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Abstract
A technique for generating a digital surface model (DSM) from stereo 30 cm image pairs was investigated for use in mapping 
riparian vegetation, canopy cover, and canopy height on the Gila National Forest. Semi-Global Matching (SGM) is a relatively 
low cost photogrammetric technique used to create a high resolution DSM over a large area using stereo image pairs. For this 
pilot project, multiple digital elevation model manipulation techniques were used on an image-derived DSM to create a digital 
terrain model (DTM). The difference between a DSM and a DTM was used to produce a canopy height model (CHM) which 
was used in mapping land cover, canopy cover, and canopy height. A visual assessment of the CHM, using high resolution 
imagery, showed agreement with riparian land cover types. The CHM, topographic data, and high resolution imagery were 
used to segment the study area into objects with similar characteristics for use in vegetation mapping. The effect of the CHM 
on out-of-bag error in Random Forest classification of vegetation type and canopy height was examined. Generally the largest 
and smallest canopy height classes were mapped with the least amount of out-of-bag error, and inclusion of the CHM 
improved the out-of-bag error for the vegetation type map. Possible factors contributing to the results are discussed, including 
inherent limitations of the SGM technique and challenges related to the terrain of the study area.
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Introduction
Stereo imagery has been used for 
decades in the production of 
topographic maps and elevation models 
using photogrammetric techniques. Due 
to recent technological advancements, 
detailed elevation information can now 
be automatically extracted from digital 
stereo aerial imagery using a process 
known as Semi-Global Matching 
(SGM) (Hirschmüller 2008).

SGM uses overlapping imagery and 
sensor orientation, location, and 
correction data from the associated 
‘block files’ to create data points with an 
x, y, and z coordinate if the same feature 
is ‘matched’ in more than one image. 
The outputs from SGM are in the same 
file format as a lidar point cloud (.las) 
and can contain millions of data points. 
The point cloud can then be fed into a 
software application to create a digital 
surface model (DSM). Comparisons 
between a DSM with a digital terrain 
model (DTM) can be used to 
approximate canopy structure. Because 
of low cost and high accuracy, image-
derived DSMs are comparable and in 
some cases preferred to those created 
from lidar (Gobakken and others 2015). 
However, creating a DTM is 
challenging using SGM. 

While there has been research in 
measuring canopy structure by using 
data manipulation tools on inverted 
lidar-derived DSMs, specifically to 
identify tree crown location and height 
(Pyysalo and Hyyppa, 2002; Ziegler, 
Michaela, and others 2000), little has 
been done to see if these methods work 
on inverted image-derived DSMs. This 
project investigated different methods 
for extracting canopy height and canopy 
cover information using inverted 
image-derived DSMs with data 
manipulation tools and also developed a 
workflow for creating a riparian 
vegetation map.

Study Area
The study area is located in the Gila 
National Forest (NF) in western New 
Mexico. The area included all riparian 
corridors within the Gila NF as defined 
by boundaries created by the Regional 
Riparian Mapping Project (RMAP), 
encompassing about 65,484 
acres/26,500 hectares and an elevation 
range from 1,186 to 2,904 meters 
(3,892 to 9,528 feet). RMAP was 
produced in 2013 using topographic 
information and photo-interpretation 
methods to delineate all riparian 
corridors in the Forest Service 
Southwestern Region (Triepke and 
others 2013).

Data Collection
This project used a wide variety of 
geospatial data including high 
resolution resource imagery, Landsat 8 
imagery, topographic data, photo-
interpreted data, and vegetation field 
data. All data were projected to a NAD 
83 UTM Zone 12 projection.

Resource Imagery

A stereo aerial image dataset of 30 cm 
resolution covering the Gila NF was 
collected by an UltraCam Eagle sensor 
in August and September of 2013. The 
imagery contained four-spectral bands 
(blue, green, red, and near-infrared) in 
8-bit GeoTIFF format. A Normalized 
Difference Vegetation Index (NDVI) 
was also produced to help distinguish 
vegetated areas. To decrease processing 
time and memory storage required to 
develop the DSM, the minimum 
number of image pairs was chosen for 
the required coverage of the study area. 
Where possible, one image pair was 
chosen as coverage for an area, when 4 
could have been included. 

