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GLOSSARY 
H0: null or test hypothesis 
H1: alternative hypothesis 
α: level of significance (probability of Type I error) 
δ: non-centrality parameter 
β: probability of Type II error, at a specified value of δ 
n0: truncation point 
ADS: average decision stage 
ASN: average sample number 
BSTT: Barnard's open one-sided sequential t-test 
CALPRO: computer program which calculates the decision proba-

bilities for TSTT 
OC: operating characteristic (1-power) 
OCASN: computer program which calculates the OC and ASN 

functions of TSTT 
power: probability of rejecting H0. For a given test, power is 

expressed as a function of δ 
RAND: fixed sample size t-test 
SN: sample number 
SPRT: sequential probability ratio test 
STTEST: computer program which approximates the decision 

boundaries for TSTT 
TSTT: one-sided truncated sequential t-test 
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The high degree of approximation in current 
sequential tests, the emphasis on two-sided tests, and 
the unpleasant possibility of large sample sizes have 
led us to develop a new procedure for constructing 
one-sided truncated sequential t-tests of the hypothe-
sis 

H0: E(X) = μ = μ0 

H1: μ > μ0 

X ~ NIID (μ,σ2) 

σ2 unknown 

Current tests specify α and β in advance, with α 
being the probability of rejection when μ=μ0 and β 
being the probability of acceptance when μ=μ0+δσ, 
and use maximum likelihood procedures weakened 
by various approximations to obtain decision bound-
aries. 

The truncation point (n0) is determined by α, β, 
and the approximation procedure and is not neces-
sarily an integer. The actual values of α and β for such 
tests when estimated by Monte Carlo procedures 
seem to be distinctly different from the nominal 
values. Little is known about OC and ASN functions 
of these tests except for some empirical studies, due 
to the complexity of the mathematics involved. 

Thinking that it might be more practical to specify 
n0 in advance rather than β, we have developed a 
one-sided truncated sequential Nest based on a 
specified α, n0, and probability boundary pattern. 
The probability boundary pattern sets the probabil-
ities of accepting and rejecting H0 (H0 being true) at 
each stage of the test such that the overall probability 
of rejecting H0 (H0 being true) is equal to α. An 
algorithm was constructed to determine these accep-
tance and rejection probabilities at each stage of the 
test for a specified α, n0, and probability boundary 
pattern. Three intuitively appealing boundary pat-
terns were considered. 

Monte Carlo procedures based on a pseudo-normal 
deviate generator were used to approximate the 

distributions of the conditional test statistic at each 
stage of the test. Acceptance and rejection points 
associated with the acceptance and rejection probabil-
ities at each stage of the test were then determined to 
obtain the approximate decision boundaries of a 
specific one-sided truncated sequential t-test. For a 
given value of α and n0, the power function of the 
test depends upon the probability boundary pattern. 

The observed value of α when estimated by Monte 
Carlo procedures is quite close to the nominal value. 

Five examples are presented. Each has α set at 
0.05. Three have n0=10, each with a different 
probability boundary pattern. One boundary pattern 
has two additional examples with n0=4 and n0=7. 

The operating characteristic and average sample 
number functions were approximated for each of the 
tests. Monte Carlo procedures based on a pseudo-
normal deviate generator were used to simulate 
sampling normal distributions 1000 times with each 
test for values of the non-centrality parameter (δ) 
varying from 0.0 to 4.0 with an interval of 0.5. These 
points give an adequate description of each function. 
Monte Carlo estimates of α were very close to the 
nominal α (0.05) and varied from 0.046 to 0.051. 

The properties of a specific test are compared with 
the fixed sample size t-test and Barnard's one-sided 
sequential t-test having approximately the same reli-
ability. The one-sided truncated sequential t-test 
yielded an estimated α and associated ASN (average 
sample number) of 0.047 and 5.185 (based on 20,000 
samplings of the null distribution) with the nominal 
values being 0.050 and 5.180, respectively. This test 
yielded a Monte Carlo estimate of β = 0.057 at δ =1.5 
(based on 1000 samplings of a normal distribution 
with δ = 1.5). The fixed sample size test yielded an 
estimated α and β at δ =1.5 of 0.048 and 0.041 with 
the nominal values being 0.050 and 0.039, respec-
tively. Barnard's test yielded an estimated α and β at 
δ = 1.5 of 0.032 and 0.016, with the nominal values 
both being 0.050. The ASN function of the fixed 
sample size test is uniformly larger than that of the 

1




new test while the ASN function of the new test is 
uniformly lower than that of Barnard's test for 
δ > 0.3 with the reverse being true for other values of 
δ. Given the absolute guarantee of a limiting sample 
size, the new test compares quite favorably with the 
other two tests. 

Since there have been no applications of sequential 
t-tests to natural resources sampling to date, examples 

of possible natural resources applications are con-
sidered and field procedures are outlined for the new 
test. The original test statistic is transformed to one 
that is easier to calculate in the field, and the 
possibility of a series of observations having the same 
value is considered. Recommendations are given to 
the potential user. The upper one-sided test presented 
can easily be modified to a lower one-sided test. 
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distributions have been reported for classifying the 
following populations: 

Population 
Distribution: 

Binomial: Larch sawfly (Ives 1954; Ives and Pren-
tice 1964) 

Negative 
binomial: Spruce budworm (Morris 1954; Waters 

1955; Cole 1960) 
Forest tent caterpillar (Connola, Waters, 
and Smith 1957) 
Red-pine sawfly (Connola, Waters and 
Nason 1959) 
Engelmann spruce beetle (Knight 1960a) 
Black Hills beetle (Knight 1960b; Knight 
1967) 
Cone and seed insects (Kozak 1964) 
White grubs (Ives and Warren 1965) 
Gooseberry or currant bushes or both 

(Offord 1966) 
Jack pine sawfly (Tostowaryk and 
McLeod 1972) 
Lygus bugs (Sevacherian and Stern 
1972) 

Normal: Lodgepole needle miner (Stark 1952; 
Stark and Stevens 1962) 

Poisson: Winter moth (Reeks 1956) 
Spruce budworm (Cole 1960) 

Smith and Ker (1958) described the application of 
a test based on the Poisson distribution in reproduc-
tion surveys. 

