Natural Propagation and Habitat Improvement

Volume I - Oregon

Annual and Final Reports, 1985

Published by Department of Energy Bonneville Power Administration Division of Fish and Wildlife North Fork John Day River Habitat Improvement

Annual Report

Prepared by

John Andrews, Project Leader

and

Earl Fishburn, Brent Frazier, and Rod Johnson, Project Coordinators

> Umatilla National Forest 2517 S. W. Hailey Avenue Pendleton, Oregon 97801

> > Funded by

Larry Everson, Project Manager

Bonneville Power Administration

Divison of Fish and Wildlife

Contract No. DE-A179-84BP16725

Project Number 84-8

January 1985

CONTENTS

	Page
ABSTRACT	225
SUBPROJECT I - NORTH FORK JOHN DAY RIVER SIDE CHANNELS	226
Introduction	226
Project Description	227
Achievements	229
SUBPROJECT II - DESOLATION CREEK	231
Introduction	231
Project Description	232
Achievements	232
SUBPROJECT III - LOWER NORTH FORK JOHN DAY SUB-BASIN	234
Introduction	234
Stream Survey Methods and Results	234
SUBPROJECT IV - UMATILLA BASIN	236
Introduction	236
Achievements	236
PROJECT MONITORING	237
PROJECT COSTS	237
LITERATURE CITED	239
APPENDIX A: PROJECT PHOTOGRAPHS	240
APPENDIX B: LOWER NORTH FORK JOHN DAY SUB-BASIN STREAM SURVEYS	241
APPENDIX C: PROJECT LOCATION MAPS	242

TABLES

<u>Table</u>		page
1.	Summary of the North Fork John Day River Side Channel Project to Date	229
2.	Increase in Smolt Production, North Fork John River Side Channels, 1985	230
3.	Summary of the Desolation Creek Project to Date	233
4.	Increase in Smolt Production, Desolation Creek, 1985	233
5.	Project Costs, April 1985 to March 1986	238

ABSTRACT

Personnel from the Umatilla National Forest completed all construction work planned for 1985. Work on the North Fork John Day River consisted of opening six side channels, constructing two alcove or blind channels, constructing 16 side channel and 22 main stem rock weirs, placing six rock deflectors at side channel entrances for flow control, constructing 17 rock deflectors to direct flow in side channels, planting eight shrubs and 182 cuttings, and placing 283 large boulders and 35 logs in side channels and in the main river to provide instream cover.

Work on Desolation Creek last year created an estimated 18,664 square feet of rearing pool habitat by constructing 52 rock weirs, 1 adult holding pool, and five alcove or blind channels in 0.8 miles of Desolation Creek. In addition, 2 side channels, 0.3 miles in length were constructed, 97 boulders and 11 logs were placed in the stream, and 18 cottonwood cuttings were planted to provide shade and improve juvenile anadromous fish rearing habitat.

A detailed stream survey of anadromous fish habitat covering 70.5 miles of stream in the lower North Fork John Day Sub-basin was completed and an anadromous fish habitat improvement project planned for Wilson Creek.

An environmental assessment that discusses anadromous fish habitat improvement within the Umatilla Basin was completed during the spring of 1985. This report was prepared with interdisciplinary input from soils, watershed and wildlife specialists as well as participation by Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW).

SUBPROJECT I - North Fork John Day River Side Channels

INTRODUCTION

The commercial and recreational values of Oregon's anadromous salmon and Steelhead fisheries are well known. The John Day River and its tributaries are important areas for natural anadromous salmonid reproduction. The North Fork John Day River is a major contributor to this production.

The project area is located in northern Grant County on the North Fork John Day Ranger District, Umatilla National Forest in T.6S., R.32E., and T.6 8 7S., R.33E. (Figure 1).

The 1984 estimate of spring chinook salmon (Oncorhynchus tshawytscha) production for the 14 miles of main stem of the North Fork John Day River on the Umatilla National Forest outside of the North Fork John Day Wilderness was 108,000 smolts annually. There is an estimated potential of producing 190,500 smolts annually if habitat conditions are brought to optimum levels.

Degradation by gold dredging in this area began in 1939 and ended in 1950. Dredging activities changed the natural course and hydrology of the North Fork John Day River. High flow channels were created by the gold dredging. To date, the anadromous fish rearing habitat in this portion of the river has not recovered from the impacts of this dredging.

Fourteen miles of the North Fork John Day River offers the opportunity to significantly increase smolt production at relatively low cost. Twenty-six of thirty-two side channels trapped rearing chinook parts or pre-smolts annually. During low flow periods, the channels dried up and the trapped fish died which resulted in an estimated loss to the system of 26,000 pre-smolt spring chinook salmon.

During August 1971, the Oregon Department of Fish and Wildlife (ODFW) in cooperation with the U.S. Forest Service increased the juvenile spring chinook rearing area by pushing dredge tailings into the river. This forced a portion of the streamflow down several secondary channels that were left dry by the dredging. From 1979-1985, the Umatilla National Forest rebuilt these two side channels and reopened an additional 24 side channels. The Forest also constructed structures in the river and side channels to increase juvenile spring chinook rearing habitat.

This has been a cooperative venture. CTUIR and ODFW has been heavily involved in the planning stages. The Louisiana-Pacific Corporation has made a source of boulders available to the project. Bonneville Power Administration has provided major financing since 1983 through the Northwest Power Act. The USDA Forest Service has been responsible for the planning and administration of the project.

The overall project goal has been to increase the production of spring chinook salmon by meeting the following objectives:

- 1 Decrease the hazard of juvenile salmon being trapped in the side channels <u>during low flow periods</u>. This has been accomplished by constructing structures at the channel entrances to provide a year-round streamflow through the channels.
- <u>Increase juvenile salmon rearing habitat in the mainstem river and side</u> <u>channels.</u> Constructed pools below weirs and boulder placements are contributing to meeting this objective.
- 3. <u>Improve Bank Stability.</u> Rock deflectors and riprap were used to control erosion from unstable banks.
- 4. <u>Increase adult salmon resting areas.</u> The constructed pools below the main stem sills are being used by adult salmon for resting prior to spawning.
- 5. <u>Restoration of riparian vegetation.</u> Shrub cuttings and the placement of entire shrubs are being used to establish riparian vegetation along the barren dredge tailings.

Due to the use of streams by Steelhead and spring chinook salmon, the only period available for instream work is July 15 to August 31. Remaining work on the project consists of additional weir construction, boulder placement, bank stabilization, and shrub establishment and fertilization in the thirteen-mile stretch of the river previously worked.

PROJECT DESCRIPTION

Project activities consisted of preparing and administering a contract to: (1) haul boulders and riprap from the rock pit to the construction sites on the river, (2) reopen side channels to the North Fork John Day River, (3) construct flow control deflectors at the entrances, (4) place boulders, woody material, rock weirs, and rock deflectors in the side channels and in the main river.

The contractor began work on June 10, 1985, and construction was completed on August 31, 1985. Boulders and riprap were hauled from a pit at the lower end of the project and stockpiled at the construction sites.

An excavator was used to place 283 boulders and 35 logs in several side channels and in the North Fork John Day River between river miles 63 and 76 (Table 1). The excavator was used to dig a key and rearing pool and place the boulder in the key. The boulders provide physical cover for rearing juvenile salmon and also as create turbulence and pools which provide additional cover. Many natural and previously placed boulders in the river were repositioned to increase their effectiveness. The logs, some with root wads attached, were placed in the larger excavated pools and either held down with large boulders or wired in place.

Six side channels were excavated to grade, and 16 rock weirs were constructed in the channels prior to opening the entrance and allowing the water to flow through them. A flow control structure was constructed at the entrance of each side channel to divert between 20 and 30 percent of the main river flow into the side channel. Riprap was used to protect unstable banks and to construct rock deflectors for increased juvenile fish rearing. The alcoves or blind channels were constructed by excavating a channel from the river at a upstream angle while holding the grade to that of the stream bottom at the lowest end of the channel. In addition to the rearing habitat provided, the resulting off-channel pool provides refuge for juvenile fish during flood events.

ACHIEVEMENTS

Anadromous fish in the North Fork John Day sub-basin are maintaining themselves at very low population levels. It is anticipated that the increased rearing area associated with the boulders, rock weirs, and side channels will result in increased anadromous fish survival from egg to smolt. Assuming the increased rearing area equates to a porportional increase in fish production, this increase is estimated at 7,260 smolts annually and will require at least one generation of five years before results become readily apparent. These smolts would provide 45 additional escaping adults which would have an estimated annual net value of \$24,750 using National Marine Fisheries Service Economic Values (Table 2).

Structure	1979	1980	1981	1982	1983 1	984 1	985 T	'OTAL
Side Channels	1	8	1	1	6	3	6	26
Alcoves and Blind Channe	els						2	2
Boulders Placed	63	50	60	80	492	250	283	1278
Log Weirs						2		2
Rock Weirs			2		16	8	16	42
Main Stem Rock Sills							22	22
Rock Deflectors	14	3		1	4	7	23	52
Adult Holding Pools						1		1
Instream Logs Placed						1	35	36
Erosion Control Structu	res				4	1		5
Shrubs Planted							8	8
Cuttings Planted							182	182

Table 1. Summary of the North Fork John Day River Side Channel Project to Date.

Table 2. Increase in Smolt Production, North Fork John Day River Side Channels.

	ChS
Estimated increase in numbers of smolts © 0.625 percent spawning escapement <u>1</u> / Estimated increased numbers of adult spawn Net value per escaping chinook <u>2</u> /	7,260 <u>x.00625</u> ners 45
Estimated annual value 1985 BPA project	\$24,750
Benefit-Cost Ratio 31	2.6:1

As per conversation with Errol Clair 3/5/84. <u>1/</u> 2/

Meyers 1982. "Net Economic Values for Salmon and Steelhead from The Columbia River System," U.S. Department of Commerce, June 1982. Based on 4% interest for a 20-year project life. 3/

INTRODUCTION

The project area is located in the northern edge of Grant County in the North Fork John Day Ranger District, Umatilla National Forest in T.8S., R.33E. and **T.9S.**, R.33E. Desolation Creek is tributary to the North Fork John Day River from the south, 0.5 miles upstream from the Highway 395 bridge.