Landsat Imagery

A Landsat 8 OLI mosaic was created 
from 6 scenes from June 2014 and 2015 
(P34R36, P34R37, P34R38, P35R36, 
P35R37, and P35R38).  Imagery was 
used from two different years in order 
to obtain a cloud-free mosaic.

Landsat Seasonal Coefficients

Landsat scenes from 2010-2015 were 
compiled into a time series using 
Google Earth Engine.  Angle, a 
derivative from the Tasseled Cap 
Transformation, was calculated for each 
scene and a harmonic regression 
equation was then built for each pixel.  
These equations used the cosine and 
sine of time as independent variables 
and angle values as the dependent 
variable. These equations then 
represented the seasonal variability 
(speed, magnitude, and longevity of 
green-up and senescence). The 
equations each had three coefficients 
(slope of cosine, slope of sine, and 
y-intercept) which were represented as 
individual bands in an image.

NED

The National Elevation Dataset (NED) 
is a seamless elevation dataset for the 
entire United States provided by the 
USGS (Siddiqui and Garrett, 2008). 
Multiple sources such as lidar, contour 
maps, and data from the Shuttle Radar 
Topography Mission were used to 
create this dataset (Gesch, 2002). 
Although throughout the US different 
spatial resolutions are available, within 
the Gila NF the NED data resolution is 
1/3-arcsecond (about 10 meters). Slope 
and tri-shade topographic derivatives 
were created for use as predictor 
variables in the modeling phase.
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Lidar

Lidar data intersecting 1,000 acres of 
the RMAP project area were provided 
by the Southwestern Regional Office. 
These data were acquired during 
leaf-free conditions during the fall of 
2013 and had a 0.5 meter spacing. 
Lidar data were used to generate 
training samples and for model 
validation.

Reference Data

Reference data for this project were 
comprised of 337 visited Terrestrial 
Ecological Unit Inventory (TEUI) field 
plots, 84 visited field sites from Natural 
Heritage New Mexico, and 
approximately 2,400 photo-interpreted 
sites. These plot data were synthesized 
to represent project map themes of 
lifeform, leaf retention, and plant 
height. A quality check was done to 
ensure all plots represented the entire 
mapping segment in which they were 
located.

Methods
The development and assessment of a 
canopy height data layer and production 
of a vegetation map was accomplished 

in three main phases. First the methods 
for producing a CHM were tested, 
assessed, and a final product produced. 
Second, the riparian area delineated by 
RMAP was buffered out by 20 meters 
and segmented to develop the modeling 
units. Third, a vegetation type map was 
produced using Random Forest 
classification and field and photo-
interpreted reference data. The final 
vegetation map was clipped to the 
RMAP boundary and filtered to a .25 
hectare minimum map feature size.

Phase I: 
Development and 
Testing Methods for 
Canopy Height
Creating an image-derived CHM was a 
multi-step process. A number of 
techniques and methods were used to 
investigate the use of stereo image pairs 
to estimate canopy height.

Imagery was converted into point 
clouds using Tridicon SGM algorithms 
in the Erdas Photogrammetry toolbox. 
Tridicon SGM generates a 3-D point 
cloud from overlapping aerial imagery. 
The imagery and block files were 

provided by the Southwestern Region 
and were used to create .las file point 
clouds for all riparian corridors within 
the Gila NF.

If the difference of a pixel value between 
the SGM DSM and the NED was more 
than 50 meters, the program set the 
pixel value to that of the NED. This 
resolved many of the noise issues that 
were present after creating the DSM 
from the point cloud. It is unclear what 
causes these noise issues, but it seems 
that areas of high elevation and slope 
were most affected.