Approximations to the operating characteristic 
(OC) and the average sample number (ASN) functions 
have been developed for the SPRT (Wald 1947). And 
while little is known about the OC and ASN 
functions of the sequential t-tests, Monte Carlo 
simulation indicates that their actual α and β are 
usually quite divergent from the nominal α and β. 

We were led to obtain boundaries for one-sided 
truncated sequential t-tests by Monte Carlo proce-
dures because of these conditions: the high degree of 
approximation inherent in current sequential proce-
dures, the undesirable possibility of large sample 
sizes, the emphasis on two-sided tests, and the 
dependence of the truncation point (n0) on α and β. 
The decision boundaries of a specific test are con-
structed for a given α, n0, and specific probability 

T he researcher in natural resources is commonly 
faced with the problem of sampling populations 
that have unknown underlying distributions 

with the variance almost always being unknown. One-
and two-sided open sequential t-procedures have been 
developed by Barnard (1952), Rushton (1950, 1952), 
and Wald (1947), and can be used for situations in 
which the variance is unknown. But these tests 
possess the major weakness of all open sequential 
procedures – the possible occurrence of very large 
sample sizes. To date, we know of no applications of 
these procedures to the field of natural resources. 

Schneiderman and Armitage (1962b) and Meyers, 
Schneiderman, and Armitage (1966) developed two 
forms of two-sided closed sequential t-tests. Suich 
and Iglewicz (1970) and Alexander and Suich (1973) 
proposed a truncated sequential t-test for the one-
and two-sided case based on the method of Anderson 
(1960). These truncated procedures have been devel-
oped for nominal α (level of significance or probabil-
ity of Type I error) and β (probability of a Type II 
error) at a specified value of δ, without fixing the 
truncation point of the test in advance. Because the 
truncation point is a function of α, β, and one or 
more mathematical approximations, it is not neces-
sarily an integer. 

In sequential hypothesis testing, the test pro-
cedures terminate according to some stopping rule 
related to the sequence of observations. These tests 
usually require, on the average, fewer observations 
than do equally reliable tests based on fixed sample 
size procedures. A major portion of the literature and 
application of sequential hypothesis tests is related to 
Wald's Sequential Probability Ratio Test (SPRT). 
Early applications of this test in the biological 
sciences were reported by Oakland (1950) and 
Morgan, et al. (1951). Such applications assume prior 
knowledge of the underlying distribution and related 
non-test parameters and are open in that they have 
parallel decision boundaries. 

Applications of the SPRT in natural resources, and 
specifically forestry, can be found related to repro-
duction surveys and insect or disease control pro-
grams for the binomial, negative binomial, normal 
and Poisson distributions. Tests based on these 

3 



 In the process we had frequent and helpful reference to: 
Alexander and Suich (1973), Ailing (1966), Anderson 
(1960), Armitage (1957), Aroian (1968), Barnard (1952), 
Davies (1954), Ghosh (1970), Hall (1962), Jackson (1960), 
Johnson (1961), Meyers, Schneiderman, and Armitage 
(1966), Rushton (1950, 1952), Samuelson (1948), Schneider-
man and Armitage (1962a, 1962b), Stockman and Armitage 
(1946), Suich and Iglewicz (1970), U. S. Department of 
Commerce (1951), Wald (1947), and Wetherill (1966). 
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boundary pattern. The value of β at a particular 
alternative depends on the probability boundary 
pattern for given values of α and n0. We do not set a 
nominal value of β at a particular alternative. How-
ever, Monte Carlo approximations to the OC and 
ASN functions are presented. 

This paper describes a procedure for constructing a 

one-sided truncated sequential t-test, constructs a 
series of tests for a given α with different n0's and 
probability boundary patterns, compares a specific 
test with the fixed sample size t-test and Barnard's 
one-sided sequential t-test, considers possible applica-
tions of the test to natural resources, and outlines 
field procedures for the new test. 

TEST PROCEDURES 
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The decision boundaries of a specific one-sided 
truncated sequential t-test are constructed with the 
prior knowledge of α, n0, and a specific pattern of 
acceptance and rejection probabilities (probability 
boundary pattern) that yield the given value of α. The 
OC and ASN functions of such a test are controlled 
by varying α, n0, and the probability boundary 
pattern. 

In developing the test, 1 we consider the following 
problem: 

Test 

H0:E(X)=μ0 or δ =δ0=0 

against 

H1: E(X)>μ0 or δ = δ1 (δ1 > 0) 

X→NIID (μ,σ2) 

in which δ = (μ-μ0)/σ (non-centrality parameter), and 
σ is unknown. 

We would like to choose 
ds the decision statistic at stage s, s = 1, . . S 
dr

s the rejection point in the distribution of ds 

da
s the acceptance point in the distribution of 

ds 

ns the number of observations at stage s 
S the upper limit in the number of stages so 

that the OC and ASN functions of the test 
have specified qualities and such that 

S 
n0 ≥ ∑
 ns 

s=1

with n0, the truncation point or maximum number of 
possible observations, being specified in advance. 

We have been unable to obtain an analytical 
solution to this problem. However, we have obtained 
a test based on Monte Carlo procedures. 

The test is developed as follows. We define 
αS = probability of rejecting H0 at stage s, given 

μ = μ0 
γs = probability of accepting H0 at stage s, given 

μ = μ0 
α = overall probability of rejecting H0, given 

μ = μ0 
and set 

γ
γ S

s= αs with αs < αS, for s = 1, . . . , S – 1 
αS 

Because the test is truncated at stage S, we know that 
1 α

γS = 1 – αS and γs = S a
α s


S


We let 
α

Ds = α S
s + γs =  probability of a terminating 

αS 

decision at stage s 

α
Cs = 1 – Ds = 1 - S αS αs =  probability of 

α S αS 

continuing at 
stage s 

s-1 
Ps = Π  Cj probability of reaching stage s 

j = 0 
C0 = 1 

and note that 
S 

α=
 ∑ Psαs 
s=1 

Since αs = Ds αs from above, 
S S 

α = 
∑ PsDsαS = αS ∑ PsDs
s=1 s=1

and, as the test is closed at S, we have 
S
∑ PsDs= 1 and α = αS

s=1 



Thus, any probability boundary pattern that satis-
fies the above criteria can be used to develop the 
exact acceptance and rejection probabilities at each 
stage for a test with a given α and n0. 