Forest Service employees that were in the area in the **1930's** observed numerous spring **chinnok** salmon spawning in Desolation Creek. Several barriers in the lower portions of the stream apparently blocked salmon passage since that time. Louisiana-Pacific Corporation, landowner in the blockage area, removed the barriers during last three years.

Presently, spring chinook salmon, summer Steelhead, and resident trout utilize Desolation Creek. The spring chinook spawning population is at a low level; Oregon Department of Fish and Wildlife estimates that 20 adults or less spawn in the stream annually.

Each spring, trout anglers report catching late migrating spring chinook smolts in lower portions of the stream, and an August 1982 pre-work stream inventory of Desolation Creek fish habitat conditions tallied one spring chinook adult at stream mile 20.5.

An evaluation of the 1982 stream inventory data indicated that existing pool habitat for both adult holding and juvenile rearing is naturally limiting anadromous fish production. Presently the pool/riffle ratio is 11% percent pool and 89 percent riffle as opposed to the 60:40 pool/riffle ratio which is considered optimum for rearing juvenile salmon and Steelhead. The opportunity exists to increase the pool percentage from 11% toward 60%. All of the pools will be designed to increase juvenile rearing while several pools will be designed to provide the depth and size required for adult holding. The opportunity also exists to add gravel catching structures to Desolation Creek to increase anadromous fish spawning areas.

The overall project goal is to increase the production potential of spring chinook salmon by meeting the following objectives:

- Changing the pool/riffle ratio from the present 11:89 tp 60:40 and improving the quality of the existing pools by adding cover and increasing depth.
- 2. Contructing at least one adult anadromous fish resting pool per mile.
- 3. Increasing the amount of woody material in the stream.
- 4. Increasing anadromous fish spawning areas in both size and quality by constructing rock weirs that will retain bedload gravels.
- 5. Designing and installing fish habitat structures that control bank erosion.

PROJECTDESCRIPTION

Project activities consisted of preparing and administering a contract to place rock structures, boulders and riprap in Desolation Creek from stream miles 20.7 to 21.5 (Table 3). The contractor began work on September 3, 1985, and construction was completed on September 29, 1985.

The 1985 Desolation Creek project began with the construction of approximately one-half mile of access to the creek. The equipment used for access construction, which consisted of clearing fallen lodgepole from an existing trail, and instream construction was a tracklayer hoe with street pads and a l-yard bucket on a boom that would reach 30-feet. Instream work began at the conjuction of the North and South Forks of Desolation Creek and progressed for 0.8 of a mile downstream. Within this section of stream we constructed 2 side channels totaling 0.3 of a mile of additional stream habitat, 38 weirs and large pools in the main channel, 1 large resting pool in the main channel, 4 blind channels, one bypass around a potential barrier, 14 weirs and pools in the side channels, and 1 side channel alcove. As work progessed downstream, we also placed 14 boulders in the channel, 59 boulders in the newly constructed pools, dug 24 small pools behind boulders already in the stream, placed and tied in 11 trees as woody debris, and planted 18 cottonwoods along the longest of the side channels.

The rock weirs were designed to catch moving bedload gravel. The pools that were constructed below the weirs were generally 10 to 12 feet wide, 15 to 20 feet in length and a depth of 4 to 6 feet. Boulders were placed in the pools to increase structure and cover in the pool. Boulders excess to the needs of weir and resting pool construction were placed in the stream in scattered groups to provide additional instream cover. Blind channels were dug to approximately 4 feet in depth and 8 feet in width, and ranged in length from 50 feet to 150 feet. Woody debris was tied in with #9 wire to trees on the bank. All ground scarified by equipment was seeded with streamside grass. Access roads were blocked by trees or boulders to prevent more access that than which existed before the project and to prevent resource damage from vehicle use in the wet areas that exist along the streamside.

ACHIEVEMENTS

Anadromous fish in the North Fork John Day sub-basin are maintaining themselves at very low population levels. It is anticipated that the increased rearing area associated with the boulders, rock weirs, and side channels will result in increased anadromous fish survival from egg to smolt. Assuming the increased rearing area equates to a porportional increase in fish production, this increase is estimated at 1,600 smolts annually and will require at least one generation of five years before results become readily apparent. These smolts would provide 29 additional escaping adults which would have an estimated annual net value of \$15,950 using National Marine Fisheries Service Economic Values (Table 4). Table 3. Summary of the Desolation Creek Project to Date.

Structure	1985	TOTAL
Rock Weirs	52	52
Adult Holding Pools	1	1
Boulders Placed	97	97
Instream Logs Placed	11	11
Side Channels	2	2
Side Channel Length (ft.)	1, 584	1, 584
Alcove and Blind Channels	5	5
Alcove and Blind Channel Length (ft.)	550	550
Debris Jam Bypass	1	1
Cuttings Planted	18	18

Table 4. Increase in Smolt Production, Desolation Creek, 1985.

	Spring Chinook
Estimated increase in numbers of smolts Multiplied by: percent spawning escapement 1 / Estimated increase in numbers of adult spawners Net value per escaping chinook 2 / Estimated annual value 1985 BPA project	
Benefit-Cost Ratio 3/	8.6:1

1/ As per conversation with Errol Claire, 3/5/84.

Meyers 1982. "Net Economic Values for Salmon and Steelhead from The Columbia River System," U.S. Department of Commerce, June 1982. Based on 4% interest for a 20-year project life and project cost @ 25M. 2/

3/

SUB-PROJECT III - Lower North Fork John Day Sub-basin

INTRODUCTION

A detailed stream survey of anadromous fish habitat covering 70.5 miles of streams in the lower North Fork John Day Sub-basin was completed and an anadromous fish habitat improvement project planned for Wilson Creek. An evaluation of the 1985 physical stream inventory data indicates that both the quality and quantity of pool habitat for adult and juvenile anadromous fish is naturally limiting production. In addition, many of the pools are shallow and not have sufficient volume for good fish production. In Wilson Creek, the opportunity exists to increase the pool percentage, as well as, increase the maximum depths in the pools from under two feet to over three feet. All of the pools will be designed to increase juvenile rearing while several pools will be designed to provide the additional depth and size required for adult holding.

STREAM SURVEY METHODS AND RESULTS

The survey was a basic on-the-ground inventory of anadromous and potentially anadromous streams. Each stream was walked during the low flow period to collect data on biological and hydrological conditions. The result was a combination of stream reach inventory, channel stability evaluation and fishery habitat survey for each stream. Survey methods were derived from previous experience and procedures developed by the Forest Service in Region 1 (Stream Reach Inventory & Channel Stability Evaluation, Dale Pfankuck, 1975). These methods have proven reliable and effective for inventorying habitat conditions for northwest salmonids.

The survey method relies on both measurements and observations. A minimum of equipment was necessary. The equipment included: a thermometer, for water and air temperature; a compass, for stream orientation; a clinometer, for gradient and slope; a spherical densiometer for cover determinations and a camera. These were readily available and didn't require special purchase. Length and area determinations were made by pacing. The parameters that couldn't be quantitatively measured, such as stability or stream morphology, were rated using a set of evaluation criteria. Results were surprisingly uniform between surveyors and produced an accurate account of stream conditions.

Each stream was divided into reaches. They were generally about 1/2 mile in length and usually delineated by changes in gradient *or* when a tributary entered a larger stream. The physical and biological parameters of each reach were recorded to provide the information summarized below:

Fishery Habitat:	Estimated flow, water quality, water & air temperature, gradient, channel depth profile and fish species present.
Riparian Vegetation:	Cover, size composition, riparian zone cross-section, dominant species, percent overhanging vegetation and stream surface shade.

Channel Stability: Upper bank-land form, slope, mass wasting hazard, debris jam potential and vegetation bank protection. Lower bank-channel capacity, bank rock content, flow deflectors/obstructions, bank cutting and point-bar deposition. Channel bottom-rock anaularity, brightness, particle packing, percent stable material & size distribution, scour and deposition, and the amount of clinging aquatic vegetation.

This data proved a comprehensive description of each reach. In addition within each reach, every pool and riffle was measured. There areas were determined and tabulated to provide an accurate pool/riffle ratio. Spawning gravel areas were also inventoried along with notes on gravel size, quality and factors causing quality degradation.

Photography was used extensivily to document the conditions of each reach. Beginning and ending photos were taken on each reach. Pictures were also taken of major hydrological features such as barriers, characteristic features such as typical pool or riffle stretches, and examples of past management activities. These photos provide good documentation of the present ecosystem and will be used to evaluate long term changes in trend.

An evaluation of the data collected from the 70.5 miles of stream surveyed during 1985 indicates that both the quality and quantity of pool habitat for adult and juvenile anadromous fish is naturally limiting production. This data was used to design a habitat improvement project and prepare a work statement for three miles of Wilson Creek, a tributary to Wall Creek.

SUB-PROJECT IV - Umatilla Basin

INTRODUCTION

The completion of the comprehensive plan for the rehabilitation of anadromous fish stocks in the Umatilla River Basin, the improvement of passage in the lower Umatilla River, and the recent adoption of minimum streamflows by the State of Oregon coupled with results of the Umatilla National Forest's physical survey of anadromous streams which indicates that rearing habitat for juvenile anadromous is at a low level points to the need for an anadromous fish habitat improvement project in the Umatilla Basin. This work will be coordinated with the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) and a work statement is being prepared for a habitat improvement project in FY 1986.

ACHIEVEMENTS

The stream survey conducted on Forest streams in the upper Umatilla River drainage during the summer of 1984 indicated a significant lack of adult holding and rearing pool habitat. Pool:riffle ratios in the range of 5:95 were common. Using this stream survey data as a basis, the Forest proposed that anadromous fish habitat values in the various stream reaches be enhanced through construction of log and rock weir structures. In line with this proposal, the Forest conducted an environmental analysis of the impact of this type of project proposal on various resource issues and concerns. A report, Environmental Assessment for Anadromous Fish Habitat Enhancement on the Umatilla National Forest Portion of the Umatilla River Drainage, was prepared by the Walla Walla Ranger District to document this analysis process. The Umatilla Forest Supervisor signed a Decision Notice and Finding of No Significant Impact for the proposed project work on June 7, 1985.