All elevation models have error. In a 
hydrologic sense, a pit is a depression in 
a DEM that has no outlet for water to 
flow. Pits may cause erroneous results 
and derived drainage networks may be 
discontinuous and are generally 
undesirable in hydrologic modeling. A 
pit removal tool is usually applied to all 
DEMs to remove these types of errors 
before hydrologic processing. This tool 
will (1) identify all pits, and (2) identify 
the closest outlet point, and will (3) 
modify all elevation data within the pit 
to the height of the outlet point 
(figure 1).

Figure 1—Model showing the 3 main steps used by a pit removal tool (http://wikhydro.developpement-durable.gouv.fr/images/3/31/
Fill_Sinks.JPG).

http://wikhydro.developpement-durable.gouv.fr/images/3/31/Fill_Sinks.JPG
http://wikhydro.developpement-durable.gouv.fr/images/3/31/Fill_Sinks.JPG
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If a DSM has high enough resolution 
it will be able to model above ground 
features such as trees or buildings. 
When a pit removal tool was run on 
an inverted DSM the tool identified 
and filled each above ground feature 
to the lowest pour point. Once the 
filled DSM had been inverted again it 
more closely resembled a DTM, 
referred to as a “Filled DTM”. This 
inverted raster was subtracted from 
the original DSM. The result was a 
raster that identified all areas that 
qualified as pits and were filled, 
namely trees, hill tops, mountain 
tops, and buildings as well as a height 
value.

Above ground features located on a 
slope had a lower outlet point due to 
one side of the object being lower in 
elevation (figures 2 and 3). While not 
providing accurate canopy height 
information, the fill was useful for 
location identification. A conditional 
statement was run that identified each 
area in the filled raster and 
determined whether the Filled DTM 
or 10m NED DEM was lower in 

elevation and created a new raster that 
would reflect the lower of the two, 
referred to as a “Top Off DTM”— 
which is alluding to a gas tank that 
one would “top off” after “filling” it 
up.

Phase 2: Image 
Segmentation
After the CHM was developed the 
modeling units (segments) were 
produced in eCognition using 
resource imagery, NDVI derived 
from resource imagery, and the Top 
Off CHM as input raster data. A 
minimum size filter of approximately 
40 square meters was used to screen 
out the segments that were too small 
to be useful. A visual inspection, 
using the 30 cm imagery, determined 
that the CHM layer increased the 
quality of the modeling units. 
Quality was determined by assessing 
the modeling unit’s homogenity in 
lifeform, leaf retention, canopy cover, 
and canopy height.

Phase 3: Modeling
The modeling phase developed the 
statistical relationships between the 
reference data and the geospatial 
predictor data. These statistical 
relationships were then applied to the full 
extent of the census data to build a map. 
The first step involved producing zonal 
statistics (minimum, maximum, mean, 
and standard deviation) for each 
modeling unit using Landsat 8 imagery 
and seasonal coefficients, resource 
imagery, Top Off CHM, and the 
topographic data. Random Forest 
algorithm was then used to assign 
lifeform, leaf retention, woody lifeform, 
canopy cover, and canopy height classes 
(Breiman 2001) (table 1). Each model 
output was carefully evaluated for 
inconsistencies or misclassification using 
the high resolution imagery. Areas that 
were misclassified were reassessed, new 
training data added, and new models 
developed. This modeling procedure was 
repeated until the maps were considered 
satisfactory. The map was finalized by 
clipping it to the RMAP boundary and 
aggregating and filtering the map features 
to the minimum feature size. 