However, given S and the probability boundary 
pattern, we have neither a decision statistic with 
known probability distribution nor an analytical
procedure for setting ns. We proceed arbitrarily
along the following lines: 

Set n1 = 2 and ns = 1 for s = 2, 3, ... , S, and let 

in which 

The statistic d1 has a t-distribution with one
degree of freedom, which allows us to set the points 
d a

1  and d r
1  where the probabilities of accepting and 

rejecting H0 are 

γ  = a
1 P(d1 ≤ d 1) 

and 
α1 = P(d1 ≥ dr

1) 

 
 

 

The statistic ds (s > 1) has an unknown condi-
tional distribution. The conditional probabilities of 
accepting and rejecting H0 are 

γs = P(ds ≤ d a
s  | d a

1  < d1 < d r 
1

. . . , da
s-1- < ds-1 < dr

s-1) 

and 
αs = P(ds ≥ dr

s | da
1 < d r

1 < d 1, 
. . . , d4

s-1 < ds-1< dr
s-1) 

For the values of ns considered, the statistic ds 
reduces to the statistic dn where 

Interpretation of the acceptance and rejection 
probabilities using the statistic dn can be facilitated 
graphically (fig. 1). Even though we have developed 
our test for n1=2 and ns=1 for s > 1, the procedure 
can easily be modified to handle the more general 
case where ns > 1 for all s. 

We have approximated the decision points da
n and 

dr
n (n > 2) for several cases by Monte Carlo proce-

dures. 
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Figure 1—Acceptance and rejection 
boundaries in terms of dn for a Pattern 3 
test with S = 7, n0 = 8, n1 = 2, ns = 1 (s 
> 1), and α = 0.05. 



Table 1–Probabilities of acceptance (γn) and rejection (αn) at all possible 
sample points (n) for boundary patterns I, 2, and 3 and indicated truncation 
points (n0), α = 0.05. 

n 

P a  t t e r n  1 Pattern 2 Pattern 3 

n0 

4 7 10 10 10 

γn αn γn αn γn αn γn αn γn1 αn 

2 0.475 0.025 0.271 0.014 0.190 0.010 0.106 0.006 0.021 0.001 
3 .792 .042 .498 .026 .359 .019 .211 .011 .063 .003 
4 .950 .050 .679 .036 .507 .027 .317 .017 .127 .007 
5 .814 .043 .633 .033 .422 .022 .211 .011 
6 .9o5 .048 .739 .039 .528 .028 .317 .017 
7 .950 .050 .823 .043 .633 .033 .443 .023 
8 .887 .047 .739 .039 .591 .031 
9 .929 .049 .844 .044 .760 .040 

10 .950 .050 .950 .050 .950 .050 

3 Fowler, G. W. An investigation of some new sequential 
procedures for use in forest sampling. 1969. (Unpublished 
Ph.D. thesis on file at University of California, Berkeley) 
3 All computer programs are on file at the Pacific Southwest 
Forest and Range Experiment Station, Berkeley, California 
94701. 

Examples of Proposed Test 
In constructing examples of the proposed test, we 

utilized three probability boundary patterns. Each is 
intuitively appealing. 

Pattern 1 sets αs = α  (probabil-

ities increase at a constantly decreasing rate), Pattern 

2 sets αs = α [s/S] (probabilities increase at a constant 

rate), and Pattern 3 sets αs = α (probabili-

ties increase at a constantly increasing rate).2 In each 

case, γs = 

Five examples are presented. Each has α set at 
0.05. Three have n0 = 10, each with a different 
probability boundary pattern. One boundary pattern 
has two additional examples with n0=4 and n0=7. 
The decision points at each stage of a given test were 
obtained by approximating the unknown probability 
distribution of dn with 1000 iterations of the statistic 
dn(n = 2, 3, ... , n0). 

Computer program CALPRO3 calculates the 

acceptance and rejection probabilities for Patterns 1, 
2, and 3 and for any combination of α and n0. 
Computer program STTEST approximates the deci-
sion boundary (acceptance and rejection points) for 
any test with α, n0, and probability boundary pattern 
satisfying the specified criteria. 

The probability boundary patterns and decision 
boundaries of tests with n0 = 4, 7, and 10 for Pattern 
1 and for Patterns 1, 2, and 3 with n0 = 10 are given 
in tables 1 and 2. 

The OC and ASN functions of each test were 
approximated by sampling normal distributions 1000 
times each for δ = 0.0(0.5)4.0. Computer program 
OCASN approximates the OC and ASN points of a 
given test for any range of and interval between 
values of δ. The approximate OC and ASN functions 
for the tests described in table 1 and table 2 are given 
in table 3 and fig 2. 

It should be recalled that the proposed test is 
constructed Oven α, n0, and a probability boundary 
pattern–a particular value of β at a chosen value of δ 
is not specified in advance as in other sequential 
t-procedures. In other words, for n0 given, the OC 
function depends on the probability boundary 
pattern. 

Once the OC function of a given test has been 
obtained, a value of β can be approximated for any 
desired value of δ. If δ = 2.0 represents a critical 
alternative in hypothesis testing, table 3 will yield the 
approximate value of δ for a given n0 and probability 
boundary pattern. By using a much more expanded 
set of tables, the researcher could choose that test 
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which was "best" in terms of α, n0, OC function, and 
ASN function for a given problem. 

The Monte Carlo estimates of α (â) are close to the 
nominal α; for, 0.046 ≤ â ≤ 0.051 (table 3). The 
Monte Carlo estimates of β at δ = 2.0 are 0.368 for 
n0=4, 0.122 for n0=7, and 0.052 for n0=10 with 
Pattern 1 and 0.052 for Pattern 1, 0.008 for Pattern 
2, and 0.000 for Pattern 3 with n0 = 10. 

