Ecological Niche Factor Analysis

Modelling species Habitat Suitability with presence only data

University of Lausanne, Switzerland Lab. of Conservation Biology

Alexandre Hirzel

Introduction

Habitat suitability modelling

Geographic space

Environmental space

Slope

Limestone

Glacier

Habitat Suitability: input

Habitat Suitability: input

Input Ecogeographical Observation map

Absences

An "absence" (=no observation) may be due to:

Species undetected \Rightarrow FALSE ABSENCEDispersal barriers \Rightarrow FALSE ABSENCELocal temporary extinction \Rightarrow FALSE ABSENCEToo small territory \Rightarrow FALSE ABSENCEUnsuitable habitat \Rightarrow TRUE ABSENCE

Habitat Suitability: input

Input Ecogeographical Observation map

Observations

Ecological Niche Factor Analysis

Ecological Niche Factor Analysis

• Principles:

- Summarises all variables into a few uncorrelated factors.
- Takes only presence data into account.
- Compares the species distribution to the global (available) environment.
- Built on the concepts of marginality and specialisation.

Marginality & Specialisation

- Species niche is a subset of the global environment.
- Species set of EGV differs from global set by:
 - Marginality (deviation from the global mean)
 - Specialisation (niche breadth)

requency

Global

Species

Marginality = $\frac{|\mu_G - \mu_S|}{1.96\sigma_G}$

Specialisation = $\frac{\sigma_G}{\sigma_S}$

Altitude

Factor computation: Marginality

 μ_G

Projection along the marginality factor

EGV

Global distribution

Species distribution

MF = Marginality factor μ_G = global barycentre

 $\mu_{\rm S}$ = species barycentre

Factor computation: Specialisation

Min. species

Variance

necialisation facto

From geographic space to environmental space

Limesto

Slor

ENFA

24 predictors

6 factors = 80% of information

Habitat suitability

Habitat suitability computation

Specialisation

Global distribution

Marginality

factor

Species distribution

• Let's keep only the first factors (here, two)

Median envelopes

BIOMAPPER 1.0 (Hausser 1995, Hirzel *et al.* 2002)

- Envelope defined by the frequency distribution and the median.
- Assumes an unimodal and symmetrical distribution.

Distance geometric mean

BIOMAPPER 3.0 (Hirzel & Arlettaz 2003, Hirzel et al. 2004)

Distance geometric mean

Do that for the whole environmental space, computing a habitat suitability field

Distance geometric mean

50% of the points: core habitat 90% of the points: marginal habitat

Envelopes are based on this field and the observation points.

Distance harmonic mean

Similar to the geometric mean, but based on the harmonic mean of the distances:

 $H_{H}(\mathbf{P}$ $\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\delta(\mathbf{P}, \mathbf{O}_i)}$

Minimum distance

Or just keep the distance to the closest point:

 $H_{\min}(\mathbf{P}) = \operatorname{Min}\{\delta(\mathbf{P}, \mathbf{O}_i)\}$

Biomapper

• This method has been implemented into a software named *Biomapper* that pools eco-GIS tools allowing to:

- Prepare the variable maps (circular analysis, normalisation, etc.)
- Explore them (visually and statistically)
- Model the species ecological niche
- Build Habitat Suitability maps
- Evaluate them
- More information and download on http://www.unil.ch/biomapper

Related papers and co-authors

- Hirzel, A.H., Hausser, J., Chessel, D., and Perrin, N. (2002) Ecological-niche factor analysis: How to compute habitat- suitability maps without absence data? *Ecology*, 83, 2027-2036.
- Hirzel, A.H., and R. Arlettaz. 2003. Modelling habitat suitability for complex species distributions by the environmental-distance geometric mean. *Environmental Management* **32**:614-623.
- Hirzel, A.H., B. Posse, P.-A. Oggier, Y.C. Glenz, and R. Arlettaz. 2004. Ecological requirements of a reintroduced species, with implications for release policy: the Bearded vulture recolonizing the Alps. *Journal of Applied Ecology* 41:1103-1116.