

LUMBER GRADE RECOVERY FROM HAWAII-GROWNROBUSTA EUCALYPTUS LOGSRoger G

Roger G. Skolmen

USDA Forest Service Research Note PSW-204 1970

ABSTRACT: In part to supplement meager data on lumber grade yield of Hawaii-grown timber, 30 robusta eucalyptus logs were shipped to a Michigan sawmill for processing. The logs were from 12 trees in three different stands. The lumber produced was graded according to National Hardwood Lumber Association standards. The sample was too small to provide a basis for predicting grade yields, but robusta yields, by log grade, compared favorably with yields of common hardwoods on the United States mainland.

OXFORD: 176.1 *Eucalyptus robusta* (969):853:854. *RETRIEVAL TERMS: Eucalyptus robusta;* Hawaii; lumber grading; log grading. Lumber has been produced from plantation-grown robusta eucalyptus *(Eucalyptus robusta Sm.)* logs in Hawaii for a number of years. And yet very little of it has been graded by standard, industry-accepted rules. Consequently, little information is available about the lumber grade yield that can be expected from the timber.

Malcolm¹ compiled the only accurate information available. The data in his exploratory study were for 47 logs from 10 trees. Four of the trees were from one stand and six from another—both stands were about 35 years old. His findings are useful only as an indication of trends—not for predicting grade yields.

To obtain the opinions of experienced hardwood specialists on sawing, grading, drying, and manufacturing robusta, we shipped 30 logs to Michigan. The logs were sawed and the lumber graded there. This phase of the study provided grade yield information that supplements Malcolm's data.

Preliminary indications are that yields by log grade compare favorably with those of common hardwoods on the United States mainland. The sample in the study was far too small to provide a basis for predicting grade yields. But it appears that recovery of hardwood lumber grades from graded robusta logs may vary considerably between stands.

THE STUDY

The logs used in the study were cut from 12 trees: 5 from a 60-year-old stand at Opana, Maui; 4 from a 45-year-old stand at Mountain View, Hawaii Island; and 3 from a 33-year-old stand at Honomu, Hawaii Island. The logs were graded by using standard U.S. Forest Service Log Grades for eastern hardwoods.² The scaled length of the logs was held to a foot shorter than the actual length to allow for serious end splitting—a characteristic usually found in the species.

The logs were sawed for grade lumber insofar as the serious spring in them allowed. That is, due to springing (bending) of the logs as growth stress was relieved in sawing, occasional shim cuts were made to straighten faces. And often the logs were turned earlier than would be normal for best grade recovery, so as to keep the stress more nearly balanced.

The grade lumber produced was of thicknesses generally in demand by furniture manufacturers-4/4, 5/4, 6/4, and 8/4. The logs were sawed around to

boxed heart 4 by 4's, 4 by 8's, or 8 by 8's from which 4 by 4's to be used as pallet blocks were produced.

The lumber produced was graded and tallied by a qualified hardwood inspector. Standard grades were used without exceptions for pecularities of the species. Grades marked were FAS, Select, Number 1 Common, and Number 2 Common. The 4 by 4's were

	Diam.				Total					Tally	
	small	Scaled	Log	Log	lumber		Lumber	tally b	y grade	20	in 1C and
Log No.	end	length	grade	scale ⁺	tally	FAS	Sel	1C	20	<u> 3C</u>	better
	Inch	Feet				Boar	·d feet				Percent
					OPANA						
1-1	17	12	1	150	139	26	40		9	64	47
1-2	15	12	2	115	122	51	_	9	16	46	49
1-3	13	17	2	125	117	23	20	10	-	64	45
2-1	21	12	1	235	231	32	68	16	69	46	50
2-2	18	14	1	200	203	17	83	24	23	56	61
2-3	17	16	2	205	226	7	43	81		95	58
3-1	9	16	3	50	51			5	3	43	10
4-1	14	16	2	135	90		7	16	11	56	26
5-1	17	12	1	150	135		27		60	48	20
5-2	14	16	2	135	123	9	24	13	13	64	37
5-3	13	16	3	115	94			19	27	48	20
Total	-			1,615	1,531	165	312	193	231	630	44
				MO	UNTAIN V	TEW					
111	22	10	1	215	222		70	40	27	22	74
11-1	22	10	1	213	223	53	70 49	40	16	64 64	64
11-2	10	12	1	190	181	63	49	13	26	30	69
11-4	17	14	2	180	208	7	31	83	20	87	58
12-1	22	10	1	215	234	88	50	52	13	31	81
12-2	20	12	1	210	258	41	100	40	9	68	70
12-3	19	12	1	190	220	22	61	52	50	35	61
12-4	18	14	2	200	199	7	13	111	8	60	66
16-1	13	16	2-3	(2)	(2)	(2)	(2)	(2)	(2)	(2)	
17-1	14	14	2	115	118	30	16	3	_	69	41
17-2	13	14	2-3	100	82	14	6		24	38	24
Total	_	_		1,710	1,945	379	445	434	183	504	74
					HONOMU						
13-1	15	12	2	115	101		10	11	7	64	30
13-1	13	12	2	115	07	0	11	11	22	44	30
14_1	14	12	2	100	97		40	7	26	24	48
14.2	13	16	2	(3)	(3)	(3)	(3)	(3)	(3)	(3)	-
14-3	12	16	3	95	117	()	() _	8	23	86	7
15-1	16	10	1	110	103	19	9	36		39	62
15-2	15	16	2	160	149	19	20	30		80	46
15-3	14	16	3	135	95		14	15	19	47	31
Total				715	624	42	76	92	70	344	34
Total				4,270	4,235	591	870	745	511	518	52

