.2 Illustrative examples

Algorithm 1 is initially used to estimate the utility functions outlined in Sect. 3 for
six fixed designs of N = 50 sampling locations which are described in Table 1
and presented in Fig. 1. In Fig. 1, the thickness of the stream segments represents
stream order (a proxy for flow), with thicker segments indicating higher stream order
(higher flow). A mixture of exponential tail-up (Eq. 1) and tail-down (Eq. 3) network
covariance (Eq. 5) is considered. Informative independent normal priors (truncated
at zero) are placed on covariance parameters (partial sill and range parameters for
exponential tail-up and exponential tail down models, θ = (σ 2

u , αu, σ 2
d , αd)) such

that the means are (2, 5, 2, 5) and standard deviations (0.25, 1, 0.25, 1), respectively.
A continuous response is predicted at Sp = 500 evenly spaced locations over the
network.

The greedy exchange algorithm is used for retrospective design of synthetic data
(Fig. 3a) and the Lake Eacham case study (Fig. 5a, b). Figure 3a shows the possible
sampling locations at 0.1, 0.5 and 0.99 units up each segment on the synthetic stream

Table 1 Fixed designs and descriptions

Design Description

Binomial Samples allocated to random locations over the entire network

Space filling Sample locations are evenly spread over the network

Hardcore As for Binomial except sample locations are removed that are too close to one anothera

Clustered Sample locations clustered close to the centre of the network

Upstream Majority of samples at locations near the source segments (headwaters) of the network

Downstream Majority of samples on segments close to the outlet

Binomial, space filling and hardcore designs from Ver Hoef et al. (2014)
a based on a user entered inhibition region
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Fig. 1 Six different sampling designs on a simple network, each with 50 locations. The thickness of the
stream segments represents stream order (flow), with thicker segments indicating higher stream order (flow)
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network. Note the stream segment lines are thicker for higher stream orders (flows).
We use the proposed pseudo-Bayesian retrospective selection of design points to find
the optimal subset of n = 20 from N = 60 locations.

Data collected near Lake Eacham (Spatial Reporting Of Ecosystem Health Project
2009) is included in the SSN package version 1.0. Lake Eacham is located on the
Atherton Tablelands in Queensland, Australia. The dataset contains N = 88 sampling
locations which are shown in Fig. 5a and magnified in Fig. 5b showing the sampling
locations in more detail. Thicker lines indicate a larger watershed area for that segment
which is a proxy for flow. Note there are several sampling sites in very close proximity,
particularly in the top right of the network. We use the proposed pseudo-Bayesian
retrospective selection of design points to find the optimal subset of n = 22 from
N = 88 locations.

Spatial stream network models are fitted with a mixture of exponential tail-up
and tail-down network covariance (as above). Informative independent normal pri-
ors centred at the true values (but truncated at zero) are again placed on spatial
covariance parameters. For the synthetic network example the true spatial covari-
ance parameters are assumed to be θ = (2, 5, 2, 5) with corresponding prior stan-
dard deviations (0.25, 1, 0.25, 1). For the Lake Eacham dataset the true parameters
are assumed to be those calculated (rounded) using data from all the sampling loca-
tions, that is θ = (1.5, 50,000, 3, 20,000), with corresponding prior standard devia-
tions (0.25, 5,000, 0.5, 2,000). Distance units are in metres and results are based on
M = 1,000 draws from the prior.

4.3 Adaption for counts and proportions

In determining designs where the response variable is non-continuous we consider
two common link functions: the logit for binomial (presence/absence) data and the
log for Poisson (count) data. The utility function, uGLMM, is used to find designs
for count and binomial data on both the synthetic example and Lake Eacham stream
networks introduced earlier. A constant mean random field with the number of trials
in a Bernoulli experiment for binomial models, or the length of time that sampling is
taking place for Poisson models, denoted by R, is varied to observe the differences
in sampling location subset designs (R = 20, 50, 150). Additionally, the mean of the
random field for the Poisson model (denoted by P) is varied to determine its influence
on the design of the subset of sampling locations for count data (P = 1, 30). All other
details regarding the random field covariance specification are as outlined in Sect. 4.2.

