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Abstract.  Wildland fire managers have long desired 
to know the risks of severe fire events well in 
advance of its happening. A number of actions are 
available to address severe fire seasons. However, 
contingency actions have associated costs and 
timeliness issues. These issues require information 
about the likelihood of fire occurrence.  In this talk 
we describe a probability model for predicting 
wildland fire risks based on non-linear state-space 
models. By the choice of variables included in the 
state space, we can handle many situations, for 
example, the history of the process (locations and 
times of fires) up to the present in addition to 
characteristics of the environment that might serve as 
explanatories. We found the model to be useful for 
assessing the importance of commonly used fire 
danger indices and for predicting expected numbers 
of fires in a region. 
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Introduction 
 

Fire managers rely on a variety of factors to 
help determine fire severity and make decisions about 
resource allocation and fire-fighting tactics. The 
United States National Fire Danger Rating System 
(NFDRS) use current and historic weather and fuel 
conditions to produces a set of indices that are then 
used to generate fire danger maps1. Fire experts use 
NFDRS indices to determine times for prescribed 
burning, assess the need for fire suppression 
resources, and make tactical firefighting decisions.  
The Canadian Wildland Fire Information System2

generate daily maps of a relative index that describes 
how easily vegetation will ignite and how much 
danger a fire may be. Though fire managers rely 
heavily on the outputs of fire danger rating systems, 
their actual relationship to fire occurrence has not 
been thoroughly examined. To this end we have been 
developing statistical models for predicting fire risk 
(Brillinger et al., 2003; Preisler et al., 2004). 

                                                 
1 http://www.fs.fed.us/land/wfas
2 http://cwfis.cfs.nrcan.gc.ca/en/cwfis_intro_e.php

In what follows we describe a probability 
model for predicting wildland fire risks based on 
non-linear state-space models. By the choice of 
variables included in the state space, we can handle 
many situations, for example, the history of the 
process (locations and times of fires) up to the 
present in addition to characteristics of the 
environment that might serve as explanatories.  We 
use the model to assess the usefulness of various fire 
weather and danger indices on occurrence and spread 
of fires on federal lands in California and to 
demonstrate how to generate probability based fire 
danger maps.  
 
Probability Model 
 

Two probabilities will be used for estimating 
fire danger at a given location and a given time; 1) 
the probability of ignition (or fire occurrence) and 2) 
the conditional probability of spread, defined by the 
probability of an ignition becoming a large fire (> 
40.5 hectare). We will start by defining a random 
variable 

 Yx,y,t = 1      if       Ux,y,t > θx,y,t 
                Yx,y,t = 0     otherwise 
where  Yx,y,t indicates a wildland fire at location (x,y), 
time t, and Ux,y,t is a state space variable describing 
conditions (weather, fuel, Yx,y,t-1, etc.) at location (x,y)  
up to time t. 
  We consider two cases for the threshold 
parameter θ. 
 
1) Deterministic threshold model where 
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Xk = explanatory variables (e.g., temp, fuel moisture, 
spread index, drought index, etc.) 

g( ) = spline functions (e.g., cubic spline, periodic 
spline, or thin plate spline.) 

αι = log(1/πi) 
πi = sampling proportion for non fire locations on 

dayi 

i = (x, y, t) = km2 x day 
 

Further details regarding the fitting of the 
model are found in Preisler et al. (2004) and Maddala 
(1992). A similar model is used to estimate the 
conditional probability of a large fire.   
 
2) Random threshold model where 

http://www.fs.fed.us/land/wfas
http://cwfis.cfs.nrcan.gc.ca/en/cwfis_intro_e.php


µ is given by equation [1] and εt is a latent variable 
describing the processes up to time t. Brillinger et al. 
(2004) describe a procedure for fitting a random year 
effect. Here, we will assume that εt  are serially 
correlated day effects with 
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εt = ρ εt-1 + ut , |ρ| < 1     and  ut ~ IN(0, )       [3]  ε 2
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where res are the residuals from the fixed effect 
model in [1]. Replacing the errors in equation [3] by 
the estimated residuals we get 