Figure 2—Inverted DSM. Figure 3—Filled inverted elevation model.
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Table 1—Lifeform, leaf retention, woody lifeform, canopy cover, and canopy height classes

Lifeform Leaf Retention Woody 
Lifeform Canopy Cover Canopy 

Height

Tree-Shrub Evergreen Tree 10-25% 0-0.5 m
Grass Forb Deciduous Shrub 25-50% 0.5-5 m
Bare soil Mixed Evergreen-Deciduous 50-75% 5-12 m
Water  75-100% >12 m
Shadow

Results and 
Discussion

Canopy Height Data Layer
Using stereo image pairs to model 
canopy height is quickly becoming one 
of the best vegetation mapping options 
available because of the low cost, 
potential for future data collection, and 
the availability of historical 
photography. However, one of the main 
disadvantages of image-derived 
elevation models are the inability to 
penetrate dense vegetation cover and 
model the ground surface. Without any 
bare earth elevation data it is difficult to 
create a DTM in areas with dense 
canopy cover. Since a DTM is necessary 
to calculate canopy height this can 
present a major obstacle.

To quantify the accuracy of the CHM, 
a linear regression analysis comparing 
lidar was completed using the canopy 
height values from 1,000 random 
points. Canopy heights derived from 
lidar filled DTM, top off DTM, and 
NED bare earth model rasters were 
compared. Using NED as a standalone 
bare earth model for deriving CHM 
resulted in a low R2 value (0.58) when 
compared to lidar canopy height data. 
Because of the difference in spatial 
resolution between these datasets, some 
height values were returned as negative, 
and when all negative values were set to 
zero the strength of the relationship 
increased R2 value of (0.66) (figure 4). 
Using the Filled DTM for deriving 
CHM resulted in an R2 value of 0.71 

with most canopy height calls 
underestimated. It was found using the 
Top Off method, which uses the Filled 
DTM as a mask with NED filling in for 
higher elevation areas, further increased 
the R2 values to 0.80, with most calls 
overestimating canopy heights.

While it was decided that a 1 meter 
DSM could have more accurately 
modeled the canopy structure of the 
forest, a 3 meter raster was created 
because of the high processing and 
storage required in creating a 1 meter 
model. Choosing a resolution of 3 
meters exponentially reduced processing 
time and the storage required for this 
project. Using higher resolution DSMs 
is one potential avenue for greater 
accuracy and further study.

Data Processing Consideration

A higher pyramid level signified that 
more data were consolidated into fewer 
pixels. At pyramid level 0 there is no 
consolidation. It was found that 
pyramid level 1 had no major visual 

difference over level 0, but took half the 
time to process and occupied one 
quarter of the stored memory. A higher 
pyramid level also created the desired 
effect of smoothing the DSM, which 
may have filtered out unneeded data 
and made processing simpler in the long 
run.

Data gaps in the image-derived point 
cloud were present as expected, 
especially in rough terrain and high 
altitudes. For this project, the minimum 
number of image pairs for each area 
were chosen to produce the DSM, 
which resulted in occasional data gaps. 
A better practice may be to pick the 
maximum number of image pairs to 
increase the amount of data for an area, 
though more image pairs will lead to 
increased processing time and memory 
storage requirements. As some areas can 
have up to 4 image pairs, this is a 
decision that needs to be considered 
with the costs in mind. If data 
processing increases, the analyst time 
and the space needed to manage the 
data are increased.

Figure 4—Plotted results of linear regression analysis showing comparison from lidar, 
NED, and image-derived DTMs.

 NED minus SGM DSM  Top Off DTM minus SGM DSM  Filled DTM minus SGM DSM 
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One disadvantage of the inverted DSM 
approach to deriving a DTM is that the 
tops of hills, mountains, and rock features 
were identified as pits and subsequently 
filled. The pit removal tool has a parameter 
that only allows the tool to fill pits that 
have minimum drainage area; this is 
normally used for excluding actual bodies 
of water. Lowering this parameter excluded 
most of the hilltops. A visual inspection 
was made for the riparian areas within the 
Gila NF to check for these types of 
problems, and manual edits were made to 
remove these which were concentrated 
along cliff edges in steep canyon areas. As 
riparian areas by definition low hilltops, 
mountaintops, and rock features, this was 
not a large obstacle to overcome, usually by 
exclusion using RMAP boundaries. 