Table 2 –Decision values (da
n, dr

n) at all possible sample points (n) for bound­
ary patterns 1, 2, and 3 and indicated truncation points (n0), α = 0.05. 

n 

P a t t  e r  n  1  Pattern 2 Pattern 3 

n0 

4 7 10 10 10 

da n  dr n da n dr n  da n  dr n  da n  dr n  da n  dr n 

2 -0.079 12.706 -0.874 22.266 -1.472 31.820 -2.904 57.295 -15.057 286.506 
3 1.705 4.289 .300 4.550 -.142 5.006 -.822 8.085 -2.410 16.416 
4 4.243 4.243 1.414 3.194 .630 3.570 -.067 4.105 -1.048 5.164 
5 2.556 3.391 1.470 3.259 .531 3.044 -.425 3.453 
6 3.645 3.869 2.255 3.301 1.158 2.810 .041 2.883 
7 4.681 4.681 3.108 3.510 1.743 2.707 .583 2.506 
8 4.000 4.167 2.354 2.926 1.260 2.518 
9 4.942 5.011 3.006 3.236 1.906 2.503 

10 5.945 5.945 3.731 3.731 2.742 2.742 

Table 3 –Monte Carlo approximations of the probability of acceptance (OC) 
and the average sample number (ASN) as a function of the non-centrality 
parameter (δ) forPattern 1 with n0 = 4, 7, 10, and for Patterns 2 and 3 with 
n0 = 10, α = 0.05. 

δ 

OC ASN

P a t  t e  r n  P a t  t e

 

  r

1 2 3 1 2 3 

n0  n0 

4 7 10 10 10 4 7 10 10 10 

0.0 0.949 0.954 0.951 0.952 0.950 2.57 3.11 3.57 4.52 6.05 
.5 .878 .829 .817 .767 .687 2.94 3.84 4.59 5.74 7.37 

1.0 .730 .594 .539 .369 .217 3.21 4.20 5.08 5.94 6.84 
1.5 .553 .325 .211 .077 .020 3.32 4.14 4.67 5.14 5.54 
2.0 .368 .122 .052 .008 0 3.26 3.74 4.06 4.36 4.78 
2.5 .203 .033 .007 0 0 3.12 3.40 3.58 3.94 4.42 
3.0 .097 .008 0 0 0 2.97 3.16 3.29 3.68 4.19 
3.5 .046 0 0 0 0 2.84 3.02 3.12 3.54 4.02 

4.0 .018 0 0 0 0 2.74 2.94 3.01 3.44 3.88 

The Monte Carlo estimates of α at δ = 0 and β at 
the chosen value of δ for all other sequential 
procedures (Alexander and Suich 1973; Meyers, 
Schneiderman, and Armitage 1966; Schneiderman 
and Armitage 1962b; Suich and Iglewicz 1970; 
Wetherill 1966) are distinctly different from the 
respective nominal values due to the approximations 
involved in their development. Our research indicates 
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Figure 2—With n0 = 10, the approximate probabilities of 
acceptance of H0(OC), top, and the approximate average 
sample numbers (ASN), bottom, as functions of the 
non-centrality parameter (δ) are illustrated for three 
specified boundary patterns, α = 0.05. 

Figure 3—For Pattern 1, the approximate probabilities of 
acceptance of H0(OC), top, and the approximate average 
sample numbers (ASN), bottom, as functions of the 
non-centrality parameter (δ) are illustrated for chosen 
values of n0 (4, 7, 10), α = 0.05. 
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Table 4 – Probability boundary pattern and decision points for a Pattern 3 test 
with S= 7, n0 = 8, n1 = 2, ns = 1 (s > 1) and α= 0.05. 

dr da αn γn n n 

S n P(R|μ=μ0) P(A|μ=μ0) Rejection Acceptance 
Point Point 

1 2 0.0018 0.0339 178.223 -9.345 
2 3 .0054 .1018 7.949 -1.828 
3 4 .0108 .2036 3.646 -.777 
4 5 .0179 .3393 2.966 .001 
5 6 .0268 .5089 2.683 .712 
6 7 .0375 .7125 2.500 1.482 
7 8 .0500 .9500 2.588 2.588 

that our Monte Carlo estimates of α and β are quite 
close to the true unknown values of α and β. The 
differences are strictly due to the sampling errors 
involved in the Monte Carlo procedure. 

The ASN function increases and the peak of the 
ASN function increases and becomes closer to δ = 0 
as n0 increases for a given probability boundary 
pattern (table 3 and fig. 3). The ASN function tapers 
slowly from the peak as δ increases for a given 
n0. The ASN function also increases as the peak 
increases and becomes closer to δ = 0 as the probabil-
ity boundary pattern goes from Pattern 1 to Pattern 2 
to Pattern 3. The variances of the Monte Carlo 
estimates of the ASN and OC points indicate that 
these estimates are highly reliable and probably very 
close to the unknown parametric values. 

All examples of the new test are upper one-sided 
tests. Lower one-sided tests can easily be developed 
from boundaries of the upper one-sided tests. 

Approximate two-sided tests can also be developed. 

Examination of Given Test 
Table 4 gives αn, γn, dr

n, and da
n for a test with 

S = 7, n0 = 8, α = 0.05, and Pattern 3, with ns, ds, 
and dn as defined earlier. dr

n and da
n (n > 2) were 

based on 1000 computed dn at each stage. Fig. 1 
shows the acceptance and rejection boundaries of the 
test. 

The true average decision stage (ADS), average 
sample number (ASN), and the level of significance at 
H0 of the test listed in table 4 are: 

ADS = 4.180 
ASN = 4.180 + 1.000 = 5.180 
α = P(R|μ = μ0)= 0.050 

Table 5 presents the results of 20,000 simulated 
tests from a N(μ0, σ2) distribution. 

Table 5 – Probabilities observed in 20,000 Monte Carlo trials compared to 
exact probabilities for a Pattern 3 test with S =7 , n0 = 8, n1= 2, ns 1 (s > 1) 
and α = 0.05. 

αn γn 

S n P(R|μ=μ0) P(A|μ=μ0) 

Exact Observed Exact Observed 

1 2 0.0018 0.0010 0.0339 0.0318 
2 3 .0054 .0065 .1018 .1016 
3 4 .0108 .0122 .2036 .2072 
4 5 .0179 .0150 .3393 .3479 
5 6 .0268 .0200 .5089 .5096 
6 7 .0375 .0433 .7125 .7039 
7 8 .0500 .0529 .9500 .9471 
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The observed probabilities of table 5 allow us to 
calculate the Monte Carlo estimates 

Some discrepancies between the observed and 
exact probabilities at each stage are evident, but the 
Monte Carlo estimates of α and ASN are in relatively 
close agreement with the true values. These discrepan-
cies are due to (a) the Monte Carlo procedures used in 
estimating the decision points at each stage of the 
test, and (b) the Monte Carlo procedures used to 
obtain the observed probabilities themselves. The 
exact OC and ASN functions of the test are predeter-
mined (but unknown) as a function of α, n0, and the 
probability boundary pattern. The actual OC and 
ASN functions are determined by the estimated 
decision points, and are unknown but different from 
the exact functions. The observed OC and ASN 
functions are estimates of the actual OC and ASN 
functions. The differences between the exact and 
actual test and related OC and ASN functions are due 
to (a) above, while the differences between the actual 
and observed OC and ASN functions are due to (b) 
above. The observed OC and ASN functions are used 
to approximate the OC and ASN functions of the 
exact test. 