111 )ˆ( −−− ++= tttt uνερε  where ν t ~ IN(0, ). 
Finally, one may estimate ρ using a maximum 
likelihood routine for an ARIMA model. In the 
example below we used the arima function in R (R 
Development Core Team 2004).  We found the usual 
residuals, i.e., Pearson or deviance residuals, not 
practical for the purpose of estimating the serial 
correlation because of the discreteness of the 
response variable. Figure 1 is a plot of deviance 
residuals - averaged over locations- from a simulation 
study using 12,000 independent Bernoulli trails with 
30 trials per day. The estimated serial correlation for 
these residuals was 

2
νσ

03.09.0ˆ ±=ρ while the true ρ 
used in the simulation was zero. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Deviance residuals generated from 

independent Bernuolli trails with a median 
response probability of 0.076.  
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follows. Let πι = Pr[ Yi =1 | X]. For each obse
generate two independent uniform random variable
U1i, U2i on the intervals (0, 1- πι) and (1 - πι, 1) 
respectively. Next, calculate the ‘uniform residual’ 
Ui = U1i(1 –Y) + U2iY and their corresponding 
‘normal residual’ Zi = Φ−1( Ui). Normal residuals, as

fin  h have t  advantage of being spread oude ed ere, he
and, consequently, are more useful for estimating the
correlation between consecutive observations.  
Further properties of uniform and normal residuals 
can be found in Brillinger et al. (2004).  
 There are many weather and fire danger 
indices developed as tools for predicting fire danger.
Here we propose to study the usefulness of the 
various indices on estimating the probability of fire 
occurrence and fire spread. We used the Mutual 
Information (MI) statistic to study the strength of th
statistical dependencies. In particular if Y indicates 
the occurrence of a fire (or, alternatively, the spread 
of a fire) and X is the linear predictor as described in 
[1] then the MI statistic is given by 
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Note that for the bivariate normal case 1- 2 IX,Y) 
is the coefficient of determ ation. In general, IX,Y = 0 
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when X and Y are independent and IX,Y ≤  IZ,Y if Y is 
independent of X given Z (Brillinger, in press). 
 
The Data 
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The fire data originated from the National 
Interagency Fire Management Integrated Database 
(NIFMID).3 It included the date of the fire, the 
location, the suspected cause, and the fire size. 

We obtained observed weather data from 
stations in the Weather Information Management
System (WIMS) catalog available online since 
January 20004. Included in each station’s daily reco
were temperature, relative humidity, wind speed, 
energy release component, spread component, and  
thousand-hour fuel moisture values (Benoit et al. 
2004).  

For each day we picked a random sample o

 
3 http://famweb.nwcg.gov/kcfast/html/ocmenu.htm
4 http://www.fs.fed.us/land/wfas/wfas29.html
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have a fire on that day. The number of non-fire 
locations sampled each day was proportional to the 
historic frequency of fires for that day of the year. 

 

 
Figure 2: Locations of fires (red dots) on California 
National Forests (purple) and National Parks (peach) 
between 2000-2003. 
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day-in-year and elevation. 
Human- n. 

Observed weather variables and NFDR
indices for each day were interpolated from the 
WFAS station locat
fi

ng a generalized additive model with 
latitude, longitude and elevation as covariates. 
 
Results and Discussion 
 

We studied the effects of seven fire da
indi
speed (WS), spread comp
co

umidity (RH) and burning index (BI)- on 
the probabilities of lighting-caused fires, probabilit
of human-caused fires and the conditional probability
of large fires. In each case we calculated the MI
statistics with Y being the binary response variable; 
= α + g1(x, y) + g2(day) +Xk , and Xk one of the 
indices. 

According to the MI statistics the covari
that was most strongly associated with the occurrence 
of lighting-caused fires in California was the da
year vari

 the summer and early autumn months. Two 
indices, DBT and RH, show a marginal increase in 

the MI values when added to the model with spatial 
location and day-in-year. 