5 Results

We describe the results in the sections below. The models are implemented in the SSN
package (Ver Hoef et al. 2014) in R. We firstly evaluate utility functions for a set of
fixed designs on a simple network and compare. In the later sections we combine the
utilities with the exchange algorithm to find an optimal subset of sample locations
from an initial set for a synthetic example and the Lake Eacham networks with a
continuous response variable (for example, stream water chemistry). The synthetic
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Table 2 Utility function means (standard errors) for sampling designs with a mixture of exponential tail-up
and tail-down covariance models

Design Upred UEpred UEparm UFIM

Binomial 24.44 (3.84) 21.77 (2.99) 26.82 (1.18) 25.51 (3.27)

Space filling 39.76 (3.87) 42.89 (7.31) 27.92 (1.22) 22.75 (3.45)

Hardcore 33.16 (4.59) 32.28 (5.09) 24.49 (1.07) 11.82 (1.80)

Clustered 10.82 (1.29) 9.16 (1.10) 42.87 (2.11) 14.11 (2.38)

Upstream 22.32 (3.62) 19.10 (2.47) 25.05 (1.12) 21.74 (3.11)

Downstream 13.68 (2.04) 12.16 (1.25) 32.50 (1.55) 14.80 (2.20)

Upred, UEpred, UEparm and UFIM correspond to prediction, empirical prediction, empirical parameter esti-
mation and Fisher information utility functions, respectively. Bold values indicate the design with the highest
utility

data are presented as a stylised network to aid in visualising the clustering or spread
of designs, but this does not influence modelling as this is based on stream network
distances. The Lake Eacham case study is presented as a typical dendritic network
being faithful to the actual geography. Finally, the optimal subset selection of sample
locations is considered for networks of non continuous response variables (for exam-
ple, fish counts) and these are compared to those designs found for networks with a
continuous response variable.

5.1 Pseudo-Bayesian evaluation of sample designs

A number of functions are provided in Ver Hoef et al. (2014) to generate designs on
a stream network. We also generate three further designs. These are summarised in
Table 1. The most appropriate data collection design is identified according to utility
functions in Sect. 3 using Algorithm 1.

The results are presented in Table 2 showing that when the prediction utilities
are considered (Upred and UEpred), a space filling design is the most appropriate.
However, when the empirical parameter estimation (UEparm) and Fisher information
utilities (UFIM) are considered, the clustered and binomial designs prevail as the best,
respectively. It seems sensible that to best predict we need an even coverage of points,
but to estimate spatial parameters we need some clustering as observed by Diggle and
Lophaven (2006) and Zimmerman (2006) for geostatistical and spatial analyses.

The utilities for exponential tail-up and exponential tail-down covariance models
individually are given in Tables 3 and 4, respectively. These utilities for the individual
covariance models show the same best designs using the prediction utilities as in Table
2, that is, a space filling design. However, the empirical parameter estimation utility
is largest for the binomial design and Fisher information is largest for the clustered
design. When considering the empirical parameter estimation utility, this indicates that
a binomial design which exhibits some clustering so that a range of stream distances
are included to estimate partial sill and range parameters, is best. Note also that the
clustered design is the worst performing design for empirical parameter estimation for
the individual covariance models which suggests that including only mid-range stream
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Table 3 Utility function means (standard errors) for sampling designs with exponential tail-up covariance
model

Design Upred UEpred UEparm UFIM

Binomial 47.26 (7.48) 43.38 (4.81) 190.78 (6.91) 73.63 (5.70)

Space filling 89.13 (11.55) 90.61 (15.91) 146.89 (4.05) 42.44 (5.33)

Hardcore 66.34 (9.05) 67.68 (9.28) 160.94 (2.69) 70.43 (15.83)

Clustered 17.75 (1.93) 17.51 (2.02) 80.39 (1.79) 102.37 (13.73)

Upstream 39.50 (6.46) 36.90 (4.75) 140.19 (2.67) 34.93 (2.20)

Downstream 27.49 (4.25) 26.28 (2.62) 156.06 (3.70) 89.94 (10.93)

Upred, UEpred, UEparm and UFIM correspond to prediction, empirical prediction, empirical parameter esti-
mation and Fisher information utility functions, respectively. Bold values indicate the design with the highest
utility