Comparison of New Procedure 
To evaluate the properties and the possible appli-

cability of the new test (TSTT), we compared it with 
the fixed sample size t-test (RAND) and Barnard's 
one-sided sequential t-test (BSTT) for the following 
problem: 

H0: E(X) = μ =µ0 

H1: μ > μ0 

X ~ NIID (μ,σ2) 
σ2 unknown 

Our truncated test with α= 0.05, n0 = 8, and 
Pattern 3 probability boundary (table 4, fig. 1) 
yielded a Monte Carlo estimate of β of 0.057 at 
δ = 1.5, so we compared it with these tests: (a) 
Barnard's test with nominal α = 0.05, β = 0.05 at 
δ = 1.5; and (b) fixed sample size t-test with nominal 
α = 0.05 and β = 0.039 at δ = 1.5 (sample size of 7). 

The upper and lower decision boundaries of 
Barnard's tests were obtained with the aid of special 
tables (Davies 1967). The test statistic at each stage is 

The decision boundaries for Barnard's test are 
illustrated in fig. 4. Barnard's test is open in that the 
decision boundaries never meet. 
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Figure 4—Upper rejection (U,rn) and 
lower acceptance (Ua

n) boundaries of 
Barnard's one-sided sequential t-test 
(α = 0.05 and β = 0.05 at δ = 1.5). En-
circled values are from Davies (1967, 
Table L•6). 



Table 6–OC and ASN values as a function of the non-centrality parameter (δ) 
for a TSTT (Pattern 3, S = 7, n0 = 8, n1 = 2, ns = 1 (s > 1) and α = 0.05), a 
fixed sample 1-test (n = 7), and Barnard's one-sided open test (α= 0.05, β = 0.05 
at δ = 1.5). 

δ 
OC ASN 

-3.0 

Truncated Fixed Barnard Truncated Fixed Barnard 

1.000 1.000 1.000 2.64 7.00 2.00 
-2.0 1.000 1.000 1.000 2.83 7.00 2.01 
-1.0 1.000 1.000 1.000 3.41 7.00 2.17 

.0 .949 .952 .968 5.28 7.00 3.86 

.5 .712 .655 .733 6.14 7.00 6.98 
1.0 .308 .232 .188 5.95 7.00 8.04 
1.5 .057 .041 .016 4.97 7.00 5.74 
2.0 .002 .001 .001 4.29 7.00 4.68 
3.0 .000 .000 .000 3.69 7.00 3.96 
4.0 .000 .000 .000 3.48 7.00 3.75 
5.0 .000 .000 .000 3.35 7.00 3.60 
6.0 .000 .000 .000 3.21 7.00 3.46 

The fixed sample t-test with a sample size of 7 is 
based on the test statistic 

which is compared with t0.05,6 = 1.943 in making 

the appropriate decision for the conventional fixed 
sample size test. 

Each of 12 normal distributions with δ varying 
from -3 to 6 were sampled a thousand times ( table 6, 
fig. 5) with each of the three tests. Both OC and 
ASN functions are presented as functions of δ. 

Figure 5–ASN as a function of the non-centrality parameter (δ) for TSTT 
(Pattern 3, S = 7, n0 = 8, n1 = 2, ns = 1 (s > 1), and α = 0.05), RAND (n = 7), and 
BSTT (α = 0.05, β= 0.05 at δ = 1.5). Computed points are encircled. Curves are 
fitted by eye. 
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Table 7–Observed probabilities of sample numbers (SN) as a function of the 
non-centrality parameter (δ) for TSTT (Pattern 3, S = 7, n1 = 2, ns = 1 (s > 1) 
and α = 0.05) and BSTT (α = 0.05, β = 0.05 at δ = 1.5). Observed ASN and its 
standard error are given. 

δ=-1.0 δ=0.0 δ=1.0 δ=2.0 

SN 
Truncated Barnard Truncated Barnard Truncated Barnard Truncated Barnard 

2 0.1025 0.8665 0.0310 o.3590 0.0115 0.0465 0.0145 0.0030 
3 .4835 .1030 .1050 .2295 .0485 .o565 .1515 .0775 
4 .3345 .0225 .1900 .1355 .1500 .1720 .4265 .5075 
5 .0695 .0055 .2390 .0830 .1630 .1455 .275o .2550 
6 .010o .0015 .2295 .o600 .1710 .1070 .0945 .0755 
7 0 .0010 .1475 .0415 .2180 .0900 .0300 .0405
8 0 0 .0580 .0290 .2380 .0510 .0080 .0210 
9 0 0 0 .0225 0 .0495 0 .0095 

10 0 0 0 .0105 0 .0435 0 .0065 
11-20 0 0 0 .028o 0 .1930 0 .0040 
21-30 0 0 0 .0015 0 .0375 0 0 
31-40 0 0 0 0 0 .0065 0 0 
41-50 0 0 0 0 0 .0015 0 0 

^ 
ASN 3.4010 2.1755 5.2055 4.0110 6.0395 8.366o 4.4055 4.6565 

.0180 .0114 .0331 .0625 .0279 .1320 .0234 .0306 

4 Fowler, G. W. An investigation of some new sequential 
procedures for use in forest sampling. 1969. (Unpublished 
Ph.D. thesis on file at University of California, Berkeley) 

 

The results of a comparison of the distribution of 
sample sizes for four normal distributions, each 
sampled 2000 times, for TSTT and BSTT are given in 
table 7. Given the absolute guarantee of a limiting 
sample size, TSTT compares favorably with RAND 
and BSTT. 