Mapping
Map attributes characterizing lifeform, leaf 
retention, woody lifeform, canopy cover, 
and canopy height were developed using 
the Random Forest algorithm. Random 
Forest is an advanced machine-learning 
algorithm based on the recursive generation 
of classification and regression trees. The 
resulting map products provide for 
continuous vegetation information for the 
RMAP area. These maps were produced 
using all of the geospatial data, including 
the image-derived canopy height 
information, and field and photo-
interpreted training data. The lifeform map 
was produced first, followed by leaf 
retention, woody lifeform, canopy cover, 
and canopy height classes. The final map 
was aggregated and filtered to the .25 
hectare minimum map feature size.

When a Random Forest model was 
created, it produced an estimate of the 
importance of each predictor variable to 
the accurate modeling of the dependent 
variable. This analysis consistently 
identified the canopy height layers as the 
most important predictors for accurate 
classification. The maximum, mean, and 
standard deviation canopy height statistics 
were the top three variables for mapping 
canopy height (figure 6). Mean canopy 
height also ranked the highest when 
mapping the woody lifeform map.

Figure 5—Top Off CHM classified according to map legend and overlaid onto 
30 cm resource imagery. Notice that a hilltop was caught as an above ground 
feature, but falls outside of the riparian boundary. 

Figure 6—Variable importance plot in the creation of the canopy height layer. In 
this graph “phodar” refers to SGM or Semi-Global Matching.

0 m-0.01 m

0.01 m-0.5 m

0.5 m-5 m

5 m-12 m

>12 m
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The canopy height layers were also 
assessed by examining the out-of-bag 
(OOB) error rates in Random Forest 
for models that were developed with 
and without the Top Off CHM layer. 
Random Forest OOB estimates are 
good estimates of map accuracy only 
when the training data have been 
randomly selected. The training data in 
this project were mostly purposively 
sampled and therefore the OOB 
estimates only serve to give a general 
idea of the map accuracy. The OOB 
error rate was 36 percent when run 
without the layer and decreased to 25 
percent when the Top Off CHM layer 
was used. This test is not wholly 
appropriate in assessing the effectiveness 
of the CHM since the segment being 
modeled were created using the canopy 
height data as ancillary information. A 
more appropriate test would have 
objects and classifications created with 
and without the Top Off CHM. There 

is potential for future analysis on this 
subject. The OOB error rates for all 
map attributes using the canopy height 
layers is found in figure 7.

Lifeform Attribute

The final map contained five lifeform 
classes (figure 8). Of the total 65,483 
acres, 74 percent percent or 
approximately 49,000 acres were 
mapped as tree-shrub. The grass-forb 
class was more common in lower 
elevation, wide riparian corridors, 
adjacent ot or near private land used for 
grazing. The bare soil class was typically 
found along the river banks as sand bars 
or as dry stream beds for ephemeral 
streams. The shadow class was the least 
dominant, occurring only in areas with 
tall vegetation or large cliffs along the 
edges of riparian corridors. The acreage 
summaries are shown in figure 8. 

Figure 7—Out-of-Bag errors for each 
mapped class.

Lifeform Acres %

Bare Soil 5,245 8.01%
Grass-Forb 10,516 16.06%
Shadow 284 0.43%
Tree-Shrub 48,718 74.40%
Water 720 1.10%

Figure 8—Lifeform map showing bare soil, grass-forb, shadow, tree-shrub, and water classes with associated acre summaries.

Bare Soil

Grass-Forb

Shadow

Tree-Shrub

Water
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Leaf Retention Attribute

Classes describing leaf retention were 
assigned to tree-shrub polygons 
identified in the lifeform classification 
(figure 9). Evergreen was the most 
common leaf retention type and was 
mainly mapped in higher elevations 
surrounding headwater streams, while 
the deciduous type was more commonly 
found in the wide flat riparian 

corridors. Mixed evergreen-deciduous 
occurred the least. This may have been 
a result of limited training points, as 
well as segments that succesfully 
captured leaf retention homogeneity. 