During July, August, and September of this year 365 log and rock pool creating weir structures were located, inventoried, and designed in the Thomas Creek stream reach (tributary to the South Fork of the Umatilla River). In addition, access for equipment to place the structures was located and designated along the reach.

Placement of the weir structures in the channel will accomplish the following:

1. <u>Improve Steelhead access to the reach.</u>

The summer crew noted a dead adult Steelhead 100 yards below the culvert under Forest Road 32 (T. 2 N., R. 37, Section 13). While it is documented that spawning adults have access to the reach it is very difficult and many more do not make it than do. Improvement of this access will therefor increase the number of spawning adults reaching the available habitat.

2. <u>Dramatically improve the ability of the stream to produce downstream</u> <u>Steelhead outmigrant smolts</u>.

This will result primarily from the creation of mid-summer low flow holding pool habitat. The summer crew noted almost complete mortality of native

trout and anadromous Steelhead along the reach due to lack of holding pools during low flow periods.

3. Stabilize channel bedload movement.

This bedload stabilization should increase Steelhead redd success and may be enough to permit future runs of chinook salmon to become established in the lower mile or so of the reach.

PROJECT**MONITORING**

Biological monitoring of the project results in the North Fork John Day Sub-basin has and will be coordinated with the Oregon Department of Fish and Wildlife; however, no on-the-ground monitoring occurred in 1985. The use of the created rearing areas by salmonids will be tallied for different types of structures during the 1986 field season by Forest Service personnel. --

Physical monitoring of all BPA anadromous fish improvement project start with a comprehensive pre-project physical survey. All projects in this **year's** program had this survey prior to 1985. Physical monitoring of the North Fork John Day River Side Channel sub-project will consist of a physical stream survey which is scheduled for September 1986. The survey will monitor the physical habitat changes that have occured since the pre-work survey of 1982.

Physical monitoring of the Desolation sub-project has consisted of preliminary measurements of constructed pool area (18,644 square feet). Physical monitoring next year will consist of resurveying the portion of Desolation Creek where habitat improvement work was completed in 1985 and 1986 with emphasis on measuring the surface area and volume of constructed pools and comparing this data with that obtained in the 1982 survey.

PROJECT COSTS

Incurred and anticipated expenses from April 1, 1985 to March 31, 1986 are shown in table four. These costs are broken out to show both Bonneville Power Administration costs and USDA Forest Service costs.

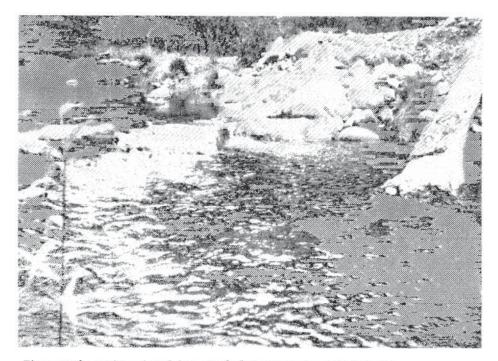
USDA Forest Service appropriated funds spent for fish habitat improvement on the Umatilla National Forest totaled \$64,254 of which \$11,590 was associated with this project and \$42,244 was spent installing 32 log weirs, 6 rock weirs, 1 adult anadromous fish holding pool, and 740 cubic yards of riprap in Tucannon River, Touchet River, Mottet Creek, Mallory Creek and Indian Creek (streams included in the Northwest Power Planning Council's 1984 Columbia River Basin Fish and Wildlife Program). In addition, the Forest spent \$10,400 installing 27 log weirs in Jarboe Creek (a resident trout stream not in the NWPPC program). Table 5. Project Costs, April 1985 to March 1986.

Bonn	eville Power Administration Funds:	1/	
a.	Salaries		\$47, 500
b.	Transportation and travel		7, 500
с.	Materials and supplies 2/		1, 200
d.	Equipment rental contracts		66, 500
		Subtotal	\$122, 700
e.	Overhead @ 10.7%		13, 100
		Total	\$135, 800
	stimated Costs. o major property purchased.		
Umat	illa Forest Appropriated Funds:		
a.	Salaries		\$19,712
b.	Transportation and travel		2,030
с.	Materials and supplies		5,750
d.	Equipment rental contracts		\$36, 662
		Total	\$64, 254

Literature Cited

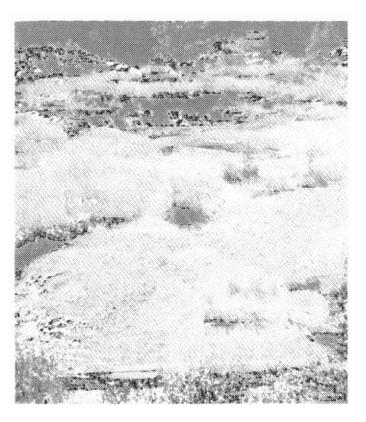
Claire, Errol. 1984. Personal communication on March 5, 1984.

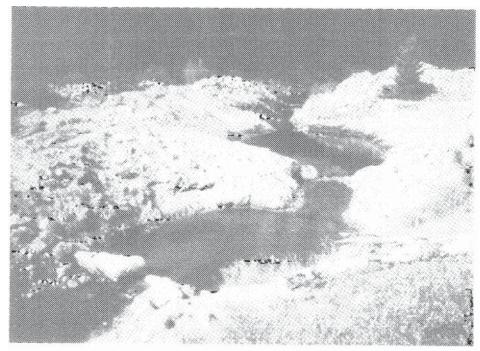
Meyers, Philip A. 1982. Net Economic Values for Salmon and Steelhead from the Columbia River System. U.S. Department of Commerce. 23 pages.


Oregon State Game Commission. 1959. Fishery Division 1958 Annual Report. page 182.

Pfankuck, Dale. 1975 1 Stream Reach Inventory and Channel Stability Evaluation. USDA, Forest Service, Northern Region. 26 pages.

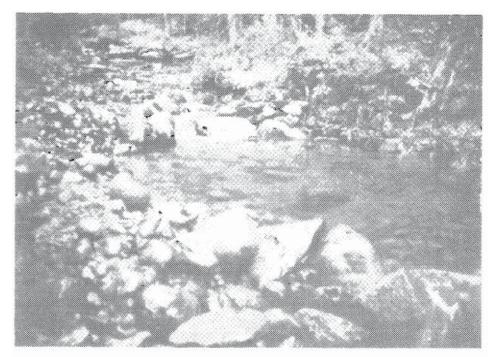
Appendix A: Photographs


Rock weir, boulder placement, and entrance to side channel at the lower end of the project area,


The rock weir, boulder and large log combine to provide complexity.

Side channel in June with adequate flow.

Side channel in August. Notice the damp spot in the large hole where Chinook fry were trapped.


Side channel in September after construction.

Aerial view of side channel in September.

The upper end of the main stem of Desolation Creek prior to construction,

Same view as above after pool construction.

Desolation Creek side channel prior to construction.

The same side channel after construction.

Planting cottonwood cuttings in a Desolation Creek side channel.

A blind channel at the lower end of the Desolation Creek project.

Appendix B: Lower North Fork John Day Sub-basin Survey Summaries

1985.
SURVEY,
FISH
ANADROMOUS
HABITAT
DAY
JOHN
FORK
NORTH
LOWER

	EF1	RFACH	SURFACE.	TOTAL.	I SURFACE	TOTAL.	SURFACE	P/R	SPAWNING
	IEI I	LENGTH	AREA	LENGTH	AREA	LENGTH	AREA	RATIO	GRAVEL
STREAM SUMMARIES	(FT.)	("IW).	[(SQ. FT.)]	(FT.)	SQ. FT.)	L (FT.) L	(SQ. FT.)	N/A	1 (SQ. FT.
Wall Creek	45,402	8.6	326,054	11.062	89.813	34.340	236,241	28:72	3,342
Indian Creek	2,356	7.	7,936	444	2,132	1,912	5,804	27:73	0
Wilson Creek	34,037	6.4	368,435	11,141	114,967	24,771	253,468	31:69	275
Bull Creek	5,361	1.0	20,956	389	2,421	4,972	18,535	12:88	0
Porter Creek	2,021	4.	12,605	456	5,240	1,565	7,365	41:59	0
Little Wall Creek	26,443	5.0	186,507	9,724	55,502	16,719	131,005	30:70	30
Skookum Creek	48,767	9.2	369,890	10.702	81,917	38,065	287,973	22:78	63
Swale Creek	47,896	9.1	257,855	4,573	35,209	43,323	222,646	14:86	110
Little Bear Creek	2,900	ŝ	11,724	241	1,862	2,659	9,862	15:85	0
Alder & East Alder Creeks	15,950	3.0	66,261	4,066	20,350	11,884	45,911	12:88	94
Hog Creek	4,198	8.	19,651	209	1,455	3,989	18,196	07:93	0
Bacon Creek	12,060	2.3	37,008	1,137	5,791	10,923	31,217	16:84	150
Three Trough Creek	2,383	0.5	12,328	283	1,998	2,100	10,330	16:19	0
Ditch Creek	51,807	9.8	272,510	5,573	35,705	46,234	236,805	13:87	300
Martin Creek	3,051	9.	9,697	127	3,934	2,924	5,763	40:59	0
Mallory Creek	15,752	3.0	59,269	1,459	11,227	14,293	48,042	19:81	0
Potamus Creek	29,034	5.5	171,038	2,133	27,650	26,901	143,388	16:84	60
Ellis Creek	13,952	2.6	69,484	1,000	6,917	12,952	62,567	10:90	0
Pole Creek	9,345	1.8	31,080	502	2,776	8,843	28,304	09:91	0
Survey Totals	374,590	70.5	2,310,238	69,287	506,866	309,369	1,803,372	22:78	4,424

jams Flows over bedrock w/angular boulders, 2-3' log jams Flows over bedrock w/angular boulders, 2-3^t log SPAWNING . GRAVEL (SQ. FT.) COMMENTS AVE. SURFACE P/R AVE. WIDTH AREA | RATIO GRAD. (FT.) (SQ. FT.) | N/A (\$) 5 27:73 27:73 5,804 5,804 3.04 RIFFLE AREA AVE. SURFACE <u>LENGTH</u> WIDTH AREA [TOTAL|AVE. (FT.) (SQ. FT.)[(FT.)(ET.) 39 1,912 1,912 2,132 2,132 POOL AREA 4.80 SURFACE | LENGTH AREA | TOTAL | AVE. (SO, FT.) | (FT.) (FT.) 10 1144 444 TOTAL SURFACE AREA 7,936 7,936 REACH REACH REACH S LENGTH WIDTH A REACH (FT.) ((MI.) (FT.) (S 3.37 .45 .45 INDIAN CREEK 2,356 2,356 ч. ---