The covariate that was most strongly 
associated with the occurrence of human-caused fire
was spatial location (Figure 4). The next two most 
important covariates were 

caused fires tend to be at lower elevatio
None of the indices appeared to be helpful for 
predicting human caused fires in California. 
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Figure 3:  Estimated MI values describing the strength of the 

association between lighting-caused fires and 
linear predictors with various combinations of 
covariates. T is the linear predictor with day-in

 

-
year; SP is spatial location; SP-T includes both 
spatial location and day-in-year, the rest are SP-T 
model with one additional index. Elev is elevation. 
Dashed horizontal line at the bottom is the 5% 
significance level. 
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Figure 4:  Estimated MI values describing the strength of the 

association between human-caused fires and linear 
predictors with various combinations of covariates.  

 
Estimated correlation between days for lighting 

caused fire was 13.059.0ˆ ±=ρ . This might be useful 
ting fire occurrence on consecutive days. The for predic



corresponding value for human caused fires was 
= 11.014.0 ±ρ̂ . Apparently human caused fires on 

consecutive days a ed.  
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Figure 5:  Estimated MI values describing the strength of the 

association between fire spread and linear 
predictors with various combinations of covariates. 
The horizontal dashed line at the bottom is the 95% 
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Figure 6:  Estimated partial effect of elevation suggesting that 

the conditional probability of a large fire in 
California is greater at lower elevations.  

 

Componen  

ere obtained using interpolated weather data from 
ces 
 (e.g., 

 

 
cation. According to the estimated partial 

day effe

The only index that seemed to increase the 
association with fire spread was the Spread 

t! It is important to note that our results

w
scattered weather stations. It is possible indi
generated from other sources of weather data
data from dynamic weather models) may result in 
different conclusions regarding the usefulness of fire
danger indices in predicting fire occurrence and 
spread. 

The variable day-in-year alone did not have 
a significant effect on fire spread. However, day-in-
year was significant when added to a model with
spatial lo

ct (Figure 7) fires in California tended to get 
larger during late fall (November) and none of the 
indices tested here seem to account for this 
phenomena.  
 
 

0 100 200 300

-8
-6

-4
-2

0
2

4

D ay

s(
da

yr
,7

.0
2)

Estimated partial effect of day
 on conditional probability of a large fire

 
Figure 7:  Estimated partial effect of day-in-year. Probability 

of spread appears to be larger in late autumn than 
expected from a model that includes an index of 
spread. 
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Using the estimated probabilities for human- and 

used fires and the conditional probability of 
 becom

g
fire occurring in a given voxel (km2x day) given 

values of the explanatory variables at that location and 
time. Fire danger maps for two dates in 2003 are gi
in Figures 8 and 9. 

Another useful product are plots of expected total 
number of fires in a particular region and time interval. 
As an example of the predictive ability of the model we 
generated plots of o

 for two-week periods in a region surrounding 
Yosemite National Park (Figure 10). The model gave 
reasonable results on average. It is noted that the only 
fire danger index included in the model (SC) did not 



account for the greater than expected large fires in the 
summer of 2003 in Yosemite.  
 
 

 
Figure 8: Estimated unconditional probability of a large fire

for June 15, 2003. The probability scale is per 
100,000 voxels (km2x day). 

 

 
 

 
Figure 9: Estimated unconditional probability of a large fire 

for August 1, 2003. The probability scale is per 
100,000 voxels (km2x day). 
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In conclusion, we were able to produce fire 
aps for California federal lands based on 

ities of fire occurrence andp
foun ly one of the fire danger indices marginally 
useful for predicting fire risk. Part of the reason for th
may be because the interpreted values of fire weather 
and fire danger indices are not good estimates of the 
actual weather conditions at a given location. We are 
now working on assessing the utility of weather and fuel
data from other sources (e.g. from dynamic weather 
models and satellite imagery) on predicting probabiliti
of fire risk. 
 
 

0 10 20 30 40 50

0

1

2

3

4

5

6
2000

0 10 20 30 40 50

0

1

2

3

4

5

6
2001

0 10 20 30 40 50

0

1

2

3

4

5

6
2002

0 10 20 30 40 50

0

1

2

3

4

5

6
2003

xpected bi-weekly numbers of large fires, Yosemite region, California

Week

N
um

be
r o

f f
ire

s

 
 

Figure 10: Observed (blue) and predicted (black) numbers 
of biweekly large fires in the Yosemite region for 
2000-2003. The red lines are the point-wise 95% 
upper bounds. 
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