Table 4 Utility function means (standard errors) for sampling designs with exponential tail-down covari-
ance model

Design Upred UEpred UEparm UFIM

Binomial 56.82 (8.41) 51.53 (6.56) 430.97 (4.97) 92.73 (7.92)

Space filling 95.40 (12.87) 98.94 (17.38) 216.23 (2.89) 61.48 (6.24)

Hardcore 80.03 (10.99) 80.67 (12.93) 277.16 (3.15) 108.13 (21.41)

Clustered 23.29 (2.36) 21.96 (2.72) 133.94 (3.09) 206.03 (31.8)

Upstream 53.82 (8.01) 51.99 (7.51) 210.48 (2.52) 70.79 (8.19)

Downstream 32.80 (4.73) 32.83 (3.19) 173.93 (2.95) 185.13 (19.75)

Upred, UEpred, UEparm and UFIM correspond to prediction, empirical prediction, empirical parameter esti-
mation and Fisher information utility functions, respectively. Bold values indicate the design with the highest
utility

sampling locations does not assist in predicting using estimated tail-down (tail-up)
parameters. The Fisher information utility indicates the clustered design with sample
locations mid way between outlet and source segments conveys the most information
about the network.

The differences in designs can be seen further in Fig. 2, which plots stream order
(flow, converted to a value over the interval [0, 1]; higher values indicate higher flow)
versus neighbour distances for the locations in the design. The best design for predic-
tion is the space filling design, shown in Fig. 2a, which shows an even spread over
all distances at all stream orders (flows) in the network. The best designs for parame-
ter estimation and Fisher information are binomial and clustered, respectively, which
are shown in Fig. 2b, c. The binomial design shows locations representing all stream
orders (flow) in the network, similarly to the space filling design, but more densely
placed on the network. The clustered design shows locations densely in mid stream
order (flow) locations on the network. Figure 2 contrasts the two main types of designs,
space filling and clustered, while later applications of this plot demonstrate how the
designs incorporate these two features.
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Fig. 2 Space filling, binomial and clustered designs plotted as stream order (flow, converted to a value
over the interval [0, 1]) versus neighbour distances. Note there are many non-unique locations for the space
filling design and hence there appears to be more locations in the binomial and clustered designs. Higher
stream orders (flows) are indicated by a higher value

5.2 Retrospective design for stream network general linear model

This retrospective design approach is implemented using a greedy exchange algorithm
(Algorithm 2) and is applied to a synthetic example and data collected near Lake
Eacham in Queensland, Australia.

5.2.1 Synthetic example

The best subset of sampling locations is shown in Fig. 3b using the prediction variance
utility, Upred. Note that the selected subset of locations mostly lie on the side of the
network with the most segments, with locations reasonably evenly spread over all
network segments.
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Fig. 3 Synthetic network example. a 60 possible sampling locations. Best 20 sampling locations for
a continuous response using b the prediction variance utility, c empirical parameter estimation utility,
d empirical prediction (hybrid) utility and e Fisher information utility
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Using the empirical parameter estimation utility, UEparm, the best subset of sampling
locations is shown in Fig. 3c. These sampling locations are generally at the more
extreme source segment locations, with a few locations on segments near the outlet.
There is also some clustering of sampling locations, particularly along the segment at
the top of Fig. 3c, which would assist in more accurately estimating the covariance
parameters.

The subset of sampling locations with the highest empirical prediction utility
(hybrid, UEpred) is shown in Fig. 3d. This design selects sampling locations with some
clustering near two of the junctions, with other locations spread somewhat evenly over
the network. This suggests that the design requires a trade off between nearby sample
locations for covariance parameter estimation and space filling sample locations to
ensure prediction variance is kept at a reasonable level.

Finally, the utility based on Fisher information is presented in Fig. 3e. This design
is similar to that found using the empirical parameter estimation utility in that it shows
some clustering around junctions and a range of stream distances between locations
to estimate parameters.