248

SE	Algae greater in #16, veg. change also Bedrock, good fish, gradient changea Lots of debris & mass wasting, large log jam Shallow slow moving; numerous dace Bedrock, lrg. boulders, pools w/short riffles Parts of creek on N.F. portions on pvt. land Little shrubs at begin, picking up more logs Starts old bridge, Dark Canyon, dry stretch Begins w/popr on sides, cutting on outside banks Creek reduced, fewer large fish, bank cutting Start has less algae, larger rocks, steeper grad Log jams, diverted stream caused by jams	IS	Fish plentiful, bedrock, log jam ideal hiding Big bank spawning gravel contains fish Deepest pool island has evidence of hi flow Big boulders cutting of bank, fallen tree Culvert here, channel is bedrock Culvert - extensive bank erosion rocks in water Large boulders Bedrock channel creates small water fall	
) COMMEN	Algae Bedroo Lots Shall Bedroo Parts Littl Starts Creek Start Log ja Begins Begins	342 alng el	Fish Big ba Deepea Big ba Culver Culver Large Bedroc	
SPAWNING GRAVEL (SQ. FT.) COMMENTS	00000000000000000000000000000000000000	3, SPAWI SPAWI GRAVI	40 850 10 12 12 12 12 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10	GJ.Z
AVE. GRAD. (\$)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	AVE. GRAD.	ͷϫͷͷͷϫͼͷ	
IO	28:70 22:77 22:77 23:77 23:77 24:75 24:76 21:78 30:70 38:62 38:62 19:81 19:81 19:81	:72 IO	29:71 31:69 31:69 40:60 36:66 32:68 22:78 22:78 27:73	31:09
<mark>a</mark> Surface¦p/r h area {rat (So. ft.) N/a	17,085 24,928 27,928 177,1179 6,366.5 6,366.5 6,366.5 22,126 4,950 4,950 4,950 7,199 11,597 11,597 8,702	236,241.5 28:72 A SURFACE P/F H AREA RATIO (SQ. FT.) N/A		253,408
RIFFLE AREA H AVE. AVE. WIDTH FT.) (FT.) (112.5 12.7 12.7 12.7 12.7 12.6 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7	70.7 8.5 RIFFLE AREA H AVE. AVE. WIDTH FT.) (FT.) (11.45 9.96 9.94 9.44 9.44 9.44 9.44 9.65	
RIFFLH TH AVE.	122.2 103.2 82.4 82.4 49.5 530.7 68.1 45.1 68.1 45.1 55.0 55.0 55.0 100.0	70.7 RIFFLI RAVE.	98 138 92 94 121	
RIFF LENGTH TOTAL AVE.	1,467 2,374 2,374 1,098 1,098 5,734 1,101 1,101 1,315 7,154 7,154 4,303 1	34,340 70. 34,140 70. <u>I LENGTH</u> <u>I TOTAL</u> AVE.	3,822 2,030 1,969 4,994 4,994 2,341 2,341 2,341	11.1. 42
SURFACE AREA (SO. FT.)	7,238 7,873 5,193 5,193 3,075 6,319 6,319 17,191 3,071 1,118 7,079 2,718 2,122	89,813 3 89,813 3 80RFACE AREA (SQ. FT.)		114,907 2
POOL AREA AVE. , WIDTH) (FT.)	200 200 200 200 200 200 200 200 200 200	.0 9.0 POOL AREA AVE. . WIDTH) (FT.)	13.51 15.03 4.57 4.57 9.25 9.25 9.85	
(r) •	50.2 24.8 24.8 15.7 15.7 18.4 13.4 18.4 11.6 11.6 11.6 11.6 11.6 11.6	19.0 POC FT.)	35 56 59 171 25 23 23 23 23 23 23 23 23 23 23 23 23 23	
E LENGTH TOTAL AVE	452 976 646 6467 8697 697 595 349 349 349 1,337 1,337 1,337 1,337 1,337 1,337	11,062 19	1,298 1,955 2,7444 1,155 1,155 293	11, 141
TOTAL SURFACE AREA (SQ. FT.	24,323 44,724 35,052 9,386.5 9,201 57,713 8,021 8,021 6,317 6,317 6,317 14,315 10,824	326,054.5 11,062 TOTAL SURFACE LENG AREA TTOTAL (SQ. FT.)!(FT.)	61,277 29,484 81,699 31,522 73,522 173,025 47,734 10,542	300,890
AVE. REACH WIDTH (FT.)	00020200000000000000000000000000000000	8.5 3 AVE. REACH WIDTH	11.97 11.14 11.188 13.23 9.16 9.16 9.88 9.88	
		02 11.0 REACH LENGTH T.)!(MI.)		h.0
CREE	1,919 3,350 3,350 1,557 1,1557 1,1557 3,655 3,655 1,450 1,450 1,450 8,541 8,541 6,195 6,195	45,402	5,120 6,879 6,879 2,382 2,382 2,382 7,058 3,357 1,383 1,383	34,037
WALL C REACH	- ៷ ៳ ៹ ៷៰ ៸ ៰ ៰ ៰ ៰ ៰ ៰ ៰	T. 4 WILSON REACH		Ι.

NG T.). COMMENTS	Few fish, few pools-open meadow area, rocky channel bot.	Few fish, few pools-open meadow area, rocky channel bot.
SPAWNI) Gravel (SQ. F'	Few 1	Few 1
POOL AREA I RIFFLE AREA I AVE. SURFACE <u>LENGTH</u> AVE. SURFACE P/R AVE. SPANNING E. WIDTH AREA TOTAL AVE. WIDTH AREA RATIO GRAD. GRAVEL .) (FT.) (SQ. FT.) [(FT.) (FT.) (SQ. FT.) [N/A (\$) (SQ. FT.) COMMENTS	6.22 2,421 4,972 151 3.73 18,535 12:88 4	2,421 4,972 16,535 12:88
LENGTH TOTAL AV	389 13	389
AVE. TOTAL REACH SURFACE WIDTH AREA (FT.) (SO. FT.)]	20,956	20,956
AVE. REACH WIDTH (ET.)	3.91	
	5,361 1.02 3.91 20,956	1.02
ULL CREEK REACH LENGTH EACH !(FT.)!(MI	5,361	5,361 1.02
BULL	F	τ.

ENTS	Steep chan. bot. boulders, falls barriers 7-10' Fish above sect. where water flows underground	
COMP	Stee Fish	
RIFFLE AREA LENGTH AVE. SURFACE P/R AVE. SPAMNING TOTAL AVE. WIDTH AREA RATIO GRAD. GRAVEL) (FT.) (FT.) (SQ. FT.) N/A (\$) (SQ. FT.) COMMENTS	00	0
AVE. GRAD. (\$)	ъъ	
P/R RATIO N/A	37:63 44:56	41:59
SURFACE	11.31 2,850 37:63 3.44 4,515 44:56	7,365 41:59
RIFFLE AREA CH AVE. (AVE. WIDTH (FT.) (FT.) (;	11.31 3.44	
RIFFI CH AVE. (FT.)	50 82	
LENG	252 1,313	1,565
SURFACE AREA (SQ. FT.	1,691 3,549	5,240
OL AREA AVE. WIDTH (FT.)	24.16 9.19	
PC LAVE. FT.)	14 24	
LENG TOTAL	70 386	456
TOTAL SURFACE AREA (SQ. FT.	4,541 8,064	12,605
AVE. REACH WIDTH (FT.)	14.1 4.46	
H TH (MI.)	.06	.38
ER CREEK REACH LENGTH H !(FT.)!(N	322 1,699	2,021
PORT	r- 0	ч.

EEK	
CR	
WALL	
ITTLE	

				COMMENTS	Many boulders, narrow canyon at end of reach	31 deep hole near large boulders	Alternating of cover, lots of shrubs, sedge	Lots of 4% gradient, good poold, large boulders		Bedrock bottom, narrow chute at the top	Mostly underground flow, fed by unnamed spring	Little water, stagnant		
		SPAWNING	GRAVEL	(SQ. FT.) COMMENTS	0	0	24	0	0	0	0	9	30	
		AVE.	GRAD.	3	3-4	ო	7	4	N	2-4	m	m		
	_		RATIO	N/A	17:82 3-4	51:49	40:60	36:64	18:82	26:74 2-4	33:67	17:82	30:70	
		SURFACE P/R	AREA RATIO GRAD.	FT.) (SQ. FT.) N/A (3)	23,461	5,974	25,740	11,498	9,791	39,505	4,851	10,185	131,005	
	AREA	AVE.	HIDIM	FT.) (8.9	6.0	8.1	8.3	15.2	11.3	2.5	4.1		
	RIFFLE AREA	1	AVE.	T.) ()	85.8 8.9	41.5	49.1	47.6	58.2 15.2	68.7 11.3	96.0	124.0		
	1	LENGTH	TOTAL	[(FT.)(I			3,144	1,379	640			2,476	16,719	
		SURFACE	AREA	SQ. FT.)	4,917	6,322	17,040	6,554	2,167	13,883	2,394	2,225	55,502 16,719	
	POOL AREA	VE.	HIDI	FT.) (8.6	4.0	4.0	3.4	11.5	2.1	1.2	1.3		
	POOL	A	VE. W	T.) (62.3		
		LENGTH	TOTAL A	[(FT.)(F					189				9,724	
	TOTAL	SURFACE	AREA	SO. FT.)	28,378	12,296	42,780	18,052	11,958	53,388	7,245	12,410	86,507	
	AVE.	REACH	WIDTH	(FT.) (8.8	7.7	0.0	5.5	14.4	11.5	1.8	3.0	-	
Name of the second		H	TH	(MI.)	.61	.30	.90	.62	.16	.88	.75	.78	5.0	
		REACH	TENG	!(FT.)!	3,231	1,604	4,775	3,288	829	4,647	3,971	4,098	26,443	
				REACH	-	2	e	7	2	9	7	80	Τ.	
	2	50)											

SKOOKUM CK.