The Monte Carlo estimates of α at δ = 0 are quite 
close to the nominal α for TSTT and RAND and 
distinctly less than the nominal a for BSTT (table 6). 
The estimate of β at δ = 1.5 is relatively close to the 
nominal β for RAND and distinctly less than the 
nominal β at δ = 1.5 for BSTT. TSTT was chosen such 
that the Monte Carlo estimate of β at 1.5 was 0.057. 
The standard deviation  for the estimate of the 
OC point is 0.007 and indicates that β is quite close to 
the true unknown β at δ = 1.5. 

The Monte Carlo estimate of the ASN function for 
TSTT is uniformly lower than the ASN function for 
RAND and uniformly lower than the ASN function 
for BSTT for δ > 0.3 (fig. 5). 

The range of sample sizes is considerably larger for 
BSTT than for TSTT because of the open nature of 
the decision boundaries of BSTT (table 7). The 
sample size for TSTT can be no larger than n0=8 for 
the above example. The standard errors of the Monte 
Carlo estimates of the ASN points indicate 
that is quite close to ASN for both TSTT and 
BSTT. Fowler4 found this to be true for other 
examples of TSTT. 

These results indicate the possible applicability of 
TSTT to many problems for which fixed sample size 
or other sequential t-tests have been used in the past. 

APPLICATIONS IN FORESTRY 


We know of no applications of sequential t-tests in 
the field of forestry. The application of sequential 
procedures has been largely limited to Wald's SPRT. 
We offer two examples where the SPRT has been 
used but where sequential t-tests may be more 
efficient. 

Sequential procedures based on Wald's SPRT have 
been developed for (a) sampling of ribes populations 
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5 Fowler, G. W. An investigation of some new sequential 
procedures for use in forest sampling. 1969. (Unpublished 
Ph.D. thesis on file at University of California, Berkeley) 

in the control of white pine blister rust (Cronartium 
ribicola Fisher) in California (Offord 1966); and (b) 
sampling of brood densities of the Engelmann spruce 
beetle (Dendroctonus engelmanni Hopk.) in standing 
trees to determine infestation trends (Knight 1960). 
In each case, preliminary field studies indicated that 
real-world distribution of the pertinent variable was 
best described by the negative binomial distribution. 

In the ribes work, the problem is to test whether 
the average number of feet of live stem (FLS) per 
acre of Ribes spp. (native currants or gooseberries) on 
a forest area meets a certain standard (μ0) after a 
private contractor has completed eradication work on 
that area. Ribes eradication is carried out in order to 
eliminate the alternate host (ribes plants) of white 
pine blister rust and thereby break the weakest link in 
the life cycle of this forest disease. 

An SPRT is constructed to determine whether or 
not the contractor met the standard. This standard is 
set according to the blister rust hazard of the area. 
The null hypothesis H0: μ ≤ μ0 FLS/plot is tested 
against the alternative hypothesis H1: μ > μ0 with α 
and β set at μ0 and μ1 respectively, and a "pooled" 
estimate of K (the non-test parameter of the negative 
binomial distribution) being determined. The sequen-
tial procedure is to compare the cumulative FLS/plot, 
at each stage of the test, with the appropriate decision 
boundaries. 

In the beetle work, in late June in stands of 
Engelmann spruce, the problem is to ascertain 
whether or not immediate control work is needed. An 
SPRT is constructed to determine if brood densities 
are high or low. The null hypothesis H0: μ = 4 
beetles per 6- by 6-inch bark sample (no control 
necessary) is tested against the alternative hypothesis 
H1 : μ = 5 beetles per bark sample (treatment neces-
sary) with α (set at μ0) and β (set at μ1) and a 
"pooled" estimate of K being determined. The 
sequential procedure is to compare the cumulative 
number of beetles per bark sample, at each stage of 
the test, with the appropriate decision boundaries. 

It would seem that sequential t-procedures and, in 
particular, the truncated sequential t-test would 
compare quite favorably to the SPRT in each of the 
above two examples. The SPRT, besides being an 
open test, assumes prior knowledge of the underlying 
distribution and that the "pooled" estimate of K is 
approximately equal to the K of the population being 
sampled. In a preliminary study, Fowler 5 found that 
the truncated sequential t-test compared favorably 
with the SPRT – even for distributions that were other 
than normal and highly irregular. These results plus 
the economic desirability of an upper limit to the 
number of observations in a given sample seem to 
indicate that the proposed test should be considered 
in certain forest sampling problems. 

FIELD APPLICATION 


To find out if the new procedure is operationally 
feasible in the field, we investigated the field proce-
dure necessary to sample real-world forestry popula-
tions. 

Since dn is a rather difficult statistic to calculate in 
the field at each stage of the test, dn can be 
transformed to Un in which 

This formulation is a monotone function of dn 
and considerably easier to calculate. The OC and ASN 
functions that describe a particular test based on dn 
will, of course, also describe the related test based on 
Un. It is a simple procedure to convert the decision 
boundaries of a one-sided truncated sequential t-test 
from values of dn to Un. 

When discrete distributions are sampled, the pos-
sibility of a series of observations starting with the 

0first observation having the same value, say x , arises. 

Therefore, we have 

which reduces to √n or -√n depending on whether 
x0  >μ0 or x0  <μ0. The statistic Un is set at zero 
when x0 = μ0. Un, is superior to dn for this case since 

13




which reduces to (x0-μ0)/0. dn can be set at zero 
when x0 = μ0 but no meaningful value of dn can be 
obtained when x0 ≠ μ0. In such cases, observations 
would have to be taken until the first observation 
with a different value occurred before starting the 
decision process. This would greatly affect the OC 
and ASN functions of the test. 

The ribes example considered earlier will be used 
to illustrate the field application of the new test. 
Assume that the forest sampler has chosen the 
truncated test considered earlier, with n0 = 8, 
α = 0.05, and Pattern 3. Assume that this test yields 
the combination of OC and ASN that the forest 
sampler considers desirable for this problem with 
appropriate decision boundaries in terms of the 
statistic Un (fig. 6). 

Assume H0: μ ≤ 15 FLS/acre is tested against 
H1 : μ > 15. A Field Tabulation Sheet (fig. 7) can be 
used in the application of the proposed truncated test 
to a simulated ribes population using the statistic Un. 
The sampling procedure is as follows: 

1.	 Take two observations at random from the 
population, yielding observations 10 and 15 
FLS for our example. 

2.	 Subtract μ0 = 15 from x1 = 10 and x2 = 15, cal-
culate (x1 - μ 2 2

0)  and (x2 - μ0)  (can be accom-
plished with a pocket electronic calculator), and 
then calculate 

3.	 Calculate  (can be accomplished 

using a pocket electronic calculator), calculate

 on the Field 

Tabulation Sheet (fig 7)and compare U2 = -1.00 
with Ua r

2 and U 2. Since Ua
2 < U2 < Ur

2, take 
another observation. 