The designs in Fig. 3 are plotted again in Fig. 4 in terms of stream order (flow,
converted to a value over the interval [0, 1]) versus neighbour distances to further
examine the selected pseudo-Bayesian designs. Designs for prediction in Fig. 4a, c
show sampling locations at stream orders (flows) near the source and outlet segments
with perhaps closer neighbours for the empirical parameter estimation, UEpred. The
designs for UEparm and UFIM shown in Fig. 4b, d, respectively, do not include samples
at locations near the outlet as information about the stream network here is likely
contained in upstream locations.

5.2.2 Lake Eacham

The pseudo-Bayesian designs found using the exchange algorithm with different util-
ities are presented in Fig. 5, plotting flow (converted to a value over the interval
[0, 1], note there are no sampling locations on the most downstream segment of the
stream network) versus neighbour distances. The best design using the prediction
variance utility, Upred, is shown in Fig. 5c. Again we see that this is a space filling
design that covers as much of the network as is possible from the original samples
in both upstream and downstream locations over the full range of neighbour dis-
tances. The design generated using the empirical parameter estimation utility shown
in Fig. 5d again shows some more clustering of sample subset sites for accurate
parameter estimation, particularly on source segments. This is similar to the design
generated using Fisher information, shown in Fig. 5f. These designs do not have
neighbour distances over the full possible range which indicates clustering. Finally,
the balance between a space filling and clustering design of locations is again visible
in the pseudo-Bayesian design using the empirical prediction utility, shown in Fig. 5e.
This design includes locations at low, mid and high stream flow locations, similar to
Upred, but also exhibits clustering since some neighbour distances are not over the full
range, particularly at upstream locations near the source. Note all designs include at
least one location on the most downstream segments of the network near the outlet.
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Fig. 4 Synthetic network example with designs plotted as flow (larger values indicate higher flow) versus
neighbour distances. Best 20 sampling locations for a continuous response using a the prediction vari-
ance utility, b empirical parameter estimation utility, c empirical prediction (hybrid) utility and d Fisher
information utility

This is possibly due to the tail-up model so that including that one location would
provide a lot of information since it is flow-connected with every other location in the
network.

6 Retrospective design for stream network generalized linear mixed models
(GLMM)

This section investigates different response types such as count and binomial data in
the GLMM framework on a stream network for the synthetic example and the Lake
Eacham case study.
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Fig. 5 a Eighty-eight possible sampling locations for the Lake Eacham dataset. b Zoomed image of the 88
Lake Eacham sampling sites with thicker lines indicating higher flow and thus closeness to outlet. c–f present
the best subset of 22 sampling locations plotted as flow (larger values indicate higher flow) versus neigh-
bour distances using different utility functions. c Prediction variance. d Empirical parameter estimation.
e Empirical prediction (hybrid). f Fisher information utility
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6.1 Synthetic example

Pseudo-Bayesian retrospective designs on the synthetic example network with non-
continuous response variable are shown in Fig. 6. The left hand panels (Fig. 6a, c, e) are
designs for the binomial model with different values of R, the number of replicates
at each location, (20, 50, 150); the right hand panels (Fig. 6b, d, f) are designs for
the Poisson model with the same R values. The binomial model seems to approach
the continuous designs for all values presented of R, in that all designs resemble the
designs using the prediction variance utility with neighbour distances over the full
range of values and locations at low, mid and high stream order (flow) locations.
The Poisson model, only with R = 150, generates designs representing all stream
orders (flows) on the network. Smaller values of R yield more clustered designs by
including only low to mid stream order (flow) locations. This appears to indicate
the space filling design is appropriate for Poisson and binomial models with large
R.

The best subset of design locations for the Poisson model on the synthetic example
network with changing values of P are presented in Fig. 7a for P = 1 and Fig. 7c for
P = 30. When P is small it can be seen that the design tends to be more clustered in
that sample locations do not cover the full range of stream orders (flows). For P = 30,
the design appears to be similar to the space filling designs for a continuous response
variable.

6.2 Lake Eacham case study

The pseudo-Bayesian retrospective designs for Lake Eacham are also considered for
presence/absence and count response variables. The random field has a constant mean
and a mixture of exponential tail-up and tail-down covariance structure. Designs again
appear to show a trade off between a uniform spread and clustering as R increases,
shown in Fig. 8.