				NTS	Shallow, 2 deep holes, fair amount of jam debris	Shallow w/few 1' deep holes, 6" fish, jam debris	Lower half is open area, debris, cranefish	Douglas dominant, lots grass, fence parallel ck.	Shallow, lots of 8" fish, bank cutting, grass	Shallow, lots grass, some debris	2' high bank cutting, lots grass, fence east	Next to canyon, canyon getting narrower	1" fish, lots of dry streambed, debris log jams	Large logs across ck., some debris	Ck. next to canyon west slope, some bank cutting	Lot debris w/7 big log jams, wide stream bed	Lot of 1" fish, lot of creek bed, less debris	Canyon beds are dry, banks good shape, debris	Lots debris, lot creek bed, 6-10" fish	Lots debris, shallow, some fish, good banks	Shallow, few fish, lot debris in lower half	Rear is shallow, 1" fish, fair amount debris	Blockage by roadbed, meadow-type veg.	Meadow type to forest type, culvert barrier	Channel overgrown marshy, logs could impede pass	Large increase of debri causing halt of fish	Large amount of debri; narrow canyon trees to	Some boulders, patches of gravel, woody debris	Swale Ck. runs into Skookum	Bedrock, good flow, falls at pool #27	Constricts around bedrock, boulders block pass	Steeper gradient, falls, boulders, major barrier	Decrease gradient, boulders end, channel widens	Boulders occur, veg. change, lose sedge, narrow	Mass wasting of bank, boulders, spotty sedges		
		SPAWNING	VEL	(SQ. FT.) COMMENTS	0 Shall	0 Shall			0 Shall			0 Next						0 Canyo						-							-		-				
			~	(SQ	-	0	Ŭ	0	Ŭ	0	Ŭ	Ŭ	0	0	Ŭ	Ŭ	Ŭ	0	0	Ŭ	0	0	0	Ŭ	9	v	ñ	Ŭ	Ŭ	U	0	0	Ŭ	21	a	63	
		AVE.	-	(\$)	~	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	m				8					#		m	m		
		P/R	RATIO	IN/A	23:77	19:81	20:80	22:77	18:82	22:78	32:68	41:59	23:77	43:56	35:65	42:57	19:80	31:69	22:77	27:73	16:84	41:59	13:87	22:78	19:81	30:70	45:55	13:87	11:89	08:92	24:76	18:82	24:76	9:91	12:88	22:78	
		SURFACE P/R	I AREA	(SO. FT.) N/A	3,430	5,756	11,669	1,700	10,890	7,376	17,698	4,565	13,380	5,404	7,425	11,625	13,350	11,560				872	4,659	5,711	2,782	2,813	1,450	21,325	22,375	19,215	10,775	17,142	6,138	27,471	2,080	287,973	
	E AREA	AVE.	HIDIM	(FT.)	4.6	5.8	4.9	9	8.8	9.3	10.1	7.9	9.6	9.8	8.6	8.7	9.7	10.8	10.7	3.08	3.2	2.9	3.0	2.2	3.0	3.7	3.3	8.6	9.5	8.8	7.5	9.2	7.3	19.7	12.3	0.6	
	RIFFLE AREA	Н	AVE.	FT.) (46	71	145	56	112	66	58	48	92.6	49.9	54	83.1	124.7	71.3	66.2	29.5	54.4	33.4	351	43	62	50	33	247	236	155	76	77	106	19.7	168	.0.56	
		LENGTH	TOTAL AVE.	(FT.)(FT	745	993	,351	280	1,235	793	,741	577	,390	549	864				795	915	,633							65	55		38	1,853	845	, 392	335	38,065	
	•	SURFACE	AREA	(SO. FT.)!	1,025	1,346		495			-		-		4,070			5,215 1								1,210	1,188	3,170 2				3,880 1				81,917 38	
	POOL AREA	AVE.	HIDIM	(FT.)	5.3	5.3	5.2	7	5.9	8.1	9.4	9.7	8.9	10.4	8.9	10.1	10.9	11.1	9.2	4.2	3.7	3.7	3.0	3.2	0.4	5.5	5.3	10	ħ . ħ	0.0	9.3	9.3	11.0	8.3	7.6	676	
		Н	AVE.	(FT.)	12	17	34	18	34	20	30	21.5	29.7	33	28.4	52.8	26.9	33.2	23.5	10.0	8.8	16.4	6.4	8	12	15	17	36	66	15	22	20	000	53	19	24 6	
		LENGTH	TOTAL AVE) (FT.)(190	251	550	70	410	260	006	331	944	396	455	846	296	466	259	302	264	164	231	500	167	221	222	324	655	196	357	417	180	339	37	10,702	
	TOTAL	SURFACE	AREA	(SO. FT.	4,455	7,102	14,539	2,195	13,305	9,496	26,173	7,791	17,352	9,552	11,495	20,205	16,580	16,775	10,892	4,793	6,305	1,486	5,394	7,324	3,434	4,023	2,638	24,495	25,260	20,978	14,102	21,022	8,110	30,301	2,363	369,890 10,702	
	AVE.	REACH	HIDIM	(FT.)	4.76	3.12	14.67	6.27	8.09	9.02	9.91	8.58	9.45	10.11	9.51	9.29	9.94	10.92	10.62	3.94	3.24	3.20	2.2	2.3	3.1	4.15	4.02	8.80	9.79	8.23	2.94	9.26	7.76	7.64	1.96	7.2	
				:(.																				.59		. 18	.12	.53	-57	44.	.34	.43	.19	.33	.07	9.24	
SKOOKUM CK.		REACH	LENGTH	H !(FT.)!(MI	935	1,244	2,901	350	1,645	1,053	2,641	908	1,836	945	1,319	2,176	1,668	1,536	1,054	1,217	1,897	465	1,754	3,138	1,098	970	656	2,789	3,010	2,369	1,795	2,270	1,025	1,731	372	48,767 9	
SK 001				REACH	-	~1	m	ন	ŝ	9	7	æ	б	10	11	12	13	14	15	16	17	18	19	20				24	25	26	27	28	29	30	31	Τ.	
																									2	51											

LOWER NURTH FURK JOHN DAY HABITAT ANADROMOUS FISH SURVEY, 1985.

Image: Surface I and the	OWALE	CREEK		AVE.	TOTAL		POI	POOL AREA			RIFFLI	RIFFLE AREA					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		REA(HI	FEACH WIDTH	SURFACE AREA	TOTAL	H AVE.	AVE. WIDTH	SURFACE AREA	TOTAL	H AVE.	AVE. WIDTH	SURFACE AREA	2		SPAWNING GRAVEL	
	REACE		(WI.)	~	FT.)	[(FT.)(FT.)	-		[(FT.)(~	(FT.) ((SQ. FT.)		(\$)	(SQ. FT.)	COMMENTS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	1,886	.36	8.41	15,818	329	24	11		1,557	11.1	8	12,078	24:76	4	45	Lots willows, big boulders & trees
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1,670	.32	8.64	14,425	355	30	10		1,315	101	æ	10,835	25:75	5	0	Shrubs thinned
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m	2,082	.39	5.46	12,622	327	20	6		1,755	110	9	9,700	23:77	4	65	Increase of debris in Little Bear & Swale Ck.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	#	1,018	.19	5.39	5,490	158	14	8	1,340	860	61	5	4,150	24:76	5	0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ŝ	1,544	.29	6.41	9,896	126	11	10	1,313	1,418	109	9	8,583	13:87	7	0	Small cobbles w/big cobbe in middle of ck.
	9	1,580	.30	5.89	11,424	227	17	8	1,744	1,353	104	7	9,680	15:85	5	0	Increased debris, log jams frequent
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	1,536	.29	6.83	10,484	296	17	7	2,149	1,240	73	7	8,335	21:80	7	0	Large boulders creating nice pools & falls
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	2,456	747.	6.01	14,749	224	14	7	1,564	2,232	140	9	13,185	11:89	2	0	Steep canyon, over hanging shrubs
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	2,182	14.	5.92	12,922	242	13	80		1,940	97	9	11,042	15:85	9	0	Meets Rd. 2110, heavy debris, tree growth
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	2,328	44.	6.62	15,411	259	14	10		2,069	66	9	12,843	17:83	7	0	Large rock capped hill to east, willow dominance
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	2,649	.50	6.35	17,215	231	14	10		2,418	134	9	14,899	13:87	6	0	Mixed stretches of flatter areas
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	2,428	917.	7.47	18,134	283	13	10		2,145	93	7	15,301	16:84	15	0	Drainage from west, huge boulders create falls
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	2,420	.46	5.91	14,305	20	10	ŝ		2,400	240	9	14,205	01:99	ŝ	0	Drainage on west bank, bottom channel widened
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	14	2,911	.55	3.98	11,577	35	7	4		2,876	180	4	11,454	01:99 2	2-3	0	Stream meanders thru "dry meadow"
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	15	3,479	.66	3.17	11,044	110	12	9		3,369	187	m	10,343	06:94	2	0	Stream w/good overhang of sadges & grasses
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	5,881	1.11	4.03	23,786	128	9	4		5,753	164	4	23,231	02:98	m	0	Flows over roadbed rock, culverts barriers
3.68 17,318 540 17 5 2,568 4,180 131 4 14,750 15:85 .5-1 0 4.48 17,455 683 18 5 3,203 3,463 94 4 14,252 18:82 .5-1 0 257,855 4,573 35,209 43,323 222,646 14:86 110	17	980	.19	4.85	3,780				ı	980	490	4	3,780	0:100	2	0	Crisscrossed w/lodgepole, serious barrier
257,855 4,573 18 5 3,203 3,463 94 4 14,252 18:82 .5–1 0 257,855 4,573 35,209 43,323 222,646 14:86 110	18	4,720	.89	3.68	17,318	540	17	S	2,568	4 , 180	131	7	14,750	15:85	-5-	1 0	Bank cutting, major briad, 1/2% gradient
257,855 4,573 35,209 43,323 222,646 14:86	19	4,146	.79	4.48	-	683	18	5 2			94	7	14,252	18:82	-5-	1 0	4 bank cutting and mass wasting, clay & milky
TTMP1 E BEAD (DEFEV		47,896	9.1			4,573			35,209 4	3,323			222,646	14:86		110	
11001 D D D D D D D D D D D D D D D D D																	
	1.1 T.T.1	E BEAR (REEK														

Flow seems to come from spring on east side Few fish, stagnant shallow pools (SO. FT.) COMMENTS AVE.SURFACEF/RAVE.SPAWNINGWIDTHAREARATIOGRAVEL(FT.)(SO. FT.)(N/A(\$)(SO. FT.) 0 00 99 14:86 17:74 15:85 AVE. SURFACE | <u>LENGTH</u> AVE. SURFACE | P/R WIDTH AREA | TOTAL | AVE. WIDTH AREA | RATI (FT.) (SO. FT.) | (FT.) (FT.) (SO. FT.) | N/A 6,239 3,623 9,862 3.93 RIFFLE AREA 1,588 106 1,071 134 2,659 1,020 842 1,862 AVE. WIDTH POOL AREA 7.50
 I
 IAVE. TOTAL
 POC

 I
 REACH
 REACH
 SURFACE
 LENGTH

 I
 LENGTH
 WIDTH
 AREA
 TOTAL | AVE.

