Dynamic Ecology: The Aquatic Perspective

Gordon Reeves USDA Forest Service Pacific Northwest Research Station Corvallis, Oregon

Dynamic Aspects of the ACS

 "At the heart of this approach (the ACS) is the recognition that fish and other organisms evolved within a dynamic environment that has been constantly influenced and changed by geomorphic and ecologic disturbance." FEMAT p. V-29

Dynamic Aspects of Aquatic Ecosystems in FEMAT

•"To maintain community viability throughout a large drainage basin, it is necessary to **maintain features of the natural disturbance regime** (i.e., frequency, distribution, and magnitude." p. V-13

"Wood enters streams inhabited by fish either directly from the adjacent riparian zone or from tributaries that may or may not be inhabited by fish, or hillslopes." p. V-13

Primary production

Litter input

Grazers

Collectors

Fishes

300 S F W S S F W S 2 5 10 50 100 Normal Post-fire Time year year

Adapted from: G.W. Minshall et al. 1989

bedroch 150 yrs 100 yrs 50 yrs 0 yrs

From: May and Gresswell 2003

Wide Floodplains

Fan

	Natural Disturbance	Human Disturbance
Magnitude	Low/High	Low
Frequency	Low/High	High
Coupling of System		
Legacy		

Relevance of Dynamic Events

(channel instability)

rare)

Forest Management Implications

Staggered Setting Scenario

Active Management

25 % of total basin area

Minimum Fragmentation Scenario

Active Management

25 % of total basin area

	Natural Disturbance	Human Disturbance
Magnitude	High	Low
Frequency	Low	High
Coupling of System	Maintained	Decoupled
Legacy	Sediment Wood	Sediment

Less Intensive Forestry

Intersection of high-quality fish habitat (low-gradient channel, larger floodplains, junction effect and canyon transition), and steep, erosion-prone slopes adjacent to channel

Timber Harvest Planning: An Example

More Intensive Forestry

"The significant problems we face today cannot be solved with the same level of thinking that were at when we created them."

Albert Einstein

The Aquatic View?

Landscape Condition

Ecological State

Ecological State

Present

Time 1

Time 2

Cities usk residents to cut use and warn of contamination

BY STEVEN CARTS

FPOM is fine particulate organic matter; CPOM is coarse particulate organic matter; P/R is the production/respiration

Recruitment Flux of Large Woody Debris

From: Benda and Sias 2003