Table 1.-Lumber grade yield by log number

¹International 1/4-inch log rule. ²Inadvertently combined with log 14-2, so omitted. ³Inadvertently combined with log 16-1, so omitted.

assumed to be Number 3A and 3B Common and tallied as Number 3 Common. Grade recovery was recorded for each log.

RESULTS

The best yield was obtained from Mountain View logs, which were also the largest and highest in log grades *(table 1)*. Logs of comparable size and grade from Opana, Maui, had a lower grade yield, despite having come from older trees. The logs from Honomu, from young trees, had the poorest yield. These differences may be due to the small sample size, rather than to differences between stands.

Yield by log grade varied considerably between stands. The grade 1 logs from Opana, for example, produced much less 1 Common and Better than the grade 1 logs from Mountain View (*table 2*).

Table 2.-Yield of No. 1 common and better lumber, by log grade

			Log grade				
Source	No. logs	1	2	3	Below grade		
				Perce	ent		
Opana	11	48	45	17	_		
Mt. View	11	70	57	24	_		
Honomu	8	62	42	22	-		
1959 study ¹	47	69	54	30	37		
Weighted average	_	62	50	27			
Over-all weighted average				46			

¹Logs from two locations – Mountain View and Hutchinson Sugar Co. Log scale, originally Scribner, converted to International 1/4-inch to compare with present study.

The yield by log grade compares generally with the yield of important mainland species *(table 3)*. The Mountain View logs produced yields, by log grade, similar to yellow poplar, the best of the mainland species.

The most serious grading defect in robusta lumber proved to be tiny pin knots caused by epicormic buds. Similar defects are common to many tropical Table 3.-Yield of No. 1 common and better lumber, by log grade¹

Species	1	2	3
		Percent	
Birch, yellow	70	43	13
Maple, hard	68	41	15
Oak, red (upland)	72	45	18
Poplar, yellow	73	47	20
Beech	67	47	19
Hickory	65	40	14
Unweighted average	69	44	17
Over-all unweighted average		43	

¹Source: U.S. Forest Prod. Lab. Hardwood log grades for standard lumber, proposals and results. Rep. 1737, Tbl. 1, pg. 6, 1959.

hardwoods: "Philippine mahogany" usually has them. In these other species, pin knots are usually ignored. And it is reasonable to expect that they could be ignored in grading robusta as well—if and when robusta becomes established in the marketplace. If pin knots were not classed as a defect, lumber grade yield from robusta logs would be much higher than reported here.

Acknowledgments: This paper reports a portion of the results of a larger study for which we acknowledge the support of the Hawaii Division of Forestry, Department of Land and Natural Resources; Hawaii County Department of Economic Development; Economic Development Administration, U.S. Department of Commerce; Johnson Sawmill, St. John's, Michigan; and Budres Lumber Company, Grand Rapids, Michigan.

NOTES

¹Malcolm, F. B. *Quality evaluation of Hawaiian timber*. U.S. Forest Prod. Lab. Rep. 2226, 28 p., illus. 1961.

²U.S. Forest Serv. Northeastern Forest Exp. Sta. A guide to hardwood log grading. 50 p., illus. 1963.

The Author_

ROGER G. SKOLMEN is on the staff of the Station's Institute of Pacific Islands Forestry, with headquarters in Honolulu, Hawaii, where he has been investigating the uses, properties, and processing of forest products. Native of San Francisco, he holds B.S. (1958) and M.S. (1959) degrees in forestry from the University of California, Berkeley.

The Forest Service of the U.S. Department of Agriculture

- ... Conducts forest and range research at more than 75 locations from Puerto Rico to Alaska and Hawaii.
- ... Participates with all State forestry agencies in cooperative programs to protect and improve the Nation's 395 million acres of State, local, and private forest lands.
- ... Manages and protects the 187-million-acre National Forest System for sustained yield of its many products and services.

The Pacific Southwest Forest and Range Experiment Station

represents the research branch of the Forest Service in California and Hawaii.

ECONOMIC DEVELOPMENT ADMINISTRATION TECHNICAL ASSISTANCE PROJECT U.S. DEPARTMENT OF COMMERCE

U.S. Forest Service research in Hawaii is conducted in cooperation with Division of Forestry Hawaii Department of Land and Natural Resources