 REACH
 (FT.)!(MI.)!(FT.)
 (SO. FT.)!(FT.)(FT.)
12 136 241 7,259 11,724 4.14 .33 .55 1,724 2,900 . - N

-

COMMENTS	Culvert 3' high 35' long - creek crosses. Slope on side hills beg. to steep. Canyon, cast banks, slopes steep. Alder & Skookum Creeks cross, same size. Log creates pool possible barrier to fish. Alder shaded, culvert w/3 ft. drop barrier Few fish barriers 20' apart culvert collapsed No fish survey discontinued		MENTS	Reach on side of fence separating Hog & Skookum Loga w/atacked rocks creating 3' wall		COMMENTS	Pools formed by log jams, bedrock & boulders Numerous boulders, small steelhead & crayfish Begin. w/gravel bar in small pond grad. increase Starts w/meadow type ends w/increased gradient Deep channel, bank of soil & exposed roots	
SPAWNING GRAVEL (SQ. FT.) CO	0 Cui 0 Cui 0 Cai 0 Alco 0 Alco 0 Fervio	ħ6	SPAWNING GRAVEL (SO. FT.) COMMENTS	0 Res 0 Log	D	SPAWNING GRAVEL (SQ. FT.) COM	0 Poo 0 Nur 150 Beg 0 Stag 0 Dee	150
ICE P/R AVE. RATIO GRAD.	2,706 48:52 1 3,020 52:47 1 7,895 27:72 M 6,366 43:57 2 3,666 43:57 2 3,038 29:71 2-3 3,367 17:83 2-3	45,911 12:88	 CE P/R AVE. RATIO GRAD. [,] N/A (\$)	8,923 11:89 6 9,273 03:96 9	18,196 07:93	I ACE!P/R AVE. FATIO GRAD. 1.) N/A (\$)	10,171 14:86 3 3,904 16:84 5 12,627 17:83 6 492 37:63 4 4,023 12:88 4	31,217
LE AREA AVE. WIDTH (FT.)	60.8 2.7 2. 55.1 5.2 7. 55.1 4.2 6. 41 4.42 6. 104 4.25 15. 29 2.78 3. 29 2.78 3.	52.5 3.86 45,	LE AREA AVE. WIDTH (FT.) (S	181.17 4.10 8, 363 5.11 9,	18,	LE AREA AVE. WIDTH (FT.) (S	110 3.44 10, 96 2.04 3, 123 3.30 12, 51 3.19 4,	31,
SURFACE RIFF SURFACE LENGTH AREA TOTAL AVE. (SO. FT.)!(FT.)(FT.)	2,496 973 3,340 1,000 2,986 1,515 1,914 1,488 2,820 823 4,848 3,729 1,233 1,091 713 1,265	20,350 11,884	SURFACE LENGTH SURFACE LENGTH AREA TOTAL AVE. (SQ. FT.) (FT.)(FT.)	1,082 2,174 373 1,815	1,455 3,989	SURFACE RIFF SURFACE <u>LENGTH</u> AREA TOTAL AVE. (SQ. FT.) (FT.) (FT.)	1,659 2,961 1 728 1,915 2,578 3,822 1 295 154 531 2,071 2	5,791 10,923
POOL AREA LENGTH AVE. TOTALIAVE. WIDTH	2 46.3 3.3 1 24.7 4.2 8 18.3 6.2 6 14.3 4.9 14.3 4.9 14.3 7.34 0 21 6.55 9 3.79 0 8 3.24	6 164.6 5.0	POOL AREA LENGTH AVE. TOTAL!AVE. WIDTH (FT.)(FT.) (FT.) (1 15.10 7.17 8 11.60 6.43	6	FOOL AREA LENGTH AVE. TOTAL!AVE. WIDTH (FT.)(FT.) (FT.)(5 12 5.27 7 9 4.36 5 17 5.01 0 17 5.9	7
TOTAL SURFACE <u>LE</u> AREA TOT (SO. FT.) (FT	5,202 742 6,360 791 10,881 478 8,277 386 6,486 384 20,704 740 4,271 325 4,080 220	66,261 4,066	TOTAL SURFACE <u>LE</u> AREA TOT (SO. FT.) (FT	10,005 151 9,646 58	19,651 209	TOTAL SURFACE <u>LE</u> AREA TOT (SQ. FT.) (FT	11,830 315 4,632 167 15,205 515 787 50 4,554 90	37,008 1,137
ER AVE. REACH WIDTH .) (FT.)	.32 3.03 .34 3.55 .38 5.46 .35 8.11 .35 8.11 .35 8.11 .35 8.11 .355 .37 .28 2.75	3.02 4.5	CH AVE. CH REACH GTH WIDTH	.44 4.30 .35 5.15	.80	AVE. FEACH [WIDTH .)[(FT.)	.62 3.6 .39 2.22 .82 3.51 .04 3.86 .41 2.11	2.3
ALDER & EAST ALD REACH LENGTH REACH (FT.) (MI	1 1,715 8 11,993 6 11,874 7 11,874 7 11,874 7 11,416 7 11,416 8 11,416	T. 15,950	HOG CREEK REACH REACH REACH (FT.) (MI	1 2,325 2 1,873	T. 4,198	BACON REACH REACH REACH REACH (FT.) ((MI	1 3,276 2 2,082 2A 4,337 3 204 4 2,161	T. 12,060