4.	 Repeat steps 2 and 3 for n = 3. This yields 
U3 = - 1.27, and since Ua3 < U3 < Ur3, take 
another observation. 

5.	 Repeat steps 2 and 4 for n = 4. This yields 
U  < Ua

4 4, stop and accept H0. 
The results of the above example can be followed 

graphically in fig. 6. 
The field operation of the new procedure seems to 

be feasible and straightforward. The use of the 
transformation Un, simplifies the operation consider-
ably. Some sample calculations must be made in the 
field at each stage of the test, but with the aid of a 
small pocket-size electronic calculator, such calcula-
tions arc not too difficult. 

We suggest that researchers consider the use of the 
new procedure instead of the usual fixed sample size 
test for all sampling problems where acceptance or 
rejection of some standard (μ0) is desired. The new 
procedure would be particularly applicable where 
observations are time-consuming, expensive, and/or 
destructive, as on the average, only 40% to 60% as 
many observations are needed as for equally reliable 
fixed sample-size procedures. 

To choose a specific one-sided truncated sequen-
tial t-test, the researcher would have to choose 
meaningful values of α and β for the specific problem 
and decide on a truncation point. The sampling frame 
for the population to be sampled should be con-
structed so as to minimize the difficulty of taking a 
sequential random sample in the field. A procedure 
for supplying random numbers to the sampler one at 
a time should be implemented to insure independence 
of observations. Field personnel should be thoroughly 
trained in the operation and decision process and in 
the calculation procedure for the new test. Field 
tabulation sheets should be waterproof and bound in 
a field book with a water-proof hard cover. 

Figure 6—Acceptance and rejection 
boundaries in terms of Un for a Pattern 
3 test with S = 7, n0 = 8, n1 = 2, ns = 1 
(s > 1), and α = 0.05. Computed points 
are encircled. Curves are fitted by eye. 
Dashed lines connecting points (x) illus-
trate a field application (see Fig. 7). 

14




Figure 7—Suggested field tabulation sheet for a one-sided truncated sequential 

t-test (Pattern 3, S = 7, n0 = 8, n1 = 2, ns = 1 (s > 1), and α = 0.05). 

15




LITERATURE CITED 

Alexander, R., and R. Suich 

1973.  A truncated sequential t-test for general α and β. 
Technometrics 15: 79-86. 

Ailing, D. W. 
1966.  Closed sequential tests for binomial probabilities. 

Biometrika 53: 73-84. 
Anderson, T. W. 

1960.  	 A modification of the sequential probability ratio 
test to reduce the sample size. Ann. Math. Stat. 31: 
165-197. 

Armitage, P. 
1957.  Restricted sequential procedures. Biometrika 44: 

9-26. 
Aroian, L. A. 

1968. Sequential analysis, direct method. Technometrics 
10: 125-132. 

Barnard, G. A. 
1952.  The frequency justification of certain sequential 

tests. Biometrika 39: 144-150. 
Cole, W. E. 

1960.  Sequential sampling in spruce budworm control 
projects. For. Sci. 6: 51-59. 

Connola, D. P., W. E. Waters, and W. E. Smith 
1957.  	 The development and application of a sequential 

sampling plan for forest tent caterpillar in New 
York. New York State Museum Bull. 366. 22 p. 

Connola, D. P., W. E. Waters, and E. R. Nason 
1959.  	 A sequential sampling plan for red-pine sawfly, 

Neodiprion nanulus Schedl. J. Econ. Entomol. 52: 
600-602. 

Davies, O. L. 
1967.  The design and analysis of industrial experiments. 

New York: Hafner. 635 p. 
Ghosh, B. K. 

1970.  Sequential tests of statistical hypotheses. Reading, 
Mass. Addison-Wesley. 454 p. 

Hall, W. J. 
1962.  Some sequential analogs of Stein's two-stage test. 

Biometrika 49: 367-378. 
Ives, W. G. H. 

1954.  Sequential sampling of insect populations. For. 
Chron. 30: 287-291. 

Ives, W. G. H. and R. M. Prentice 
1958.  A sequential sampling technique for survey of the 

larch sawfly. Can. Entomol. 90: 331-338. 

Ives, W. G. H. and G. L. Warren 
1965.  Sequential sampling for white grubs. Can. 

Entomol. 97: 396-604. 
Jackson, J. E. 

1960.  Bibliography on sequential analysis. J. Amer. Stat. 
Assoc. 55: 561-580. 

Johnson, N. L. 
1961.  Sequential analysis: a survey. J. Amer. Stat. Assoc. 

124: 362-411. 
Knight, F. B. 

1960a.  	Sequential sampling of Black Hills beetle popula-
tions. U.S. Forest Serv. Rocky Mountain Forest 
and Range Exp. Stn. Res. Note 48, 8 p. 

Knight, F. B. 
1960b.	 Sequential sampling of Engelmann spruce beetle 

infestations in standing trees. U.S. Forest Serv. 
Rocky Mountain Forest and Range Exp. Stn. Res. 
Note 47, 4 p. 

Knight, F. B. 
1967.  Evaluation of forest insect infestations. Annu. 

Rev. Entomol. 12: 207-228. 
Kozak, A. 

1964.  	 Sequential sampling for improving cone collection 
and studying damage by cone and seed insects in 
Douglas-fir. For. Chron. 40: 210-218. 

Meyers, M. H., M. M. Schneiderman, and P. Armitage 
1966.  Boundaries for closed (wedge) sequential t-test 

plans. Biometrika 53: 431-437. 
Morris, R. F. 

1954.  A sequential sampling technique for spruce bud-
worm egg surveys. Can. J. Zool. 32: 302-313. 

Offord, H. R. 
1966.  	 Sequential sampling of ribes populations in the 

control of white pine blister rust (Cronartium 
ribicola Fischer) in California. U.S. Forest Serv. 
Res. Paper 36, Pacific Southwest Forest and Range 
Exp. Stn., Berkeley, Calif. 14 p. 