Woody Lifeform Attribute

Woody lifeform types were assigned to 
tree-shrub lifeform polygons (figure 

10). The shrub lifeform was commonly 
mapped in areas also identified as 
deciduous leaf retention type. These 
were lower elevations and wide flat 
riparian corridors of 3rd order streams. 
The tree type was the most dominant 
woody lifeform, occupying 
approximately 35,000 acres or 54 
percent of the project area.

Leaf 
Retention Acres %

Non Tree-
Shrub 16,765 25.60%

Deciduous 15,159 23.15%
Evergreen 32,889 50.23%
Mixed 
Evergreen-
Deciduous

669 1.02%

Figure 9—Leaf retention map showing non tree-shrub, deciduous, evergreen, and mixed evergreen-deciduous classes 
with associated acre summaries.

Woody 
Lifeform Acres %

Non Tree-
Shrub 16,765 25.60%

Shrub 13,488 20.60%
Tree 35,230 53.80%

Figure 10—Woody lifeform map showing non tree-shrub, shrub, and tree classes with associated acre summaries.

Non Tree-Shrub

Shrub

Tree

Non Tree-Shrub

Deciduous

Evergreen

Mixed Evergreen-Deciduous 
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Canopy Cover Attribute

Canopy cover classes were assigned to 
tree-shrub lifeform polygons (figure 
11). The 50-75 percent class was the 
most dominant, occupying 
approximately 21,000 acres or 32 
percent of the project area. Both the 
25-50 percent and the 75-100 percent 

class occupied about 8,500 acres or 13 
percent of the project area. 

Canopy Height Attribute

Canopy height classes were assigned to 
tree-shrub lifeform polygons (figure 
12). The least dominant class was the 

0-.5 meter class, occupying about 3,000 
acres and 4 percent of the project area. 
The 12+ meters class was the most 
dominant, occupying approximately 
18,000 acres or 27 percent of the 
project area.

Canopy 
Cover Acres %

0) Non Tree-
Shrub 16,765 25.60%

1) 10-25% 10,153 15.50%
2) 25-50% 8,819 13.47%
3) 50-75% 21,194 32.37%
4) 75-100% 8,551 13.06%

Figure 11—Canopy Cover map showing non tree-shrub, 10-25 percent, 25-50 percent, 50-75 percent, and 75-100 percent 
classes with associated acre summaries.

Canopy 
Height Acres %

0) Non Tree-
Shrub 16,765 25.60%

1) 0-0.5 m 2,837 4.33%
2) 0.5-5 m 12,366 18.88%
3) 5-12 m 15,943 24.35%
4) >12 m 17,571 26.83%

Figure 12—Canopy height map showing non tree-shrub, 0-0.5 m, 0.5-5 m, 5-12 m, and >12 m classes with associated acre 
summaries.

0) Non Tree-Shrub

1) 0-0.5 m

2) 0.5-5 m

3) 5-12 m

4) > 12 m

0) Non Tree-Shrub

1) 10-25%

2) 25-50%

3) 50-75%

4) 75-100%
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Kevin Megown,  RMIM Program Leader 
Resource Mapping, Inventory, & Monitoring  
Remote Sensing Applications Center  
2222 West 2300 South  
Salt Lake City, UT 84119

phone:  (801) 975-3826 
email:  kamegown@fs.fed.us

Conclusion
Understanding the current structure 
and composition of riparian areas is key 
to riparian resource management. This 
study revealed some of the uses and 
limitations of using surface models 
derived from 30 cm imagery using 
Semi-Global Matching to model 
vegetation in riparian corridors. Our 
results for image-derived canopy height 
showed high correlation with lidar-
derived canopy heights as an indication 
of acceptable accuracy for end users. 
These results had a higher correlation, 
and by inference higher accuracy, in 
areas with low slope. Further analysis is 
needed to understand the potential for 
mapping canopy heights in other 
varieties of topography and vegetation 
density. 
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