1985.
SURVEY,
FISH
ANADROMOUS
HABITAT
DAY
NHOL
FORK
NORTH
LOWER

Matrix Norm <															
.45 5.17 7.3.28 283 18 7.06 1,998 2,100 124 4.92 10,330 16:19 4 C .45 12,328 283 1 1,998 2,100 10,330 16:19 4 C .45 12,328 283 1,998 2,100 124 4.92 10,330 16:19 4 C .46 12,328 283 10 31 10 32 16 9 7 9 9 7 9 9 7 9 9 7 9	DUGH REACH LENGT FT.) [(?	H H (~	POOL AI			FLE	(S	RFACE P EA R FT.) N	0 I		AWNING AVEL Q. FT.)	COMMENTS	
.45 12.328 263 1.996 2,100 10,330 16:19 C CR RAF: TOTAL FOOL ARA HAT: FIFFLE ARA IRA IRANL CR RAF: TOTAL FOOL ARA IRAN STATCH REA IRANL CR IANE: UNEAGE LANCE LANCE LANCE LANCE RANL CR IANE: UNEAGE LANCE LANCE LANCE LANCE RANL LINET ICCO. FT.JICEJICET.	383	5		m			00				6:19		D		
CH TOTAL FOOL AFEA I FIFTLE AFEA I FIFTLE AFEA I AVE. CH IRE. TOTAL FOOL AFEA AVE. SUFFACE I ENCTH AVE. SANING AVE. AVE.	,383	.45	12,328	283		1,998	2,100		10		6:19		J		
<pre>25 7.8 10,319 219 116.8 9.7 2,114 1,110 79.2 7.4 8,205 80:20 44 0 .43 7.6 17,162 366 20.3 9.4 5,2013 2,700 84.4 6.0 16,165 24:76 6 .43 7.6 17,162 366 20.3 9.4 5,2013 2,700 84.4 6.0 16,165 21:79 4 .60 5.6 5.1 9,357 280 15.5 7.8 2,182 0,3571 5.9 10,655 08:92 3 .60 5.1 1,585 15.5 7.8 2,182 1,800 257.1 5.9 10,655 08:92 3 .60 5.2 1,454 211 11.7 7.6 1,599 3,575 143.0 5.5 11,865 07:93 2 .72 5.6 21,454 211 11.7 7.6 1,599 3,575 143.0 5.5 13,165 07:93 2 .72 5.6 21,454 211 11.7 7.6 1,599 3,575 143.0 5.5 13,655 07:93 2 .72 5.6 21,454 211 11.7 7.6 1,599 3,575 143.0 5.5 13,178 11.89 2 .72 5.6 21,454 211 11.7 7.6 1,599 3,575 143.0 5.5 13,178 11.89 2 .72 5.6 21,454 211 11.7 7.6 1,599 3,575 143.0 5.5 13,178 11.89 2 .72 7.6 5.1 4,578 894 27.0 6.4 5,772 7,635 2,297 96.5 6.2 16,481 17.83 5 .16 14,378 894 27.0 6.5 3,762 9,214 236.2 4.5 14,201 08.91 4 .16 14.6 37,378 894 27.0 6.5 3,762 9,214 236.2 4.5 14,201 108.91 4 .16 14.1 3,544 11.8 7.3 3.0 55.0 2.0 11,280 17.83 55.0 7 .16 14.1 3,544 18.0 6.5 3,762 9,214 236.2 4.5 14,201 108.91 4 .16 14.1 3,544 17.188 7 .16 14.1 3,544 18.0 6.5 3,762 9,214 236.2 4.5 14,204 108.91 4 .16 14.6 37,378 894 27.0 6.5 3,762 9,214 236.2 4.5 14,204 108.91 4 .16 14.1 3,544 17.188 3.0 17.83 5.6 12.2 1,807 3.0 11,280 17.83 5.5 1.5 1 .16 14.1 3,544 17.188 3.0 17.83 5.6 12.2 1,807 3.0 11,280 17.83 5.5 1.5 1 .16 14.1 3,544 17.188 3.0 17.83 5.7 1.5 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.0 1 .18 14.6 7.001 AFEA 1001 AFEA 1001 AFEA 1001 AFEA 1001 17.80 17.83 5.5 1.5 1.5 1.5 1.5 1.5 1.5 1.0 0.5 1.5 1.5 1.5 1.0 0 .16 14.1 13,544 17.8 7.7 1.1 1.7 1.7 1.7 1.7 1.8 1.7 1.8 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5</pre>	REEK REACH LENGT	-	~		AI AI AI	¥ Ú	C	ELE .	(S	ш —	IO		AWNING AVEL SO. FT.)		
37 6.0 11,565 135 19.2 6.9 930 1800 257.1 5.9 10,655 08.92 3 0 72 5.6 21,454 211 11.7 7.6 1,593 3,575 143.0 5.5 19,855 07.93 2 0 72 5.6 21,454 211 11.7 7.6 1,593 3,575 143.0 5.5 10,455 08.92 3 0 72 5.6 21,454 211 11.7 7.6 1,593 3,575 143.0 5.5 19,855 07.93 2 0 16 17,149 128 12 11.8 2 0	,329 ,229 ,246	u - m				2,114 5,013 3,627	1,110 2,700 1,860	2 1			0:20 + 4:76 1:79	± 0 ±	000	Riparian used by animals, loose soil Coverage on side slopes, large debris throughout Decreased steepness, less debris, wider riparian	
22 4.5 71545 376 9.0 6.4 7,395 5,971 73.5 7,149 12.88 3 0 7.8 6.6 22,338 1,200 42.9 3.2 3,857 2,957 96.5 6.2 16,481 17.83 5 0 7.6 14,337 93 15.5 8.2 762 1,805 225.6 7.5 13,657 5 0 0 1 1 31,653 05.95 8 0 0 1 1 31,655 8 0	,935 ,175 ,028	പവവര				930 2,182 183	800 895 995				-	๛๛๙๙	0000	Level stream, less debri, more grassy bench Available boulders for const., large water flow Poor bottom, flat, few pools, needs work Berins at end of flat meadow	
.36 7.6 14,397 93 15.5 8.2 762 1,805 225.6 7.5 13,635 05:95 8 0 1.61 4.6 37,378 894 27.0 6.4 5,752 7,633 272.6 4.1 31,626 15.85 3 0 1.85 4.7 45,803 366 12.2 6.2 3,762 9,214 236.2 1,200 17.83 5-1 0 0.8 2.3 1,016 118 7.3 3.0 355.0 2.0 660 35:65 .5-1 0 9.81 272,510 5,573 35,705 46,234 236,805 13:87 300 9.81 272,510 5,573 35,705 46,234 236,805 13:87 300 0.41 IAUE. 7.3 3.05 46,234 236,805 13:87 300 1.41 IZZ,5510 5,573 35,05 26,805 13:87 300 0.41 IAUE. SURFACE LENGTH AVE. SURFACE LENGTH AVE.				376 155 ,200		2,396 907 3,857	971 514				2:88 1:89 7:83		300	Narrow canyon walls, steep slopes, bedrock Boulders, jams with bralds, falls Bedrock walls at start, wider at bottom	
9.81 272,510 5,573 35,705 46,234 236,805 13:87 300 ACH IEEACH UNTH AFEA INTERIE AFEA INFACE LENCTH AVE. SURFACE FVR AVE. SPANNING ACH IEEACH SURFACE LENCTH AVE. SURFACE LENCTH AVE. SURFACE FVR AVE. SPANNING ACH IEEACH SURFACE I LENCTH AVE. SURFACE I LENCTH AVE. SURFACE FVR AVE. SPANNING ACH IEEACH SURFACE I LENCTH AVE. SURFACE I LENCTH AVE. SURFACE FVR AVE. SPANNING ACH IEEACH SURFACE I LENCTH AVE. SURFACE I LENCTH AVE. SURFACE FVR AVE. SPANNING ACH INTINITY OS. FT.) (FT.) (FT.) (FT.) (SQ. FT.) [N/A (\$) (SQ. FT.)] 0.58 3.18 9,697 127 15.88 30.98 3,934 2,924 209 1.98 5,763 40:59 1 0 0.58 9,697 127 3,934 2,924 209 1.98 5,763 40:59 1 0		~ + + + 1			,	762 5,752 3,762 2,265 2,265 356	805 633 214 875 330				5:95 5:85 8:91 7:83 5:65	8 44 -5-1 -5-1	00000	Boulders scattered on bottom, increased gradient Canyon opens into meadow, dece thick in bottom Meadows with tall, thick grass, higher banks Meanders through meadow, slow water, some bluish Mostly dry, deep holes have water, blue, murky	
ACH IAVE. TOTAL POOL AREA I FIFFLE AREA I ACH REACH SURFACE AVE. SPANNING ACH REACH SURFACE LENGTH AVE. SURFACE AVE. SPANNING VCTH MEDTH AREA TOTALIAVE. AVE. SURFACE AVE. SPANNING VCTH MEDTH AREA TOTALIAVE. MIDTH AREA FATIO GRAVEL VI[M1.) MIDTH AREA TOTALIAVE. WIDTH AREA FATIO GRAVEL VI[M1.) IVET.) (SO. FT.) (FT.) (SO. FT.)		.81	272,510	5,573			46,234		236		3:87		300		
0.58 3.18 9,697 127 15.88 30.98 3,934 2,924 209 1.98 5,763 40:59 1 0 0.58 9,697 127 3,934 2,924 5,924 5,763 40:59 0	CREEK REACH LENGT (FT.)!(H H C	LENGTH TOTAL AVE	POOL NI (F) (A		FLE) (A (S	8 ~	ß		AWNING AVEL Q. FT.)		
0.58 9,697 127 3,934 2,924 5,763 40:59 0	,051	ŝ			.88 30.9						0:59	-	0	Outlet at superpond inadequate, no outflow	
		.58	6,697	127		3,934	2,924		ŝ		0:59		0	Outlet at superpond inadequate, no outflow	

35,N

254

	A H H	~	CTH (FA)	(u) • C	A	FACE A FT.)	5	E.	S	EA (EACE)	0 4		WNING VEL . FT.)	COMMENTS
4,418 .84 3,286 .62 477 .09 563 .11 968 .18 968 .13 1,909 .21 1,806 .34 3,141 .59	4 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	15,545 1,576 2,061 2,061 3,421 3,421 7,700	388 361 27 27 276 181 181	222 242 242 242 242 242	5.67 5.67 5.40 5.40 72.08 24.67	2,327 1 2,047 2 166 544 232 232 232 1,280 1 165 1,280 1	4,030 2,925 450 450 925 1,700 1,700 2,960 2,960 2,960 2,960 2,960 2,960 2,960 2,960 2,960 2,960 2,925	92 71 71 71 71 71 71 71 71 71 71 71 71 71	33.28 34.28 34.29 34.28 34.29 34.29 34.29 34.29 34.29 34.29 34.29 34.29 34.29 34.29 34.29 34.29 34.29 34.29 34.29 34.29 34.29 34.29	13,218 8,191 2,410 1,517 2,425 6,420 9,605 3 9,605 3	15:85 3. 20:80 3. 11:89 3. 26:74 20:01 21:01 32:68 32:68	๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛	00000000	Reach begins @ F.S. boundary gradient 40%+ Cascades prevent fish passage large boulders Boulders - impossible to get machinery in Majority of reach is on bedrock Reach begins where large boulders begin Accessible w/equipment, needs pools Mass waste of banks, brown trout, rainbows Reach ends south of Goshen Cabin
15,752 2.98		59,269	1,459		-	11,227 14	14,293		14	48,042 1	19:81		0	
S CREEK REACH LENGTH (FT.) (MI.	AVE. REACH WIDTH I(FT.)	TOTAL SURFACE AREA (SQ. FT.)	LENGTH TOTAL!AVE.	[+] .	POOL AREA AVE. SUR . WIDTH ARE) (FT.) (SQ.	FACE A FT.)	LENGTH TOTAL AVE.	FLE	(S	SURFACE F/R AREA FAT: (SQ, FT.) N/A	Q	AVE. SH GRAD. GF (\$) (2	SPAWNING GRAVEL (SQ. FT.)	COMMENTS
1,955 .37 3,189 .63 55815 .53 550 .09 1,970 .37 1,970 .37 1,973 .524 .67 1,973 .524 .67 1,973 .37 1,973 .37 1,817 .34 1,899 .36	8775774999749999999999999999999999999999	15,946 24,398 20,808 5,000 20,808 20,960 20,960 11,837 11,863 11,437 7,222 6,097 2,536	264 214 22 264 24 25 264 24 25 264 24 25 264 24 25 264 24 264 264 24 264	1117.5.3 1117.5.0 1117.5.0 1117.7.5 1117.7 1	23.00 23.00 23.00 23.00 23.00 23.7 23.7 23.7 23.7 23.7 23.7 21 2.2 15.2 27 27 27 27 27 27 27 27 27 27 27 27 27	9,1338 9,131 2,103 2,103 2,103 2,103 2,103 1,088 3,373 3,373 3,373 3,373 3,373 3,373 3,373 3,373 1,408 1,408	1, 530 2, 752 2, 752 2, 615 2, 615 2, 615 1, 530 1, 535 2, 080 1, 632 1, 640 1,	26.7 56.7 56.7 56.7 56.7 56.7 56.7 56.7 5	<pre>cvccocvavaawwoog cvcoocvawaewwoog cccoocvawaewwoog cccoocvawaewwoog cccoocvawaewwoog cccoocvawaewwoog cccoocvawaewwoog cccoocvawaewwoog cccoocvawaewwoog cccoocvawaewwoog cccoocvawaewwoog cccoocvawaewwoog cccoocvawaewwoog cccoocvawaewwoog cccoocvawaewwoog cccoocvawaewwoog cccoocvawaewwoog cccoocvawaewwoo cccoocvawaewwoo cccoocvawaewwoo cccoocvawaewwoo cccoocvawaewwoo cccoocvawaewwoo cccoocvawaewwoo cccoocvawaewwoo cccoocvawaewwoo cccoocvawaewwoo cccoocvawaewwoo cccoocvawaewwoo cccoocvawaewwoo cccoocva cccoocvawaewwo cccoc</pre>	11,548 2 15,267 3 55,67 3 5,600 0 14,000 0 8,520 3 8,520 3 8,520 3 8,520 3 8,520 3 8,520 3 8,520 3 8,520 3 8,520 3 8,520 3 20,252 20,20	28:72 37:63 37:63 37:63 0:100 1-199 1:99 3:97 3:97 3:97 3:97 3:97 3:97 3:97 3	584449888844889 594498888888	00000000000000000000000000000000000000	Steep & rocky with several waterfalls Leveling out, canyon narrows Number of pools drastically reduced Debris piling up @ mouth of culvert, bar forma. Needs work - good access off 2105 Banks need work not many pools Too few pools falls are barrier for fish passage 2 seeps putting out water into creek Mass wasting common & sloughing too Superpond Meadow type, narrow channel, steep walls Partly stable log jams, dams need work, check Large loops, numerous rainbow, deep slow water No definite channels, marshy, culverts