Reeks, W. A. 
1956.  	 Sequential sampling for larvae of the winter moth, 

Operophtera brumata (Linn.). Can. Entomol. 88: 
241-46. 

Rushton, S. 
1950.  On a sequential t-test. Biometrika 37: 326-333.  

Rushton, S. 
1952.  On a two-sided sequential t-test. Biometrika 39: 

302-308. 
Samuelson, P. A. 

1948.  Exact distribution of continuous variables in 
sequential analysis. Econometrica 16: 191-198. 

Schneiderman, M. A., and P. Armitage 
1962a.  A family of closed sequential procedures. Bio-

metrika 49: 41-56. 
Schneiderman, M. A., and P. Armitage 

1962b. Closed sequential t-tests. Biometrika 49: 41-56. 
Sevacherian, V. and V. M. Stern 

1972.  	 Sequential sampling plans for Lygus bugs in 
California cotton fields. Environ. Entomol. 1 (6): 
704-710. 

Shepherd, R. F., and C. E. Brown. 
1971.  	 Sequential egg-band sampling and probability 

methods of predicting defoliation by Malacosoma 
disstria (Lasiocampidae: Lepidoptera). Can. 
Entomol. 103: 1371-1379. 

Smith, J. H. G., and J. W. Ker 
1958.  Sequential sampling in reproduction surveys. J. 

For. 56: 106-109. 
Stark, R. W. 

1952.  Sequential sampling of the lodgepole needle miner. 
For. Chron. 28: 57-60. 

Stevens, R. E., and R. W. Stark 
1962.  	 Sequential sampling for the lodgepole needle 

miner, Evagora milleri. J. Econ. Entomol. 55: 
491-494. 

16




Stockman, C. M., and P. Armitage 
1946.  Some properties of closed sequential schemes. J. 

Royal Stat. Soc., Suppl. 8: 104-112. 

Suich, R., and B. Iglewicz 
1970.  A truncated sequential t-test. Technometrics 12: 

789-798. 

Tostowaryk, W., and J. M. McLeod 
1972.  	 Sequential sampling for egg clusters of the Swaine 

jackpine sawfly, Neodiprion swainei (Hymenop-
tera: Diprionidae). Can. Entomol. 104: 1343-1347. 

U. S. Department of Commerce 
1951.  Tables to facilitate sequential t-tests. Washington, 

D.C. 
Wald, A. 

1947.  Sequential analysis. New York: John Wiley &
Sons, Inc. 212 p. 

Waters, W. E. 
1955.  Sequential sampling in forest insect surveys. For.

Sci. 1: 68-79. 
Wethcrill, G. B. 

1966.  	 Sequential methods in statistics. New York: John
Wiley & Sons, Inc. 216 p. 

 

 

 

G.P.O. 689-230/4415 	 17 



Fowler, Gary W., and William G. O'Regan 
1974. One-sided truncated sequential t-test: application to natural 

resource sampling. USDA Forest Serv. Res. Paper PSW-100, 17 p., illus. 
Pacific Southwest Forest and Range Exp. Stn., Berkeley, Calif. 

A new procedure for constructing one-sided truncated sequential t-tests 
and its application to natural resource sampling are described. Monte Carlo 
procedures were used to develop a series of one-sided truncated sequential 
t-tests and the associated approximations to the operating characteristic and 
average sample number functions. Different truncation points and decision 
boundary patterns were examined. The fixed sample size t-test and Barnard's 
open one-sided sequential t-test were compared with the new procedure. The 
upper one-sided test described can easily be modified to a lower one-sided 
test. 

Oxford: 524.63–015.5. 

Retrieval Terms: biometrics; sampling; sequential sampling; t-test. 


Fowler, Gary W., and William G. O'Regan 
1974. One-sided truncated sequential t-test: application to natural 

resource sampling. USDA Forest Serv. Res. Paper PSW-100, 17 p., illus. 
Pacific Southwest Forest and Range Exp. Stn., Berkeley, Calif. 

A new procedure for constructing one-sided truncated sequential t-tests 
and its application to natural resource sampling are described. Monte Carlo 
procedures were used to develop a series of one-sided truncated sequential 
t-tests and the associated approximations to the operating characteristic and 
average sample number functions. Different truncation points and decision 
boundary patterns were examined. The fixed sample size t-test and Barnard's 
open one-sided sequential t-test were compared with the new procedure. The 
upper one-sided test described can easily be modified to a lower one-sided 
test. 

Oxford: 524.63–015.5. 

Retrieval Terms: biometrics; sampling; sequential sampling; t-test. 


Fowler, Gary W., and William G. O'Regan 
1974.  	One-sided truncated sequential t-test: application to natural resource sampling. 

USDA Forest Serv. Res. Paper PSW-100, 17 p., illus. Pacific Southwest Forest and 
Range Exp. Stn., Berkeley, Calif. 

A new procedure for constructing one-sided truncated sequential t-tests and its 
application to natural resource sampling are described. Monte Carlo procedures were 
used to develop a series of one-sided truncated sequential t-tests and the associated 
approximations to the operating characteristic and average sample number functions. 
Different truncation points and decision boundary patterns were examined. The fixed 
sample size t-test and Barnard's open one-sided sequential t-test were compared with the 
new procedure. The upper one-sided test described can easily be modified to a lower 
one-sided test. 

Oxford: 524.63–015.5.

Retrieval Terms: biometrics; sampling; sequential sampling; t-test. 


Fowler, Gary W., and William G. O'Regan 
1974.  	One-sided truncated sequential t-test: application to natural resource sampling. 

USDA Forest Serv. Res. Paper PSW-100, 17 p., illus. Pacific Southwest Forest and 
Range Exp. Stn., Berkeley, Calif. 

A new procedure for constructing one-sided truncated sequential t-tests and its 
application to natural resource sampling are described. Monte Carlo procedures were 
used to develop a series of one-sided truncated sequential t-tests and the associated 
approximations to the operating characteristic and average sample number functions. 
Different truncation points and decision boundary patterns were examined. The fixed 
sample size t-test and Barnard's open one-sided sequential t-test were compared with the 
new procedure. The upper one-sided test described can easily be modified to a lower 
one-sided test. 

Oxford: 524.63–015.5.

Retrieval Terms: biometrics; sampling; sequential sampling; t-test. 