The binomial model, for small R, has no sampling locations at high flows near
the outlet. As R increases, we see more sampling locations included at locations
with high flows near the outlet, thus tending towards a space filling design as for the
continuous model. For the Poisson model, as R increases, we see more points in the
mid range flows, while all values of R include sampling locations at low, mid and high
flows.

The best subset of design locations for the Poisson model on Lake Eacham with
changing values of P parameter are presented in Fig. 7b for P = 1 and Fig. 7d
for P = 30. It can be seen that for larger P , the designs are similar to those pre-
sented earlier with a continuous response variable, specifically Fig. 4a for the syn-
thetic example and Fig. 5c for Lake Eacham. That is, for larger P these designs
approach the space filling designs which are optimal for stream network models using
the prediction utility with a continuous response variable. This suggests the space
filling design is robust for different types of response variables measured on stream
networks.
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Fig. 6 Best subset of sampling locations plotted as flow (larger values indicate higher flow) versus neighbour
distances for the synthetic network with binomial (a, c, e) and count (b, d, f) measurements with varying
R values (R = 20, 50, 150)
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Fig. 7 Best subset of sampling locations plotted as flow (larger values indicate higher flow) versus neighbour
distances for the synthetic example (a, c) and Lake Eacham (b, d) with varying P values (P = 1, 30) for
the Poisson model

7 Discussion

The aim of this paper was to determine pseudo-Bayesian sample designs and subsets
of sampling locations from current designs, acknowledging that accurate prediction
of the variable of interest and estimating covariance parameters are two possible goals
of the study. For continuous responses, the utility function constructed for prediction
yielded sample subsets spread fairly uniformly over the network, while the utilities
for parameter estimation found designs with some amount of clustering. Furthermore,
the utility for empirical prediction unsurprisingly generated designs with a trade-off
between a uniform spread of points and clustering as it sought designs with precise
prediction using accurately estimated parameters. These designs were found for a
synthetic example and a real dataset collected near Lake Eacham in Queensland,
Australia.

123



Environ Ecol Stat (2014) 21:751–773 771

0 10000 20000 30000 40000

Neighbour Distances
0 10000 20000 30000 40000

Neighbour Distances

0 10000 20000 30000 40000

Neighbour Distances
0 10000 20000 30000 40000

Neighbour Distances

0 10000 20000 30000 40000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Neighbour Distances

F
lo

w
 −

−
>

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

F
lo

w
 −

−
>

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

F
lo

w
 −

−
>

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

F
lo

w
 −

−
>

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

F
lo

w
 −

−
>

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

F
lo

w
 −

−
>

0 10000 20000 30000 40000

Neighbour Distances

(a) (b)

(d)(c)

(e) (f)

Fig. 8 Subset of sampling locations plotted as flow (larger values indicate higher flow) versus neighbour
distances for Lake Eacham with binomial (a, c, e) and count (b, d, f) measurements on the network with
varying R values (R = 20, 50, 150)
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The paper also proposed an exchange algorithm to determine these designs. A
noted criticism of the exchange algorithm is that it may get stuck on local optima and
overlook optimal designs depending on the initial random sample. We have repeated
the optimisation several times to attempt to overcome this drawback. A simulated
annealing approach is another algorithm that can avoid this problem as the accep-
tance step allows for swapping between different modes, but comes with additional
computational expense especially for large spatial networks.

Finally, we considered designs for models of discrete responses, specifically bino-
mial and Poisson. The utility was considered for different numbers of trials in a
Bernoulli experiment or length of time that sampling took place on the network for the
Poisson model. It was shown that as this number increases, the designs tend towards
the space filling design which is optimal for prediction of a continuous response. Addi-
tionally, the mean of the random field was varied to determine the influence on design
for the Poisson model. It can be seen that as the Poisson mean increases, the design
generally reverts to the space filling design. This appears to indicate that the space
filling design is robust for different types of data when the number of trials, length of
time samples are collected and/or the Poisson mean is large.

Additional investigation is required to consider the influence on design of including
trends in the modelling. Further work is also required to extend these pseudo-Bayesian
spatial stream network sampling designs when the response is multivariate. The nature
of dependencies in the response would require substantial investigation.
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