60

16:84

143,388

26,901

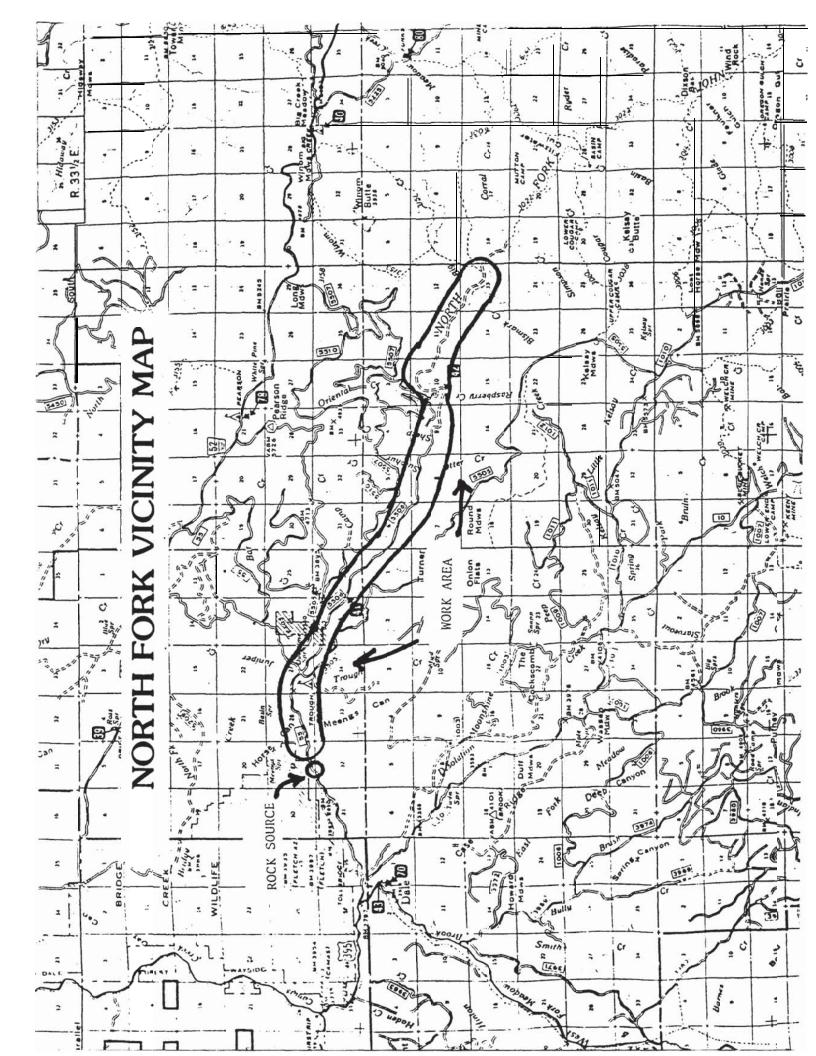
27,650

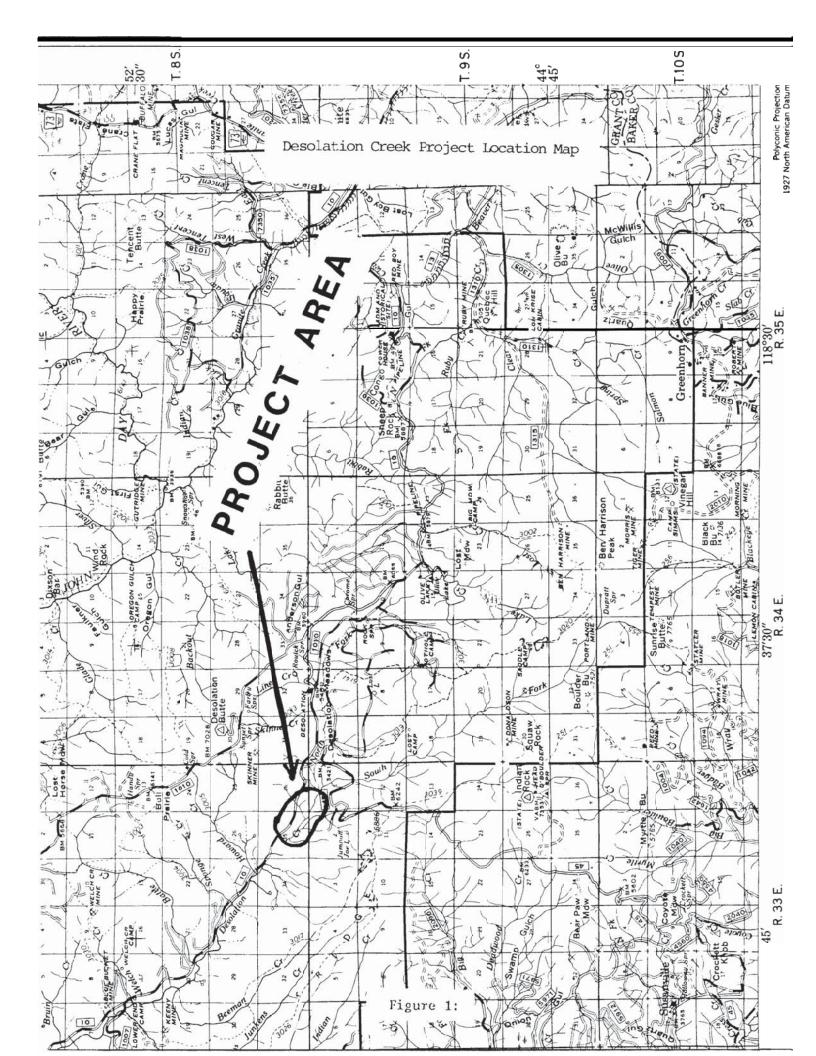
2,133

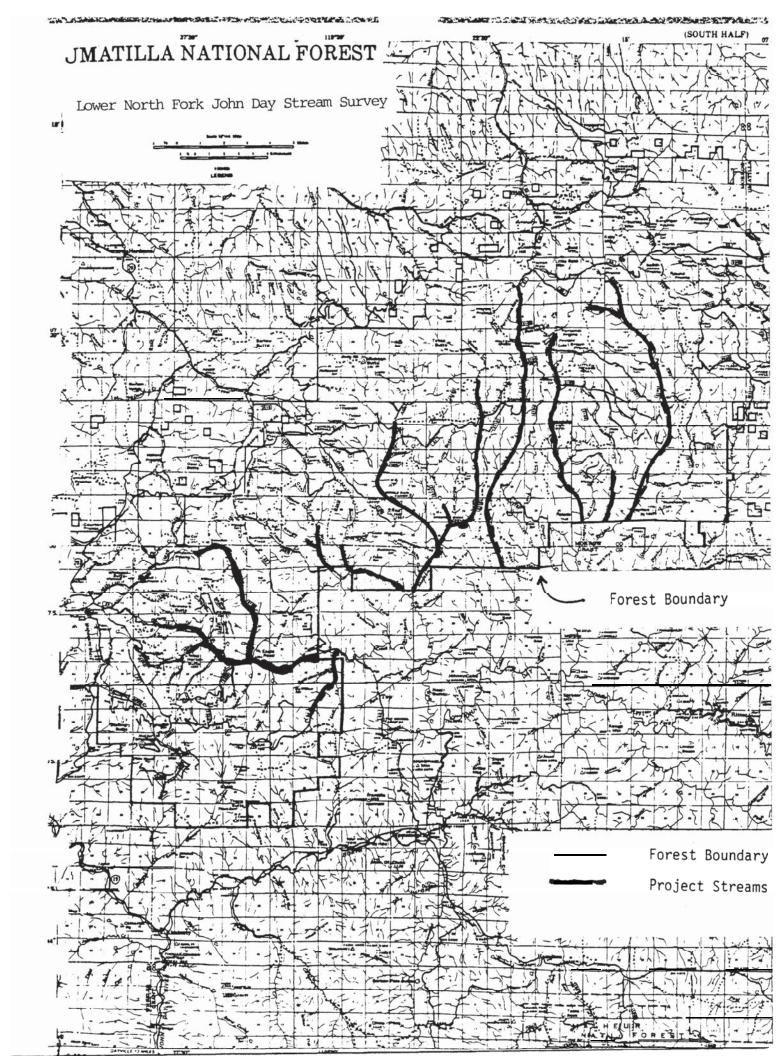
171,038

5.48

29,034


Ŀ.


LOWER NORTH: FORK JOHN DAY HABITAT ANADROMOUS FISH SURVEY, 1985.


...

256

Appendix C: Project Location Maps

FINAL REPORT TO THE BONNEVILLE POWER ADMINISTRATION (BPA)

> USDA - Forest Service Malheur National Forest 139 NE Dayton Street John Day, Oregon 97845

Upper Mainstem John Day River Habitat Improvement Project 84-22 CONTRACT NUMBER DE-A179-85BP16064

Prepared by: Richard Gritz Fisheries Biologist

Reviewed by: <u>Carlos Pinto</u> Carlos Pinto Fish and Wildlife Staff Officer

Approved by:

5 Kenneth L. Evans Forest Supervisor